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Abstract. Making use of the definition of subordination, we introduce certain subclasses of spiral-
like and Robertson functions in the open unit disk and study some important results such as
convolution results, coefficients estimate, subordination properties and Fekete-Szego problems for
these subclasses. Further, some known and new outcomes which follow as special cases of our
outcomes are also mentioned.
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1. Introduction

Denote A the family of all analytic functions of the form:
e .
=&+ pid (1)
j=2

in U={{eC:[{ <1}. Let Q be the family of analytic functions w (£) in U that satisfy
the conditions w(0) = 0 and |w (§)| < 1(£ € U). If ¢ (§) and ¢ (§) are analytic in U, we
say that 1 (£) is subordinate to ¢ (£), written ¥ (§) < ¢(&) if there exists w () € © , such

(€
that ¥(£) = ¢p(w(§)) (€ € U) (see [6] and [13]).
For functions v (§) given by (1) and ¢ (§) given by

=¢+ Z Uj§j7 (2)
=2
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the convolution of the functions v (§) and ¢ (&) is defined by

(Wx0) (&) =E+ > pj 08 = () (€). (3)

=2

For [y| < § and —1 < D < C <1, a function 1 (£) of A is said to be in S [C, D] if it
it satisfies the following subordination condition:

6 (6) 14 0¢
e e <1+D5

also, let 7 [C, D] denote the subfamily of all functions 1 (£) in A satisfying the condition
that &Y' (§) € SY[C,D]. S8Y[C,D] and K" [C, D] are the subfamilies of spirallike and
Robertson functions respectively studied by several authors earlier ([15], [4, 5]). We note
that S°[C,D] = S[C,D], K°[C;D] = K[C;D] with —1 < D < C < 1, where the
subfamilies S [C, D] and K [C; D] of Janowski functions are introduced and studied by
many authors (see [1], [2], [7], [9], [10], [21] and [20]). Also, we have S° [1 — 2), —1] = S ()\)
and K [1 — 2X\, —1] = K () with 0 < X\ < 1, where S* (A\) and K ()\) denote the subfamilies
of A that consists, respectively, of starlike of order A and convex of order A in U (see [17]
and [19]).

Making use of the subordination, we combine the subfamilies S” [C, D] and K" [C, D]
into a new subfamily SK7 [a, 8; C, D] of A as follows:

) +i sin~, (4)

Definition 1. A function ¢ (§) € A is said to be in the subfamily SK” [, 5; C, D] if it
satisfies the following condition:

o [+ B ' (€) + P (5)} (1 + ¢
Y
¢ [ o) (€) + BEV (€) ST 15 De

(geU;a,ﬁZO;M<g;—1§D<C§1>.

) +i siny (5)

‘We note that

(i) SK7 [a,0;C, D] = 87 [C, D] (see [15])

S7C, D] = {w(g) €A W’(S)] < cos Gigz) i sin’y};

(il) SKY[0,5;C, D] = K7 [C, D] (see [4, 5])

_ o &Y€) 1+ C¢ in b
KW[C,D]—{w(S)EA.e7[1+ w,(g)]<cos'y <1+D§>+ZS *y},

(iii) SKY [a, B;1 —2X,—=1] = SKY (e, B3 A) (0 < A < 1)

(a4 B) & () + B (&) |
ot (€) + BEw (€) ”>“"”}’

SKY (o, B; ) = {w(ﬁ) cA: %{em [
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(iv) SK7 [a,0;1 —2X,—1] =87 (A) (0 < A < 1) (see [12] and [11])

87\ = {w (©) € A: R [emgj(g)} > )\cosv};

(v) SK7[a,0;1,—1] = S () (see [23])

§(v) = {w& €A R [ewﬁ;l”é?] > 0};

(vi) SK7[0,8;1 =2\, —1] = K7 (X) (0 < XA < 1) (see [12] and [11])

0= {0 e for 14 O )

(vii) SK70,8;1,—1] = K () (see [23])

o ={u@eanfor |1+ LEIL Lo,

(viii) SK°[a,0;C, D] = S[C, D] (see [9] and [10])

I

S[C,D]:{w(f)EA: e HC’E}

v(E€) 1+D¢
(ix) SK°[0,8;C, D] = K [C, D] (see [9], [10] and [2])

g Lrce)
v© " 14D

9

K|C,D] = {1/}(5) cA: 1+
(x) SKY [, B;C, D] = SK [, 5; C, D]

I

/ 2,0,

at) (§) + BEY (§) 1+ D¢
(xi) SKY[a, B;1 —2X, —1] = SK (o, B;A) (0 < A < 1)

(ot B) €0/ (€) + BERY (6)
ot (&) 1 BEw (©) ) g A} ’

sic a0 = {w (e e %

SK (a,0;A) = S (N\) and SK (a, 85 A) = K () (see [17]);
(xii) SKO[a, B; (1 —2X\)n, —n] = SK (o, B; A\, ) (0 <A< 1,0 < < 1)
N
S

SK (a,0; \,n) =S (A, n) and SK (o, B; A\, n) = K (A, 1) (see [8]).

SK (o, 85 M, m) = {1/1(5) cA:
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The aim of the present investigation is to define a general subfamily SK” [a, 8; C, D]
of spirallike and Robertson functions. We then investigate some convolution properties,
membership characterizations, coefficient estimates and subordination result for this sub-
family. Furthermore, Fekete-Szego problems and several inequalities are studied. Various
corollaries and consequences of most of our outcomes are connected with earlier outcomes
related to the field of investigation here.

2. Convolution Properties

We suppose throughout this paper that a, >0, [x| =1, -1 <D <C <1, |y < T,
€ €U and 9 (&) € A given by (1).

Theorem 1. ¢ (§) € SK” [a, B; C, D] if and only if

a—F a+28 «
§- (aTﬁ +arp A) &€+ 34508
(1-¢)°

7 0, (6)

where A is given by

(1+ Dx)e" + (C — D) cosyx

A=A(x,7,C,D) = (C = D) cosx (7)
Proof. If ¢ (§) € SK7 [a, B; C, D], then there is a function w (§) € € such that
i [+ B) &Y' (&) + B (&)] _ 14+ Cw(§) o
ew{ ot (€) + PEY' (€) }_Cm <1+Dw<s>) e ¥
hence
i [(a+B) &Y (&) + BEY" (§) 1+Cx . _
o e Fe (o) e (=,
which is equivalent to
£ {14 DX [(a+ B) 60 () + 880" (©)] £0
— [" + (Ccosy +1i Dsiny) x] [av (€) + BEY (€)]} # 0 (9)
It is easy to verify that :
VO =00, (10)
3 /
* = , 11
O = © (1)
and 02
D) x — g = (6). (12
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Using (10),(11) and (12) in (9), we obtain

: {(1 + Dy) [¢ €3 (1 5)2 +4 (&) (1— 5)3]
i i D sin * o * =
—[e7+(CCOS’y+zDs ’Y)X] [¢(§) 1_€+¢(§) (1—{)2]}

§— o—f | at2p (14+Dx)e? +(C—D) cosyx 24«
(a+B8)(D—C) cos yx w(é-) % atp ' atp (C—=D) cosvx a+tB
3

(1+Dx)e"Y +(C—D) cos WXj| ¢3 }
(C—D) cosvx

_(a=B 4 ot2B _a
_  (a+B)(D=C)cosyx Wb (5) * § (044'5 + a+p A) §2 + Oc+5A€2 20
¢ (1-¢)°

which shows the necessary condition of Theorem 1.
Reversely, since, the assumption (9) is equivalent to (6), we get that

o [(a +B) &Y' (€) + BE” (6)} £ cosn <1 +Cx
atp (§) + BEY (€) 1+ Dx

) + 14 sin~y, (13)

if we denote

_ o [(0+ B &Y (9 + BEY" ()
(0= [ o () + BEV () }

and

v(© =cony (15

the relation (13) proves that ¢ (U) N4 (0U) = 0. Thus, the simply-connected domain
¢ (U) is subset of a connected component of C\v¢ (0U). From here, using the fact that
¢ (0) = ¥ (0) = e together with the univalence 1 (£), it follows that ¢ (¢) subordinate
to ¥ (§), which leads in fact the subordination (7), i.e. ¥ (§) € SK" [a, 8;C, D]. This
completes Theorem 1.

) + ¢ sin-y,

Putting v = 0 in Theorem 1, we get
Corollary 1. ¢ (§) € SK[a, 8;C, D] if and only if
£- (52 +220) @+ 508
(1-¢)°

#0,

where A1 is given by
14+ Cx

Ty
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Putting 6 = 0 in Theorem 1, we get
Corollary 2. [4] ¢ (&) € 87 [C, D] if and only if

),
T A

! [w (©) +

where A is given by (7).
Putting @ = 0 in Theorem 1, we get
Corollary 3. [5, Lemma 3 with n = 1] ¢ (§) € K [C, D] if and only if

£ A1)
1—¢p ]7&0’

1

g[ws)*

where A is given by (7).
Taking C =1—-2A(0 <A< 1) and D = —1 in Theorem 1, we get
Corollary 4. ¢ (&) € SK7 (a, B; ) if and only if

€~ (o35 + S A2) € + G5t
lw €+ s 40

A

where )
(1 —x)e""+2(1—\)cosyx
2(1—)\)cosyy '

Theorem 2. v (§) € SK" [, 5; C, D] if and only if

Ay =

1_§: <a+ﬁj> (j —1) (1 +Dx)e” — (C — D)cosx
= a+p (C — D) cosyx

Proof. From Theorem 1, we have 9 (£) € SK” [a, 8; C, D] if and only if

_ +O‘+2’BA 52 A§3
§ <a+5 at B ) ats 40

for all A given by (7). The left hand side of (16) can be written as

(7
1 ah & atf—al & BA-A) 2¢
¢ [1/1(5) * (mﬁ T Tat8 e T o+ (175)3”

v+ e+ T e o]

pi& Tt #0.

3341

(15)
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L &(BA-l, (a-fA-a.  ah ) .,
=1 ;( a+ 3 s a+ S J a—|—,8)p]€j

pi&l 1

o3 () Ut DU (€ Dy
= a+f (C — D) cosyx

Hence, the proof is completed.

Letting v = 0 in Theorem 2, we obtain
Corollary 5. ¢ (&) € SK o, 5;C, D] if and only if

- a+ﬂj> (-1 (A+Dx) = (C-D)x
1-— & 0.
§<a+ﬁ (C—D)x Pt 7
Taking 8 = 0 in Theorem 2, we get
Corollary 6. ¢ (&) € S7[C, D] if and only if
— (j = 1) (14 Dx) e = (C = D)cosyx i1
! ]Z:; (C — D) cosyx pi&’ " # 0.
Taking o = 0 in Theorem 2, we get
Corollary 7. ¢ (§) € K7 [C, D] if and only if
00 - iy . '

= (C — D) cosyx

Taking C =1—-2XA(0 <A< 1)and D = —1 in Theorem 2, we get
Corollary 8. 9 (§) € SK7 («a, 8; ) if and only if

s (a +6j) U= =x)e? =2 =N eosyx i1 4 (17)

= a+pf 2(1—M\)cosyx

3. Membership characterizations

Now we obtain several sufficient conditions for the subfamily SK” [« 8; C, D].

Theorem 3. Let ¢ (§) € A and let i be a real number with 0 < p < 1. If

(a+ B) &Y' (&) + B2 (€)
) (&) + BEY' ()

then ¢ (§) € SK7 |a, 8; C, D] provided that

1'§1u (e, (18)

<ot [0 =)
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Proof. From (18) it follows that

(o + B) &Y' (§) + B (€)
ay (§) + BEY' (€)

where w (§) € . We have

R {ew (@ + B) Y (&) + BEY" (€) }
oty (§) + By’ (€)

=1+(1-pw(),

= R+ (1) R ()

> cos*y—(l—,u)’emw (5)‘
> cosy— (1 —p)
>

170 COS
1-D K

provided that |y| < cos™! [(1_5)_(1D_D)] Thus, the proof is completed.

Putting p=1—

% in Theorem 3, we obtain

Corollary 9. If ¢ (&) € A with

(o + B) &' (&) + BE*Y" (€) (C — D) cosy
S Y S e, 20
then ¢ (§) € SK" [a, 5;C, D).
Putting v = 0 in Corollary 9, we obtain
Corollary 10. If ¢ () € A with
(a+B) &Y' (§) + BEY" (§) ‘ C-D
w©+serie S 1-p =Y

then ¢ (&) € SK [a, 5;C, D].
Putting 8 = 0 in Corollary 9, we obtain
Corollary 11. If ¢ (&) € A with

e (€) (C — D)cosy
‘ 0 0) ‘1‘ =T 1-D

€el),

then ¢ (§) € SY[C, D].

Putting o = 0 in Corollary 9, we obtain
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Corollary 12. If ¢ (§) € A with

£u () ’ _ (€= D)cosy
&€ |~ (1-D)

(e,

then ¢ (§) € K7 [C, D].
Taking C =1—-2X(0 <A< 1) and D = —1 in Corollary 9, we obtain
Corollary 13. If ¢ (§) € A with

(a+ B) &Y (&) 4+ BEY" (€)
o (€) + BEY (€)

then ¢ (&) € SK7 (a, B; A).

1‘§(1A)COS'7 (€ ev),

In the next theorem, we obtain a coefficients theorem for SK” [a, 8; C, D).

Theorem 4. ¢ () € SK” o, 8;C, D] if

(a+pbj )
[(1—D)(j— 1)+ (C — D)cosA]|p;| < (C — D) cosn. (21)
;<a+6> j Np; v

Proof. From Corollary 9, it suffices to prove that (20) is satisfied. We have

S a+pj i i1
(ot B) €/ (€) + BE (&) 1\ = E(aw) (= 1) ps€
ar) () + BEY (€) m Z a%)p]@ 1

(
( )]—1|PJ
( )!pg

=
)

Jj=2

C—D) cos
((1)D)W if

S (ALY oy < G2 [1 3 (O;ng)p]

Jj=2 Jj=2

The last expression is bounded above by

which is equivalent to

o [+ B .
[(1-=D)(j—1)+ (C — D)cosn]|pj| < (C — D)cosH.
> (557) j Mo ,

This completes the Theorem 4.
Putting v = 0 in Theorem 4, we obtain
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Corollary 14. ¢ (§) € SK o, 8;C, D] if

= [a+bj .
——=)[(1-D)(j—1)+C—D]|pj| <C—D. (22)
;(wﬁ) ! &

Putting 8 = 0 in Theorem 4, we obtain

Corollary 15. ¢ (§) € 87 [C, D] if

> [1=D)(j —1)+(C~ D)cosn] |pj| < (C — D)cos. (23)
j=2

Putting @ = 0 in Theorem 4, we obtain

Corollary 16. ¢ (§) € K7 [C, D] if
> 5[1= D) (= 1) + (€ = D)cosa] Js] < (€ = D) cos (24)

Taking C =1—-2A(0 <A< 1) and D = —1 in Theorem 4, we obtain
Corollary 17. ¢ (§) € SK (o, B; A) if

00 Oé—l—,@
jz(a—i—;) J =141 =2A)cosv]|pj| < (1—A)cosy. (25)

4. Subordination result

Before proving our subordination result for SK” [, 8; C, D], we shall make use the
following definitions and a lemma.

Definition 2. [24] We say that a complex sequence {O'J} ° . 15 a subordinating factor

sequence (SFS) if, whenever i (§) =&+ Z p;&7 is univalent (analytic) and convex in U,
j=2
we have

Y pioi =P(©) (m=1Ee). (26)
=1

Lemma 1. [2/] The complex sequence {aj};?’;l is a subordinating factor sequence (SFS)
if and only if

142 0,83 >0 (£€). (27)

j=1
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Theorem 5. Let ¢ () € SK7 [«, 8; C, D] satisfy the coefficient inequality (21) and let
(&) € K, then

(O;Jf:g) [1—D+ (C — D)cosn]

} (¥ x9) (§) <& (8) (28)

2 [(C — D) cosy + (0&125) [1—D+ (C—D)cosn]

and

(C — D) cosy + C;j'zﬁ [1—D+ (C — D)cosn]
R} 0+ (&) !

(29)

0;12’@8) [1— D+ (C — D)cosn]

The constant factor

(0(%26/3) [1— D+ (C — D)cosn]

2 [(C— D) cosy + (%125}) [1—D+ (C — D)cosn]

in (28) cannot be replaced by a larger number.

Proof. Let ¥ (§) € SK7 [a, B; C, D] satisfy the coefficient inequality (21) and suppose
that

pE)=¢+) o8 ek

j=2
Then, by Definition 2, the condition (28) will hold true if

(fﬁf) [1—D+ (C — D)cos~] p‘}oo

{2 [(C’— D) cos~y + (Cgfgj) [1—-D+(C—D) cosv]]

j=1
is a subordinating factor sequence, with o1 = 1. From Lemma 1, it is equivalent to the

inequality

§R{1+OO (O&Lﬁ)[l—D—i—(C—D)COSﬂ

D

=1 (C = D)cosy + (iéfg) l1-D+(C-D

mé}>o (€€T). (30)
) cos ]

By noting the fact that

() [t )

is an increasing for j > 2. In view of (21), when |[¢| = r < 1, we have

O;J“—Q’B [1—D+ (C— D)cosn] o0 4
( +B) pj &

R1+
{ (C — D)cosy+ (0;125) [1—D—|—(C—D)cos7];
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<o;++2ﬁﬁ>[1—D+(C—D)COS’)/]
= N1+ £
(C’—D)Cosv—i—(%‘:_%g)[l—D—}—(C—D)cosv]
i(i12£)[1—D+(C—D)COSV]pjéj
T _ a+20 . _

(C D)cos*y—i—(a_w)[l D + (C — D) cos~]
. (%fg)[l-D—i—(C—D)cosy] )
a (C’—D)cos*y+(%fg)[l—D—F(C—D)COS'y]

> (%5 (1= D) (j ~ 1) +(C — D)eosn] lps| +7
(C—D)cos*y+(%)[1—D+(C—D)COSV]
— (O;fg)[l—D—l—(C—D)cosv] )
a (C—D)COS’)’—I—(2126[3)[1—D+(C—D)COS’Y]
B (C — D)cos~y .
(C—D)COS’Y—I—(%—i__i_QBB)[l—D—}—(C—D)COS’}/]

= 1-r>0 (=r<1l).
This proves (30) and (28). The inequality (29) follows from (28) by letting

§

¢(f):17_§

=¢+) dek.
=2

The sharpness of the multiplying factor in (28) can be established by considering a function
(C — D)cosy 9

%12/6@) [1—D+ (C— D)cosv]

‘I’(f)—é—(

Clearly ¥ € SK7 [a, 8; C, D] satisfy (21). Using (28) we infer that

(%fg) [1—D+ (C—D)cosn]

}\P(é)<1f£,

2{(6’ — D) cos~y + (O&Jfﬁﬁ) [1—D+ (C — D)cosn]

and it follows that

) (%) [1— D+ (C— D)cosn] !
r51013{2 {(C’— D) cos~y + (C;f/f) [1-D+(C—-D) cosv]}%{qj © = 2
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This shows that the constant

(03[12;) [1— D+ (C — D)cos9]

2{(0— D) cosvy + (O;—fﬁﬁ) 1-D+(C- D)cos*y]}

cannot be replaced by any larger one.

For v = 0 in Theorem 5, we get

Corollary 18. Let ¢ (§) € SK|[a, 8;C, D] satisfy the coefficient inequality (22) and let
¢ (&) € K, then

(O;éff) (1-2D+C)

* 31
2|:C_D+(O;:_2ﬂﬁ)(1—2D—|—C):| (w ¢)(§)'<¢(§) ( )
and
I — () u-20+0 (32)
<a+26> (1—2D+C)
a+f

The constant factor

in (31) cannot be replaced by a larger number.
Taking S = 0 in Theorem 5, we get

Corollary 19. Let ¢ (€) € 87 [C, D] satisfy the coefficient inequality (23) and let ¢ (€) €
K, then
1—D+ (C—D)cosvy
2[2(C —=D)cosy+1— D]

(1) (§) <& (8) (33)

and
2(C—=D)cosy+1—-D

1-D+(C—D)cosy

R{p (O} > - (34)

The constant factor
1—-D+(C—D)cosy
2[2(C = D)cosy+1— D]

in (33) cannot be replaced by a larger number.

Taking a = 0 in Theorem 5, we get
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Corollary 20. Let ¢ () € K7 [C, D] satisfy the coefficient inequality (24) and let ¢ (€) €
IC, then
1—D+ (C—D)cosvy
3(C—=D)cosy+2(1—-D)

(1 *9) (§) < ¢ (&) (35)

and
3(C —D)cosy+2(1—D)

R () >~ oy o T

The constant factor
1— D+ (C—D)cosy

3(C—=D)cosy+2(1—D)

in (35) cannot be replaced by a larger number.

Taking C =1—-2A(0 <A< 1) and D = —1 in Theorem 5, we get

Corollary 21. Let ¢ (§) € SK7 (o, 8;\) satisfy the coefficient inequality (25) and let
(&) € K, then

(%) [1+(1—\)cosn]

(¥ *¢) (§) <& (&) (37)
2{(1—)\)0057+(%12§>[1+(1—)\)c057]}
and 05
(1= X cosy+ (ZE22) [1+ (1 — A) cos ]
R ((©) > - alﬁ(*ﬁ) ! (39)
(aﬂg)[l—i-(l—)\)cosry]

The constant factor

(0;1253) 1+ (1—X)cos]

2{(1 —A)cosy + (%) [T+ (1—=X) COS’Y]}

in (37) cannot be replaced by a larger number.

5. Fekete-Szego problems

The Fekete-Szegd problem consists in finding upper-bounds for |p3 — up3| for various
subfamilies of analytic functions (see [3], [16], [18] and [22]). In order to get upper-bounds
for ‘pg — ,up%’ for the subfamily SK7 [« §; C, D] the next lemma is required.

Lemma 2. [14, p.108]/Let w € Q be given by

w@ =) w & (e,
j=1
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Then
w1 <1, Jwo| <1 —Jwn]?, (39)

and
‘wg—uw%‘ < max{l,|v|}, (40)

for any complex number v € C. The functions w(€) = & and w(€) = £%or one of their
rotations show that both inequalities (39) and (40) are sharp.

First we obtain upper-bounds for ‘,03 — ,up%’ with 4 € R.
Theorem 6. Let ¢ (§) € SK7 [a, B;C, D] and let pn € R. Then

o [ 4 (0 ) (1 - Hs28iss )] (u oy
o3 — pp3| < { LetBfCoDleosn (V1 < p < V)
(a+B)(C—=D) cos 2p(a+B)(a+38)
2 [D —@=D) <1 ~ sy ﬂ (= b2)

where
_ (@+2B)*(C-2D-1)
"2 5@ +39) (C- D) .

26)*(C —2D +1
g (a429P(C—2D+1) "
2(a+8)(a+38)(C—D)
Proof. Suppose that ¥ (§) is in SK” [a, 8;C, D]. Then, from the definition of the
subclass SK7 [a, 8; C, D], there exists

W) =wif+wt+ws+..€Q

such that
iv [ (ot B) €4 (&) + BE" ()] _ 14+ Cw(€)\ . .
ev[ ot (€) + BEY (€) } = Cos7y (HDOJ(5)> +isiny (£€U). (44)
et (ot B) €07 (6) + BEX (© 25
iy [t (84 - ]_ iy i’y<a+ )
‘ [ o (€) + BEY (€) et oy )
o238 (@+287 )]
+e P P3 (a1 5) pal &+ ... (45)
and

cosy Gigig)—m siny = ¢7+(C — D) cosywié+(C — D) cosy (wa — Dw}) €2+.... (46)

By using (45) and (46), equating the coefficients of ¢ and &2 on both sides of (44), we

have ,
(a+pB)(C—D)e " cosry

a+ 20

p2 = w1 (47)
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and .
_ (a+B)(C—D)e ™ cosvy

2 (a+383)

(w2 + (=D + (C — D)e™" cosy) wi] . (48)
It follows
|ps — up3| < LOHERC-Dheosn {Iwzl + ‘—D +(C = D)e ™ cosy [1 - %H jwr]? }

Making use of Lemma 2 we have

|p3 —,up%‘ < (@#B)(C D) cosy {1+ (‘—D—i— (C — D)e " cosy [1 - MH — 1) w1 |? }

2(a+38) (a+28)?
or
s — 3| < CHYCDest 14 (VD2 H T - 2D) cosy — 1) | |, (49)
where
2u(a+pB) (a+ 38
II=(C-D) [1 — ( @ +)2(5)2 )] . (50)
Denote by

H(z,y) =1+ (\/D2+H(H—2D)x2_1) 2

where x = cos~y, y = |w1| and (x,y) : [0,1] x [0,1]. Simple calculation shows that H (z,y)
does not have a local maximum at any interior point of the rectangle (0,1) x (0,1). Thus,
the maximum must be attained at a boundary point. Since H (x,0) = 1, H (0,y) =
1+ (/D] -1)y* <1 and H(1,1) = Il — D|, it follows that the maximal value of H (z,y)
may be H (0,0) =1 or H(1,1) = |II — D|. Hence, from (49) we obtain

|3 — ppB| < CHYCDICOT max {1, 11 - DI}, (51)

where II is given by (50). Consider first the case |II — D| > 1. If u < ¥, where ¥ is given
by (42), then IT > 1 + D and from (51) we obtain

o3 — pp3| < (HBHCTcooy [—D+(C—D) (1— Wﬂ

which is the first part of the inequality (41). If u > 9, where ¥ is given by (43), then
II < D —1 and it follows from (51) that

}%—u;ﬁ\ﬁ%p—w—m (1_2M0(fif—)2(;;2+3@>]

and this is the third part of (41).
Next, suppose 91 < p < 9. Then, |II — D| < 1 and thus, from (51) we obtain

C—-D
o ] < 2=

which is the second part of the inequality (41).

For v = 0 in Theorem 6, we obtain
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Corollary 22. Let ¢ (§) € SK |o, 8;C, D] and let p € R. Then

@tB)(C=D) | . (c—_ p)(1 - 2ulatb)at3b) <9
D+ -D)( )] =

2(@+§B)D (a+28)*
o5 — pp3| < § LepAED) (V1 < p < 9y)
(a+8)(C-D) 2pu(a-+6)(a+38)
2a+35) [D —@=D (1 ~ sy )] (k= 02)

where Y1 and Y2 are given by (42) and (43).
Taking 8 = 0 in Theorem 6, we obtain
Corollary 23. Let ¢ (§) € §7[C, D] and let € R. Then

(C=D)osT D 4 (C — D) (1 —2u)] (u < 91)
ps — pp3| < ¢ L&=L)cosn (91 < pu < Va)
C=D)cosv 1D (€~ D) (1—2p)] (> s)

where
_C-2D-1

9 C-2D+1
5T 2(C—-D)

e = 2(C-D) "

Taking o = 0 in Theorem 6, we obtain

Corollary 24. Let ¢ (§) € K7 [C, D] and let yn € R. Then

O=D)cosy [_p 4 (€= D) (1—-3p)] (< 95)

|ps — pp3| < @ U5 < pu < V)
(B [D— (€= D) (1-3p1)] (1> V6)
where
195:2(0—2D—1) 06:2(0—2D+1)
3(C—D) 3(C— D)

Taking C =1—-2A(0 <A< 1) and D = —1 in Theorem 6, we obtain
Corollary 25. Let ¢ (§) € SK7 (o, B; A) and let pn € R. Then

8030 [ g (1 - ) (1 - 2etDogD] () < gy

(c+38) (a+26)2
[pa = np] < | (7 < 1 < Be)
(a+B)(1—=X) cosy 2p(otB)(a+38)
R [1-20 -3 (1= 2EEEED) | (4> 0y)
where 5
g — (@420 (1))
" 2(a+B) (a+38) (1- )
(a+28)%(2 -\
Vg =

C2(a+B) (a@+38)(1—N)
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We consider the Fekete-Szegd problem for the subclass SK7 [«, 5; C, D] with complex
parameter u € C.

Theorem 7. Let ¢ () € SK7 [a, B;C, D] and let pn € C. Then,

lps — pp3| < Wma}({l, )D—l— (C — D)e ™ cosy [% - 1] )}
(52)

Proof. Assume that ¢ (§) € SK7 [a, 8; C, D]. Making use of (47) and (48) we obtain

|3 — pp3| < (I Tpcosn ‘wz - (D+(C—D)e_”0087 [W - 1D W ‘

The inequality (52) follows as an application of Lemma 2 with

V:D—F(C—D)e*ivcosv[W—l}.

For v = 0 in Theorem 7, we obtain

Corollary 26. Let ¢ () € SK [« 8;C, D] and let p € C. Then,

‘pg—up§| < %max{l,‘D—i—(C—D) [%—1”}

Taking S = 0 in Theorem 7, we obtain
Corollary 27. Let ¢ (§) € 87 [C, D] and let p € C. Then,
|p3 — upg{ < %max{l, ’D +(C = D)e 7 cosy (2u — 1)’} .
Taking o = 0 in Theorem 7, we obtain
Corollary 28. Let ¢ (¢) € K7 [C, D] and let pn € C. Then,
D+ (C —D)e M cosy (3p— 1)|} .
Taking C =1—-2A(0 <A< 1) and D = —1 in Theorem 6, we obtain
Corollary 29. Let ¢ (§) € SK7 (a, 8; A) and let pn € C. Then,

2 (a+B)(1=A) cos —i 2p(o+pB)(a+35)
‘pg —,LLp2’ S (()[_‘_—w)ovmax{l, —1+2(1 —>\)e ,YCOS'}/ |:M(CM+—2ﬁ)2 — ].iH}

|ps — pp3| < C=RIO Y max {1,

6. Conclusions

In our present investigation, we have defined a general subclass SK7 [«, 8;C, D] of
spirallike and Robertson analytic functions. For functions belonging to this subclass, we
have derived some interesting results such as convolution properties, membership char-
acterizations, coefficient estimates, subordination result and the Fekete-Szego estimates.
Furthermore, interesting corollaries and particular cases are shown for each of those results
for particular choices of parameters found in the definition of this subclass. Our results are
connected with those in several earlier works, which are related to the Geometric Function
Theory. Moreover, these results can be extended to multivalent functions and meromophic
functions.
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