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Abstract. Smoking is a prevalent social behavior widely practiced worldwide, especially in set-
tings such as schools and some significant gatherings. Based on the World Health Organization
(WHO), smoking is the third leading source of human mortality and the primary preventable
cause of disease. This study introduces a highly efficient simulation technique to analyze and solve
the Caputo-Fabrizio (CF) fractional smoking model. We numerically solve the fractional inte-
gral equations (FIEs) with Simpson’s 1/3 rule, an effective numerical integration technique. We
concentrate on clarifying the stability/convergence of the proposed strategy. We juxtapose the out-
comes derived using the Runge-Kutta method (RK4) with those obtained through the implemented
methodology. The findings indicate that the used technique provides a simple and efficient instru-
ment for simulating the solution of these models. The principal advantage of the proposed method
is its dependence on a limited number of straightforward steps, devoid of long-term consequences
or reliance on a perturbation parameter.
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1. Introduction

According to a report by the WHO, many smokers pass away in their prime years.
More than 5 million deaths globally occur each year as a result of smoking’s effects on
various body processes; by 2030, this number could increase to 8 million ([23], [27]).
Smokers are 70% more likely to experience a heart attack compared to non-smokers. Lung
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cancer occurs 10% more frequently in smokers than in non-smokers. Smokers often live
10 to 13 years less than others do. Researchers work to extend people’s lives to reduce
smoking. To best explain cigarette smoking, many academics have investigated several
efficient smoking models. They categorize individuals as potential, chain, or permanently
abstinent smokers. Probably around 1997 [12], the smoking mathematical model came
into existence. More recently, in 2007, a survey conducted in Korea by Ham [14] recorded
the various stages and practices of smoking among students. Liu et al. [20] in 2008 refined
Ham’s model to incorporate a new category of temporarily abstaining smokers. In [14], the
authors enhanced an integer-order model by incorporating a novel category of infrequent
smokers and a dynamic interaction. The smoking models have also been provided by
several authors in integer and fractional orders [10].

In the last few years, there are many novel techniques and topics have been presented
in the field of fractional analysis, for example, a study of the susceptible-infected-recovered
epidemiological model for pediatric diseases is performed by implementing the q-homotopy
analysis transform technique (HATM) [25], as previously employed by the authors in [26]
to numerically solve fractional Burger’s equations. Linear, nonlinear, fractional, and fuzzy
stochastic problems discussed in ([4], [7]). There are many real-life problems were discussed
recently in many scientific papers, for example, the mathematical fractional-order model of
a novel Coronavirus’s Caputo growth was examined in [2]. Also, there are many theoreti-
cal studies that support the numerical techniques, for example, the existence, uniqueness,
and synchronization of a discrete-time fractional tumor growth model, along with numer-
ical discoveries and essential criteria for a modified-ABC fractional order smoking model
solution, were delineated in ([3]-[5]).

Scientists are currently studying more effective fractional operators. In order to ad-
dress the issue of singularity and achieve accurate and reliable modeling outcomes, an
enhanced fractional-order Caputo-Fabrizio derivative has been formulated. This deriva-
tive incorporates a non-singular kernel, as proposed by Caputo and Fabrizio, leading to
improved efficiency and robustness in recent years. The use of Laplace transformation to
convert it to integer power is regarded as a constructive method. Consequently, in some
scenarios, we can readily compute the precise solution. The citation for this information
is [9]. The paper [21] explores the examination of fractional operators and presents novel
characteristics associated with them. Unlike traditional integer derivatives, fractional-
order derivatives have emerged as significant solutions to intricate situations in recent
years. In the paper [19], a new and effective model for uncertain fractional currency is es-
tablished. The solution to the fractional differential equations (FDEs) is calculated using
the Caputo derivative, with the Mittag-Leffler function being employed. The study [28]
looks at how to use the CF operator to find analytical solutions for fractional Volterra
integral-differential equations. Furthermore, a work conducted in [11] has examined the
intricate dynamics of the Omicron variant of COVID-19 by employing CF-fractional oper-
ators. In addition, a numerical method is created that includes an exponential law kernel
to analyze and model the spread of the infection.

Many mathematicians found a challenging to create numerical and analytical solutions
for the FDEs. Due to the lack of accurate solutions for many physical problems with
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fractional models, some academics have shown a strong interest in developing numerical
solutions for the FDEs ([16],[17]). The Adams-Bashforth method, incorporating the CF
operator, is formulated in [24]. This method involves three steps and can be used to solve
both linear and nonlinear FDEs. Additionally, it possesses diverse uses in resolving chaotic
systems with fractional orders. The authors [15] have developed a trapezoidal approach for
the effective resolution of fractional differential equations (FDEs). This technique utilizes
the CF operator and achieves a convergence order of two. Moreover, the convergence
and stability of this scheme have been thoroughly investigated. Here in this research, we
implement Simpson’s 1/3 approach for addressing the FDEs via the CF-derivative. This
method achieves a high level of accuracy, with an order of four, as detailed in our work.
The proposed fractional Simpson’s 1/3 approach offers superior accuracy compared to
current methods and is straightforward to implement.

The manuscript is structured as follows: Section 2 provides the first knowledge con-
cerning fractional order integrals and derivatives. Section 3 delineates the smoking system
and its CF-fractional representation. Section 4 delineates the derivation of Simpson’s 1/3
rule for the CF-fractional integral. Section 5 gives the convergence analysis of the pro-
posed method. Section 6 outlines the numerical implementation of the proposed strategy
for addressing the smoking system. Section 7 presents the results and discussions of the
numerical simulation, while Section 8 provides the conclusions.

2. Preliminaries

Fractional derivatives have been accurately defined by mathematical models employing
a non-singular kernel have accurately defined fractional derivatives. This method improves
the system’s capacity to precisely depict and record memory effects. This definition is the
most significant one employed in the development of fractional calculus theory [9]. This
part provides a succinct overview of the fundamental definitions of fractional calculus
involving a non-singular kernel.

Definition 1. [9]

For ψ(t) ∈ H1(0, a), 0 < γ < 1. Then the CF fractional derivative CFDγψ(t) and its
FI CF Iγψ(t), respectively are given as follows:

CFDγψ(t) :=
1

1− γ

∫ t

0
Exp

[
− γ

1− γ
(t− τ)

]
ψ̇(τ)dτ,

CF Iγψ(t) := (1− γ)ψ(t) + γ

∫ t

0
ψ(τ)dτ. (1)

3. Description of the fractional smoking system

Now, the suggested approach to solving the fractional smoking model will be put into
practice. Because mathematical modeling has been an important tool for pandemic grasp
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in recent decades [13], we can use it to stop the spread of tobacco usage. The current study
incorporates the improved smoking model, which involves the CF-fractional derivative, to
enhance the understanding of both qualitative and numerical analysis [6].

CFDϱψ1(t) = σ − ℓ1 ψ1(t)ψ2(t) + γ ψ4(t)− β ψ1(t), ψ1(0) = ψ0
1,

CFDϱψ2(t) = ℓ1 ψ1(t)ψ2(t)− ℓ2 ψ2(t)ψ3(t)− (σ1 + β)ψ2(t), ψ2(0) = ψ0
2,

CFDϱψ3(t) = ℓ2 ψ2(t)ψ3(t)− (θ + σ2 + β)ψ3(t)), ψ3(0) = ψ0
3,

CFDϱψ4(t) = θ ψ3(t)− (α+ β + γ)ψ4(t), ψ4(0) = ψ0
4,

CFDϱψ5(t) = αψ4(t)− β ψ5(t), ψ5(0) = ψ0
5.

(2)

This concept classifies the total population into 5 categories, denoted as ψ1, ψ2, ψ3, ψ4, and
ψ5, representing vulnerable smokers, individuals who ingest tobacco, occasional smokers,
regular smokers, and individuals who have quit smoking at a specific time. The description
of the constants in the system (2) are stated as follows:

(i) σ is the rate at which individuals are recruited through migration or birth;

(ii) ℓ1 is the rate at which the vulnerable population transitions into the snuffing class;

(iii) ℓ2 is the frequency of snuffing increases among occasional smokers;

(iv) θ is the conversion rate of occasional smokers transitioning to regular smoking;

(v) α, β, γ are the rates of departure, natural mortality, and recovery, respectively;

(vi) σ1, σ2 are the mortality rate among individuals who use snuff and the mortality rate
caused by smoking, respectively.

4. Derivation Simpson’s-1/3 rule for CF-fractional integral

This section presents the formulation of the fractional Simpson’s-1/3 strategy (FSR)
for solving CF-FDEs [8]. This aim will be achieved through the following steps:

(i) Considering the subsequent γ-order IVP:

CFDγu(t) = f(u(t)), u(0) = u0. (3)

(ii) Applying the CF-fractional integral operator on the IVP (3) and applying Proposi-
tion 3 in [1] and formula (1), we get:

u(t) = u0 +
CF Iγf (u(t)) = u0 + (1− γ)f(u(t)) + γ

∫ t

0
f(u(s))ds. (4)

(iii) Initially, we will employ a quadratic polynomial P2 to estimate the integral function
f in Equation (4). The function will be assessed at t0, t1, and t2, where t0 is less than
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t1 and t1 is less than t2. The interval is partitioned into two subintervals, denoted
as t1 − t0 = t2 − t1 = h, resulting in a combined width of 2h. The integration of the
quadratic polynomial P2 can be computed as follows:

I2f(u(t)) =

∫ b

a
f(u(t))dt ≈

∫ t2

t0

P2(u(t))dt =

∫ t2

t0

 2∑
j=0

Lj(t) f (u (tj))

 dt,
where the second-order Lagrange polynomials L0(t), L1(t), and L2(t) are defined as
follows:

Lj(t) =

2∏
i=0, i ̸= j

(t− ti)

(tj − ti)
.

(iv) Integrating the first interpolant function L0(t), by taking h = t2−t0
2 and substituting

”t = s+ t0”, gives us:∫ t2

t0

L0(t)dt =
1

2h2

∫ t0+2h

t0

(t− t1) (t− t2) dt =
1

2h2

∫ 2h

0
(s+ t0 − t2) (s+ t0 − t1) ds

=
1

2h2

∫ 2h

0
(s− 2h)(s− h)ds =

h

3
.

After making some simplifications to the rest of the terms, we have the following:

I2(f) =
h

3
[f (u (t0)) + 4f (u (t1)) + f (u (t2))] .

(v) By substituting in the equation (4), we get:

u (tn) = u0+(1−γ)f (u (tn))+
h

3
γ [f (u (t0)) + 4f (u (t1)) + f (u (t2))] , n = 0, 1, 2.

(vi) To improve the accuracy of numerical integration, we partition [a, b] to n sub-
intervals as follows:
For any even number n ≥ 2, we establish the following definitions:

h =
b− a

n
= tk+1 − tk, k = 0, 1, 2, . . . , n.

Now, by using the quadrature rule for each pair of subintervals and implementing
the Simpson’s-1/3 rule to each

[
t2k, t2(k+1)

]
, k = 0, 1, 2, . . . , n−2

2 , we can appoint
the following formula:

In(f) =

n−2
2∑

k=0

∫ t2k+2

t2k

f(u(t))dt =

n−2
2∑

k=0

(
h

3
[f (u (t2k)) + 4f (u (t2k+1)) + f (u (t2k+2))]

)
.
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(vii) By referring uj as the approximate solution of u (tj) and using Eq.(4), we can write
the FSR for the CF-FDE (3), for j = 0(1)(n− 1):

uj+1 = u0 + (1− γ)f (uj+1)

+ γ
h

3

[
f (u (t0)) + 4

j∑
i=2,4,6

f (u (ti)) + 2

j−1∑
j=1,3,5

f (u (tj)) + f (u (tj+1))
]
.

This formula can be rewritten in a compact form as follows:

uj+1 = u0 + (1− γ) f (uj+1) + γ h

j+1∑
r=0

ξr f (ur) , j = 0, 1, 2, . . . , n− 1, (5)

where ξr are the weights of the FSR and are defined as:

ξr =


1/3, r = 0, n+ 1,

2/3, r = 1, 3, 5, . . . ,

4/3, r = 2, 4, 6, . . . .

5. Convergence analysis

In this section, we are going to collect some theorems concerning the stability and error
analysis of the given IVP (3), and the regulated numerical scheme which investigated and
proved in ([8], [22]).

Theorem 1. [22]

Let us assume a continuous function f : [0, T ] × R → R with γ ∈ (0, 1) that satisfies
the Lipschitz condition:

|f (u(t1))− f (u(t2)) | ≤ ϵ |u(t1)− u(t2)|, ϵ > 0. (6)

Then the IVP (3) has a unique solution on C[0, T ] under the condition:

(2(1− γ) + 2γ T )ϵ

(2− γ)
< 1.

Lemma 1.

Suppose that f(u(t)) ∈ C4([a, b]), then the error of numerical scheme (5) is estimated
by: ∣∣∣∣∣

∫ tn+1

t0

f(u(s))ds− γh

n+1∑
i=0

ξif (u(ti))

∣∣∣∣∣ ≤ h4,

where ĉ = (b−a)f (4)(ζ)
180 , for some constant a < ζ < b, h = b−a

n , and tk = a + hk, k =
0, 1, . . . , n+ 1.
The stability and error analysis of the regulated numerical scheme are investigated and
proved meanwhile the following theorems [8].
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Theorem 2.

The newly designed fractional numerical technique (5) exhibits conditional stability.

Theorem 3.

The recently developed fractional numerical method exhibits conditional convergence
of order four, as stated in the equation (5):

∥u (tn+1)− un+1∥ ≤ Ch4,

where C = γĉ ch.

6. Numerical implementation

Most of the existing numerical methods converge slowly for this kind of problem and
this results in inaccurate approximations. In this work, the discretized system of CF-
fractional differential equations is numerically integrated using Simpson’s 1/3 technique.
We will develop a numerical method to illustrate the numerical behavior of the CF frac-
tional smoking system. To this end, let us revisit the model presented in (2):

CFDϱ Ψ̄(t) = F(Ψ̄(t), t), (7)

where

Ψ̄(t) = [ψ1(t), ψ2(t), ψ3(t), ψ4(t), ψ5(t)]
T , Ψ̄(0) = [ψ1(0), ψ2(0), ψ3(0), ψ4(0), ψ5(0)]

T ,

F(Ψ̄(t), t) =


f1(ψ1, ψ2, ψ3, ψ4, ψ5, t)
f2(ψ1, ψ2, ψ3, ψ4, ψ5, t)
f3(ψ1, ψ2, ψ3, ψ4, ψ5, t)
f4(ψ1, ψ2, ψ3, ψ4, ψ5, t)
f5(ψ1, ψ2, ψ3, ψ4, ψ5, t)

 =


σ − ℓ1 ψ1(t)ψ2(t) + γ ψ4(t)− β ψ1(t)

ℓ1 ψ1(t)ψ2(t)− ℓ2 ψ2(t)ψ3(t)− (σ1 + β)ψ2(t)
ℓ2 ψ2(t)ψ3(t)− (ψ + σ2 + β)ψ3(t)

θ ψ3(t)− (α+ β + γ)ψ4(t)
αψ4(t)− β ψ5(t)

 .

(8)

Applying the CF fractional integral operator on Eq.(7) and using Proposition 3 in [1] and
formula (1), we get:

Ψ̄(t) = Ψ̄(0) + CF Iϱ F(Ψ̄(t), t) = Ψ̄(0) + (1− ϱ)F(Ψ̄(t), t) + ϱ

∫ t

0
F(Ψ̄(s), s)ds. (9)

Applying the derived Simpson’s-1/3 rule for the integration on the RHS of (9), to get the
following numerical scheme as constructed in the formula (5):

Ψ̄j+1 = Ψ̄(0)+(1−ϱ)F(Ψ̄j+1, tj+1)+ϱ h

j+1∑
r=0

ξr F(Ψ̄r, tr), j = 0, 1, 2, . . . , n−1, (10)

where the weights ξr, r = 0, 1, ..., j + 1 of the fractional Simpson’s-1/3 rule are defined in
(7).
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So, the system given in (2) transforms into a system of algebraic equations as follows
(for j = 0, 1, 2, . . . , n− 1):

ψk,j+1 = ψk,0 + (1− ϱ)fk(ψ1,j+1, ψ2,j+1, ψ3,j+1, ψ4,j+1, ψ5,j+1, tj+1)

+ ϱ h

j+1∑
r=0

ξr fk(ψ1,r, ψ2,r, ψ3,r, ψ4,r, ψ5,r, tr), k = 1(1)5,
(11)

where the functions fk are defined in (8).

7. Numerical simulation

This section aims to evaluate the efficacy of the suggested approach by simulating a
solution throughout the interval [0, 50], whereby we examine the system (2) with varying
values of ϱ, β, and distinct initial solutions (I.Cs) [18]. In all figures, we utilize identical
quantities for the following constants:

σ = 0.1, θ = α = 0.05, ℓ1 = γ = σ1 = σ2 = 0.003, ℓ2 = β = 0.002.

We examine the subsequent two scenarios about the I.Cs:

(i) Small values: ψ0
1 = 40, ψ0

2 = 30, ψ0
3 = 20, ψ0

4 = 10, ψ0
5 = 5;

(ii) Large values: ψ0
1 = 75, ψ0

2 = 60, ψ0
3 = 45, ψ0

4 = 30, ψ0
5 = 15.

Furthermore, we provide a comparison of the findings derived from the suggested technique
with those given by using the RK4 method to assess the quality and accuracy of the given
scheme. The numerical results obtained for the analyzed model using the introduced
numerical scheme are presented in Figures 1-3.

(i) Figure 1 illustrates the numerical solution for diverse values of ϱ = 1.0, 0.95, 0.85, 0.75,
with h = 0.1, under the small values of the I.Cs.

(ii) Figure 2 illustrates a comparison of the results derived from the proposed technique
against those obtained using the RK4 method at (ϱ = 1) with h = 0.1 under the
small values of the I.Cs.

(iii) Figure 3 examines the impact of the natural death rate on the system, utilizing
various values of β = 0.002, 0.004, 0.006, 0.008, at ϱ = 0.93, h = 0.1, under the
large values of the I.Cs.

By looking closely at these three figures, we can assert and confirm that the numerical
solution is based on the different values of ϱ, h, and β; and it is a clear indication that the
presented numerical scheme has been well-implemented for solving the suggested system
in its fractional form and with this type of derivatives with small and large values of the
fractional order.
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Fig. 1: The approximate solution ψi(t), i = 1, 2, 3, 4, 5 against distinct values of ϱ

with small initial values.
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Fig. 2: The solution ψi(t), i = 1, 2, 3, 4, 5 by the present and RK4 methods ϱ = 1.
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Fig. 3: The effect of β on the approximate solution ψi(t), i = 1, 2, 3, 4, 5.

8. Conclusions and Discussions

This study seeks to apply fractional calculus tools and techniques to derive numerical
solutions for the smoking mathematical system, utilizing the CF-fractional derivative op-
erator. The numerical evaluation of the conversion system for fractional integral equations
is conducted utilizing Simpson’s 1/3 formula, attaining fourth-order accuracy. This study
employed various values of the fractional order ϱ and a step size of h = 0.1 to obtain solu-
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tions for the mathematical model under investigation. Furthermore, we have ascertained
that the suggested methodology is exceptionally proficient in evaluating this mathemati-
cal model. Furthermore, reducing the value of h allows us to control the accuracy of the
numerical solutions. In conclusion, we have found that using the CF-fractional derivative
operator makes the mathematical model under study in this research more suitable for
numerical simulations. The RK4 technique produces similar graphical findings and re-
sults. Furthermore, our research reveals the precise and efficient nature of the suggested
approach. In future studies, we want to utilize the same model as a generalization of the
current work but with varying types of fractional derivatives.
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