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Abstract. There have appeared a large family of theorems related the metric completeness. They
are mainly concerned with generalizations of the Banach contraction on quasi-metric spaces and
their extended artificial spaces. In this survey article, we classify the family according to our 2023
Metatheorem. Many known metric fixed point theorems belong to the family including the Rus-
Hicks-Rhoades (RHR) theorem. Such results on metric spaces are consequences of our generalized
forms of the Banach contraction principle for weak contractions or the RHR maps on quasi-metric
spaces. We list a large number of examples of metric fixed point theorems which follow from our
principles. Moreover, we add some comments on related papers in order to improve them.
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1. Prologue

It is well-known that complete metric spaces have a large number of properties and,
conversely, many of them characterize the completeness.

In our study in the ordered fixed point theory, we derived the 2023 Metatheorem which
is a set of equivalent logical statements. From 2022, we applied it to almost one hundred
theorems and obtained nearly one thousand new facts in mathematics.

Let (X, q) be a quasi-metric space (without assuming the symmetry of a metric). A
selfmap f : X → X is called a Banach contraction with a constant α ∈ (0, 1) if

q(f(x), f(y)) ≤ α q(x, y) ∀x, y ∈ X.

A selfmap f : X → X is called a weak contraction or a Rus-Hicks-Rhoades contraction
(or simply an RHR map) with α ∈ (0, 1) whenever

q(f(x), f2(x)) ≤ α q(x, f(x)) ∀x ∈ X.
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Since 2023, we studied RHR maps and related topics in [16]–[21]. We obtained the
generalized Banach Contraction Principle and the RHR Contraction Principle (Theorem
P) with their applications to scores of examples in the literature.

Even for metric spaces our previous Theorem H in [17], [19] gave equivalent formu-
lations of extensions of fixed point theorems due to Banach, Rus-Hicks-Rhoades, Nadler,
Covitz-Nadler, Ekeland, Takahashi, Caristi-Kirk, Oettli-Théra and others. Consequently,
we give the common unified new proofs of them.

The present survey is to classify many known fixed point theorems for quasi-metric
spaces which characterize their completeness. In fact, we obtain a family of old or new
theorems and can give them a unified proof. Consequently, this will enhance the reader’s
understanding of metric fixed point theory.

This survey is organized as follows: Section 2 is for preliminaries on quasi-metric
spaces. In Section 3, we introduce Theorem H in [17], [19], which is a consequence of the
2023 Metatheorem implying equivalent formulations of quasi-metric completeness. Section
4 devotes some remarks on the family (0) of theorems related metric completeness.

In Sections 5-10, we introduce major results in the subfamilies (α)− (η) of the family
(0) corresponding to each equivalent formulations to the completeness in Theorem H.
Finally, Section 11 is for the epilogue.

There are a large number of articles concerning metric completeness. However this
survey would be a precious supplement of the history of metric fixed pint theory.

2. Preliminaries

We recall the following:

Definition 2.1. A quasi-metric on a non-empty set X is a function q : X ×X → R+ =
[0,∞) verifying the following conditions for all x, y, z ∈ X:

(a) (self-distance) q(x, y) = q(y, x) = 0 ⇐⇒ x = y;
(b) (triangle inequality) q(x, z) ≤ q(x, y) + d(y, z).

A metric in a set X is a quasi-metric satisfying that for all x, y ∈ X,

(c) (symmetry) q(x, y) = q(y, x).

For quasi-metric spaces, the convergence of a sequence, Cauchy sequences, complete-
ness, orbits, and orbital continuity are routinely defined as follows:

Definition 2.2. ([2], [9])
(1) A sequence (xn) in X converges to x ∈ X if

lim
n→∞

q(xn, x) = lim
n→∞

q(x, xn) = 0.

(2) A sequence (xn) is left-Cauchy if for every ε > 0, there is a positive integer N =
N(ε) such that q(xn, xm) < ε for all n > m > N .

(3) A sequence (xn) is right-Cauchy if for every ε > 0, there is a positive integer
N = N(ε) such that q(xn, xm) < ε for all m > n > N .
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(4) A sequence (xn) is Cauchy if for every ε > 0 there is positive integer N = N(ε)
such that q(xn, xm) < ε for all m,n > N ; that is (xn) is a Cauchy sequence if it is left and
right Cauchy.

Definition 2.3. ([2], [9])
(1) (X, q) is left-complete if every left-Cauchy sequence in X is convergent;
(2) (X, q) is right-complete if every right-Cauchy sequence in X is convergent;
(3) (X, q) is complete if every Cauchy sequence in X is convergent.

Definition 2.4. Let (X, q) be a quasi-metric space and T : X → X a selfmap. The orbit
of T at x ∈ X is the set

OT (x) = {x, T (x), · · · , Tn(x), · · · }.

The space X is said to be T-orbitally complete if every right-Cauchy sequence in OT (x)
is convergent in X. A selfmap T of X is said to be orbitally continuous at x0 ∈ X if

lim
n→∞

Tn(x) = x0 =⇒ lim
n→∞

Tn+1(x) = T (x0)

for any x ∈ X.

Note that every complete metric space is T -orbitally complete for all maps T : X → X.
There exists a T -orbitally complete metric space but it is not complete. Moreover, there
exists an orbitally continuous map but it is not continuous.

For other terminology related quasi-metric spaces, see [2], [9],

3. The basic principle and subfamilies (α)− (η)

Let (X, q) be a quasi-metric space and Cl(X) denote the family of all nonempty closed
subsets of X (not necessarily bounded). For A, B ∈ Cl(X), set

H(A,B) = max{sup{q(a,B) : a ∈ A}, sup{q(b, A) : b ∈ B}},

where q(a,B) = inf{q(a, b) : b ∈ B}. Then H is called a generalized Hausdorff distance
and it may have infinite values.

Based on our 2023 Metatheorem [14] and the RHR theorem, we obtained the following
in [17], [19]:

Theorem H. Let (X, q) be a quasi-metric space and 0 < α < 1. Then the following
statements are equivalent:

(0) (X, q) is complete.

(α) For a multimap T : X → Cl(X), there exists an element v ∈ X such that
H(T (v), T (w)) > αq(v, w) for any w ∈ X\{v}.

(β) If F is a family of maps f : X → X such that, for any x ∈ X\{f(x)}, there exists a
y ∈ X\{x} satisfying q(f(x), f(y)) ≤ α q(x, y), then F has a common fixed element v ∈ X,
that is, v = f(v) for all f ∈ F.
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(γ) If F is a family of maps f : X → X satisfying q(f(x), f2(x)) ≤ α q(x, f(x)) for all
x ∈ X\{f(x)}, then F has a common fixed element v ∈ X, that is, v = f(v) for all f ∈ F.

(δ) Let F be a family of multimaps T : X → Cl(X) such that, for any x ∈ X\T (x),
there exists y ∈ X\{x} satisfying H(T (x), T (y)) ≤ α q(x, y). Then F has a common fixed
element v ∈ X, that is, v ∈ T (v) for all T ∈ F.

(ϵ) If F is a family of multimaps T : X → Cl(X) satisfying H(T (x), T (y)) ≤ α q(x, y)
for all x ∈ X and any y ∈ T (x)\{x}, then F has a common stationary element v ∈ X,
that is, {v} = T (v) for all T ∈ F.

(η) If Y is a subset of X such that for each x ∈ X\Y there exists a z ∈ X\{x} satisfying
H(T (x), T (z)) ≤ α q(x, z) for a T : X → Cl(X), then there exists a v ∈ X ∩ Y = Y .

Remark 3.1. (1) The completeness in (0) can be replaced by f -orbitally or T -orbitally
completeness according to the corresponding situation.

(2) Note that there are many characterizations of the metric completeness; see [20].
Theorem H covers some of them. It is well-known that the Banach contraction does
not characterize the metric completeness. However the extended RHR Principle does by
Theorem H(γ),

(2) Note that Theorem H(β) properly extends the Banach Principle, (γ) the RHR
Principle, and (δ), (ϵ) the Nadler and Covitz-Nadler theorems. Moreover, Theorem H
gives unified short-cut proofs of such extensions.

(3) Let (α1) and (η1) denote the case (α) and (η) for single-valued T = f , resp. When
F is a singleton, (β) − (ϵ) are denoted by (β1) − (ϵ1), resp. These are also equivalent to
(0)− (η). Therefore, actually Theorem H consists of equivalent 13 statements and gives a
unified proofs for their equivalencies.

Definition 3.2. Let us consider the family (0) of theorems related to the completeness
of quasi-metric spaces. Each subfamily (α)− (η) without (ζ) of the family (0) consists of
theorems related the statement (α)− (η), resp.

4. The family (0)

In our earlier paper [13] in 1984, we gave some necessary and sufficient conditions for
a metric space (X, d) to be complete. Such characterizations of metric completeness were
given mainly by results relevant to Caristi’s fixed point theorem (1976). Works of Can-
tor, Kuratowski (1930), Ekeland (1972), Caristi (1976), Kirk (1976), Boyd-Wong (1976),
Kolodner (1967), Weston (1977), Ćirić (1971), Hu (1967), Reich (1971), Subrahmanyam
(1975), and others are combined.

Actually we combined those results and stated our characterizations of the metric
completeness as Theorem of [13]. The first response to the article was that: “Who dare
use this kind of things to check the completeness of a metric space?”

A few years later in 1986, the author and Billy E. Rhoades published [22]. Its Abstract
says: Several authors have characterized completeness of a metric space by using a fixed
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point theorem. The two theorems of this paper encompass some previous results as well
as future theorems of this type.

We introduce the two theorems in [22] as follows:
Let B be a class of selfmaps of closed subsets of a metric space X such that if any

g ∈ B has a fixed point then X is complete. Examples of B are the classes of the Banach
contractions (Hu (1967)) and the Kannan type contractions.

Let A be a class of selfmaps of closed subsets of X containing B such that completeness
of X implies the existence of a fixed point for any map in A. Examples of A containing
the preceding examples of B are classes of maps satisfying the conditions of Meir-Keeler
(1969), Hegedüs-Szilágyi (1980), Caristi (1976), Tasković (1978, 1984), and Hikida (1984).

The following is the main result of [22]:

Theorem 4.1. X is complete if and only if any map in A has a fixed point.

Let B′ be a class of selfmaps defined on X such that every map in B′ satisfies a certain
condition Q, then X is complete. An example of B′ is the map satisfying an equivalent
formulation of Caristi’s theorem as in Weston (1977).

Let A′ be a class of maps defined on X containing B′ such that completeness of X
implies that every map in A′ satisfies a condition P , where P implies Q. An example of
A′ is the maps satisfying Ekeland’s variational principle as in Sullivan (1981).

Theorem 4.2. X is complete if and only if every map in A′ satisfies the condition P.

In MR835839 (87m:54125), the reviewer J. Matkowski stated: There are many papers
in which the completeness of a metric space is characterized by using a fixed point theorem.
In the present paper [23], the authors prove two very simple and general theorems that
“encompass some previous as well as future theorems of this type.”

In 2020, S. Cobzaş [6] published an article entitled “Fixed points and completeness in
metric and generalized metric spaces” with the following in Abstract:

“The famous Banach contraction principle holds in complete metric spaces, but com-
pleteness is not a necessary condition: there are incomplete metric spaces on which every
contraction has a fixed point. The aim of his paper [6] is to present various circumstances
in which fixed point results imply completeness. For metric spaces, this is the case of Eke-
land’s variational principle and of its equivalent, Caristi’s fixed point theorem. Other fixed
point results having this property will also be presented in metric spaces, in quasi-metric
spaces, and in partial metric spaces.”

Forty years later from [13], now we have another scores of papers on the metric com-
pleteness. A relatively new ones can be seen in Park [17],[18],[20] and others, where many
known theorems on metric spaces also work on quasi-metric spaces. It would be interesting
whether any of the works mentioned above [13] also hold for quasi-metric spaces.

The family (0) consists of theorems on completeness of quasi-metric spaces. Of course,
it has a large number of theorems containing (α)− (η) and others.

In the present article, we do not try to collect all theorems in the family (0). Even for
the subfamilies (α) − (η), we consider only theorems closely related our Metatheorem or
Theorem H.
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5. The subfamily (α)

The case (α) implies the following:

Theorem 5.1. For a quasi-metric space (X, q), the following are equivalent:

(0) (X, q) is complete.

(α1) For a map f : X → X, there exists an element v ∈ X such that q(f(v), f(w)) >
αq(v, w) for any w ∈ X\{v}.

(α) For a multimap T : X → Cl(X), there exists an element v ∈ X such that
H(T (v), T (w)) > αq(v, w) for any w ∈ X\{v}.

As we have shown in our earlier paper [13] in 1984, many known theorems belong to
the subfamily (α).

6. The subfamily (β)

In Theorem H, consider the following:

(β) If F is a family of maps f : X → X such that, for any x ∈ X\{f(x)}, there exists a
y ∈ X\{x} satisfying q(f(x), f(y)) ≤ α q(x, y), then F has a common fixed element v ∈ X,
that is, v = f(v) for all f ∈ F.

Note that the f -orbital completeness of (X, q) for any map f : X → X in F implies
(β).

From (β), we obtain the following consequence of Theorem P in Park [16]-[19], [21] (or
in the next section), the generalized Banach contraction principle:

Theorem Q. Let (X, q) be a quasi-metric space and let T : X → X be a generalized
Banach contraction, that is, for each x ∈ X, there exists a y ∈ X\{x} such that

q(T (x), T (y)) ≤ α q(x, y) where 0 < α < 1. (q)

(i) If X is T -orbitally complete, then, for each x ∈ X, there exists a point x0 ∈ X such
that

lim
n→∞

Tn(x) = x0

and

q(Tn(x), x0) ≤
αn

1− α
q(x, T (x)), n = 1, 2, · · · ,

q(Tn(x), x0) ≤
α

1− α
q(Tn−1(x), Tn(x)), n = 1, 2, · · · .

(ii) x0 is the unique fixed point of T (equivalently, T : X → X is orbitally continuous
at x0 ∈ X).

Theorem Q extends a part of the following Theorem H(0) ⇐⇒ (β1):
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Theorem 6.1. Let (X, q) be a quasi-metric space. Then it is complete if and only if

(β1) Let f : X → X be a map such that, for any x ∈ X\{f(x)}, there exists y ∈ X\{x}
satisfying q(f(x), f(y)) ≤ α q(x, y). Then f has a fixed element v ∈ X, that is, v = f(v).

The only if part extends the so-called Banach Contraction Principle.

The traditional Banach Contraction Principle is a particular form of Theorem Q when
X is a metric space and (q) holds for all x, y ∈ X. It appears in thousands of publications
and should be corrected or replaced by Theorem Q.

The origin of the subfamily (β) is the following due to Banach in 1922:

Theorem 6.2. (Banach) If 10 U(X) be a continuous operator in E, the counter-domain
of U(X) is contained in E1.

20 There exists a number 0 < M < 1 which implies, for every X ′ and X ′′, the inequality

||U(X ′)− U(X ′′)|| ≤ M.||X ′ −X ′′||.

—- there exists an element X such that X = U(X).

Here E and E1 is a normed space and its complete subset, resp.

7. The subfamily (γ)

In Theorem H, consider the following:

(γ) If F is a family of maps f : X → X satisfying q(f(x), f2(x)) ≤ α q(x, f(x)) for all
x ∈ X\{f(x)}, then F has a common fixed element v ∈ X, that is, v = f(v) for all f ∈ F.

Note that the f -orbital completeness of (X, q) for any RHR map f : X → X in F
implies (γ). Such map is traditionally called as graphic contraction, iterative contraction,
weakly contraction, Banach mapping, . . . . We prefer to call it a weak contraction.

The following consequence of (γ) was independently obtained in Park [16]-[19], [21].
It is called the Rus-Hicks-Rhoades (RHR) Contraction Principle:

Theorem P. Let (X, q) be a quasi-metric space and let T : X → X be an RHR map; that
is,

q(T (x), T 2(x)) ≤ α q(x, T (x)) for every x ∈ X, (p)

where 0 < α < 1.

(i) If X is T -orbitally complete, then, for each x ∈ X, there exists a point x0 ∈ X such
that

lim
n→∞

Tn(x) = x0

and

q(Tn(x), x0) ≤
αn

1− α
q(x, T (x)), n = 1, 2, · · · ,

q(Tn(x), x0) ≤
α

1− α
q(Tn−1(x), Tn(x)), n = 1, 2, · · · .
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(ii) x0 is a fixed point of T , and, equivalently,

(iii) T : X → X is orbitally continuous at x0 ∈ X.

Example 7.1. For any quasi-metric space (X, q), let T = 1X be the identity map. Then
Theorem P holds for 1X .

Example 7.2. Let X = {0, 1} with the usual metric and T = 1X . Then condition (p)
holds, but not (q). Hence Theorem P is a proper generalization of Theorem Q.

Example 7.3. Let

X := {−1} ∪ {0} ∪ { 1
n
: n = 1, 2, · · · , 100}.

Let q : X ×X → R be the ordinary metric except q(−1, 0) = 1 and q(0,−1) = 0. Then
(X, q) is a quasi-metric space.

Let T : X → X be a map such that

T (−1) = 0, T (0) = 0, and T (
1

n
) =

1

n+ 1
.

Then we can check

q(T (x), T 2(x)) ≤ α q(x, T (x)) with α =
100

102
.

Therefore Theorem P works.

The following form of the RHR theorem is a consequence of Theorems P and H, and
useful in practice.

Theorem H(γ1). Let (X, q) be a quasi-metric space, 0 < α < 1, and f : X → X be a
map satisfying

q(f(x), f2(x)) ≤ α q(x, f(x)) for all x ∈ X\{f(x)}.

Then f has a fixed element v ∈ X if X is f-orbitally complete.

In our previous works [16]–[19], [21], we applied Theorems P and H(γ1) to a large
number of early extensions or relatives of theorems of Rus [24] in 1973 and Hicks-Rhoades
[8] in 1979.

Theorem 7.4. (Hicks-Rhoades) Let (X, d) be a complete metric space, g : X → X and
0 ≤ h < 1. Suppose there exists an x such that

d(gy, g2y) ≤ h d(y, gy) for every y ∈ {x, gx, g2x, . . . }.

Then,

(i) limn g
nx = q exists;

(ii) d(gnx, q) ≤ hn

1−hd(x, gx);
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(iii) q is a fixed point of g if and only if G(x) = d(x, gx) is g-orbitally lower semi-
continuous at q.

The following appears in a text-book of Aubin [1] in 1979:

Theorem 7.5. (Aubin) Let V be a complete metric space and f : V → V be a map such
that there exists an L ∈ [0, 1) satisfying

d(fx, f2x) ≤ Ld(x, fx) ∀ x ∈ V.

If F (x) = d(x, fx) on V is l.s.c., then

(1) lim fnx = p exists for all x ∈ V ,

d(fnx, p) ≤ Ln

1− L
d(x, fx),

and p is a fixed point of f, and

(2) for any u ∈ V and ε > 0 satisfying

F (u) ≤ (1− L)ε,

f has a fixed point in B(u, ε). Further, if f is a quasi-Lipshitzian with constant k, then either
u is a fixed point of f or f has a fixed point in B(u, ε)\B(u, s) where s = F (u)(1 + k)−1.

Theorem 7.6. (Rus) Let f be a continuous selfmap of a complete metric space (X, d)
satisfying

d(fx, f2x) ≤ αd(x, fx) for every x ∈ X,

where 0 < α < 1. Then f has a fixed point.

Theorems 7.4–7.6 are the origins of our Theorems P and Q, and seem to be indepen-
dently obtained.

Berinde [3] in 2003 mentioned the so called Banach orbital condition d(Tx, T 2x) ≤
αd(x, Tx), for all x ∈ X, studied by various authors in the context of fixed point theorems,
see for example Kasahara, Hicks and Rhoades, Ivanov, Rus and Taskovic given in [3].

Berinde-Pacurar [4] in 2022 defined a graphic contraction (orbital contraction) and give
examples as follows:

Banach contraction, Kannan mapping, Ćirić-Reich-Rus contraction, Bianchini
mapping, Chatterjea mapping, Zamfirescu mapping, Ćirić quasi-cont- raction,
Hardy and Rogers contraction, Berinde’s almost contraction,

In 2023, Berinde, Petrusȩl and I.A. Rus [5] listed previous names of the RHR maps as
graphic contraction, iterative contraction, weakly contraction, Banach mapping, . . . .

In our previous work [17], we give the numbers of articles having examples of the RHR
maps as follows:
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Early examples of the RHR maps (1973–2009) : 26

Suzuki types of the RHR maps (2001–2010) : 10

Recent RHR type maps (2011–2023) : 37

Almost all of main theorems of these papers are consequences of Theorem P for metric
spaces. These can be applied to nearly one thousand artificial metric type spaces.

8. The subfamily (δ)

In Theorem H, consider the following:

(δ) Let F be a family of multimaps T : X → Cl(X) such that, for any x ∈ X\T (x),
there exists y ∈ X\{x} satisfying H(T (x), T (y)) ≤ α q(x, y). Then F has a common fixed
element v ∈ X, that is, v ∈ T (v) for all T ∈ F.

Note that the T -orbital completeness of (X, q) for any multimap T : X → Cl(X) in F
implies (δ).

When F is a singleton, we have extensions of the Nadler and Covitz-Nadler fixed point
theorems [7], [10] and their converses, that is, Theorem H(0) is equivalent to (δ1) as
follows:

Theorem 8.1. Let (X, q) be a quasi-metric space. Then it is complete if and only if

(δ1) Let T : X → Cl(X) be a multimap such that, for any x ∈ X\{Tx}, there exists
y ∈ X\{x} satisfying H(T (x), T (y)) ≤ α q(x, y). Then T has a fixed element v ∈ X, that
is, v ∈ T (v).

The only if part extends also the so-called Banach contraction principle.

9. The subfamily (ϵ)

.
In Theorem H, consider the following:

(ϵ) If F is a family of multimaps T : X → Cl(X) satisfying H(T (x), T (y)) ≤ α q(x, y)
for all x ∈ X and any y ∈ T (x)\{x}, then F has a common stationary element v ∈ X,
that is, {v} = T (v) for all T ∈ F.

Note that the T -orbital completeness of (X, q) for any multimap T : X → Cl(X) in F
implies (ϵ).

From (ϵ), we can deduce at least four particular cases. The following is only one of
the oldest one for the singleton [10]:

Theorem 9.1. (Nadler) Let (X, d) be a complete metric space. If F : X → BC(X) is a
multi-valued contraction map, then F has a fixed point.

According to our (ϵ), the fixed point should be strengthened to a stationary point.
Moreover, Covitz and Nadler [7] extended Theorems 9.1 and others to mappings into
Cl(X) with the generalized Hausdorff distance.
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10. The subfamily (η)

In this section, we follow Oettli and Théra [11] in 1993.
Let (V, d) be a complete metric space. Let f : V ×V → (−∞,+∞] be a function which

is lower semicontinuous in the second argument and satisfies

f(v, v) = 0 for all v ∈ V, (1)

f(u, v) < f(u,w) + f(w, v) for all u, v, w ∈ V.

Assume that there exists v0 ∈ V such that

inf
v→∞

f(v0, v) > −∞.

Let
S0 := {v ∈ V : f(v0, v) + d(v0, v) ≤ 0}.

From (1) it follows that v0 ∈ S0 ̸= ∅.
Under these specifications the following results are true:

Theorem 10.1. (Ekeland) There exists v∗ ∈ S0 such that f(v∗, v) + d(v∗, v) > 0 for all
v ∈ V, v ̸= v∗.

Theorem 10.2. (Takahashi) Assume that

for every v ∈ S0 with infv∈V f(v, v) < 0 there exists
v ∈ V such that v ̸= v and f(v, v) + d(v, v) ≤ 0.

Then there exists v∗ ∈ S0 such that f(v∗, v) ≥ 0 for all v ∈ V .

Theorem 10.3. (Caristi-Kirk) Let T : V ⊸ V be a multimap such that

for every v ∈ S0 there exists
v ∈ T (v) satisfying v ̸= v and f(v, v) + d(v, v) ≤ 0.

Then there exists v∗ ∈ S0 such that v∗ ∈ T (v∗).

The following is the origin of (η) due to Oettli and Théra [11] in 1993:

Theorem 10.4. (Oettli-Théra) Let Ψ ⊂ V have the property that

for every v ∈ S0\Ψ there exists v ∈ V
such that v ̸= v and f(v, v) + d(v, v) ≤ 0.

Then there exists v∗ ∈ S0 ∩Ψ.

Oettli-Théra [11] finally stated:

Theorem 10.5. (Oettli-Théra) Theorems 10.1 through 10.4 are equivalent.

Consider our following condition:

(η) If Y is a subset of X such that for each x ∈ X\Y there exists a z ∈ X\{x} satisfying
H(T (x), T (z)) ≤ α q(x, z) for a T : X → Cl(X), then there exists a v ∈ X ∩ Y = Y .

Actually, (η) is motivated from Theorem 10.4 of Oettli-Théra. We can deduce several
particular existence theorems which can be called the subfamily (η).
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11. Epilogue

Since there had been a large number of metric fixed point theorem, researchers tried
to classify them. The first attempt to classify the contractive conditions was done by Billy
E. Rhoades [23] in 1977. Our previous work [12] in 1980 can be regarded its continuation.
Recently, Cobzaş [6] in 2020 is to indicate the existence of families of theorems related to
metric completeness.

Recall that Banach’s original fixed point theorem in 1922 was stated for normed vector
spaces. Later several researchers formulated it to the form of the Banach Contraction Prin-
ciple for complete metric spaces. In the last one hundred years, there have been appeared
hundreds of contraction type conditions and almost one thousand spaces which generalize,
extend, or modify the complete metric spaces. Recall that the Banach contraction does
not characterize the metric completeness.

The advantage of our Metatheorem is as follows: the proofs of each item follows
from the only one of them. This can be seen from Theorem H or almost one hundred
examples given in our previous works related Metatheorem. Consequently, we found that
the traditional metric fixed point theory and many of its recent works should be corrected
or improved in various aspects.

Recall that a few researchers studied the Rus-Hicks-Rhoades (RHR) maps by using
several different names. From 2023, one hundred years later to the Banach contraction,
the present author began to study on RHR maps. We found a large number of examples
of RHR maps and the so-called RHR Contraction Principle extending the classical Banach
one. Moreover, we found that the RHR theorem is equivalent to variants of the Nadler
or Covitz-Nadler theorem for multivalued contractions. Furthermore, we found that the
RHR theorem characterizes the metric completeness.

Such studies were done in 2022–24. One of the significance of our recent works on
metric fixed point theory is to clarify some incorrectly stated results with unnecessarily
long proofs given by several authors. In fact, our aim of study in metric fixed point theory
since 2022 is to improve every thing there without making new spaces or new contractive
conditions.
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