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1. Introduction

The Hyers-Ulam stability was presented by S.M. Ulam [23] to bring up the problem,
suppose one has a function ¢(t) which is near to solve an equation. Is there a exact solution
x(t) of the equation which is close to ¢(t) (See [3, 5, 11]). In 1941, D.H. Hyers [6] response
to the condition of Ulam for additive Cauchy equation in Banach space. A solution for
Ulam’s problems for linear mappings was demonstrated by Th. M. Rassias [21], thought
about a mapping g : & — & such that ¢ — g(tx) is continuous in ¢ for each fixed z. If
that there exists 6 > 0 and 0 < p < 1 such that

l9(x +y) = g(x) — gyl = Il=|” + [I<]]*), Yo,y € &1

After that, numerous mathematicians have investigate Ulam’s problem in different ways
(see [2, 9, 10, 18, 19, 24]). A Hyers-Ulam-Rassias problem is the differential equa-
tion ©(g,s,¢’,¢”,...,s™) = 0 has the Hyers-Ulam-Rassias stability with respect to o if
there exist a constant M > 0 to such an extent that for given a function ¢ such that
lo(g,6,¢",6",...;¢™)| < O(t). Then there exists a solution . of the differential equation
such that [s(t) — ¢.(t)] < MI(¢).

Meaning of Hyers-Ulam-Rassias stability importance implies that, assuming one is
considering a Hyers-Ulam-Rassias stability system, one doesn’t need to arrive at the exact
solution. This is very useful for many applications for example statistical research, opti-
mization, biology and financial aspects and so on.

In the past decades many of the researchers has been concentrated on the Hyers-Ulam
stability of linear differential equations (see [7, 8, 25]). Likewise Jung has demonstrated
the Hyers-Ulam stability of linear differential equations by using the Laplace transform
method (see [22]) and authors in [20] studied Ulam stability of linear differential equations
using fourier transform. Recently, authors in [4], researched Hyers-Ulam stability of an
n-variable quartic functional equation. To the best of author’s knowledge, Hyers-Ulam
stability approaches to linear differential equation of order five has not been studied so
far, which motivates the present study.

Linear differential equations have been studied extensively across various fields like
physics, engineering, and applied mathematics. Early research primarily focused on first-
and second-order differential equations, which are simpler to analyze both analytically
and numerically. Fifth-order differential equations frequently arise in models related to
advanced mechanical systems, fluid dynamics, or even quantum mechanics. They are
often used in beam theory (e.g., the bending of beams), electromagnetic theory, and
more complex vibrational systems. In control theory and signal processing, fifth-order
differential equations can model systems with higher-order dynamics, particularly in cases
involving feedback systems or circuits. Stability in the context of differential equations
refers to the behavior of solutions as they respond to small changes in initial conditions or
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the forcing function. In simpler terms, stability determines whether a small perturbation
will grow or decay over time.

The literature on stability analysis for differential equations has traditionally focused
on lower-order systems (especially second-order). However, the theory has been extended
to higher-order systems, including fifth-order equations, particularly in the study of physi-
cal systems with complex dynamics.The concept of Hyers-Ulam stability examines whether
a differential equation exhibits stability when subjected to small perturbations in the func-
tional form. Specifically, it asks whether the approximate solution remains close to the
exact solution.Much of the early work on Hyers-Ulam stability focused on first- and second-
order linear differential equations, but more recent studies have extended this analysis to
higher-order equations, including fifth-order systems. These studies are particularly im-
portant because higher-order systems are more sensitive to perturbations, making the
stability analysis more complex.

Recent works in the field have explored conditions under which fifth-order differential
equations admit unique solutions. These results typically depend on the properties of the
coefficients and boundary conditions. With increasing computational power, researchers
have developed sophisticated numerical techniques to approximate solutions of fifth-order
equations. Finite element methods and spectral methods have become popular in this
regard. Current research extends classical stability theorems, such as Lyapunov stability,
to fifth-order systems. This often involves formulating and solving Lyapunov functions for
these complex systems to determine conditions under which solutions are stable. Several
recent studies have focused on extending Hyers-Ulam stability to fifth-order differential
equations. These works build on classical stability results but adapt them to the unique
challenges posed by higher-order systems. The key focus of this research has been to iden-
tify conditions under which small deviations in the approximate solution lead to bounded
deviations in the actual solution, thus extending Hyers-Ulam’s classical framework to a
more complex domain.

The study of fifth-order linear differential equations is motivated by both practical and
theoretical needs. From a practical standpoint, these equations model complex real-world
systems that involve higher-order dynamics and feedback loops, such as in engineering,
physics, and control theory. From a theoretical perspective, studying fifth-order equations
enhances understanding of stability, existence, uniqueness, and the development of more
sophisticated numerical methods. As these equations play a crucial role in accurately
describing advanced systems, their study not only fills important gaps in the literature
but also leads to advancements in applied mathematics and various scientific fields.

Before diving into the mathematical derivations, offer a brief overview of the problem
being solved and the key assumptions made. For example, if you're proving stability for
a specific class of fifth-order linear differential equations, start by clearly stating. The
general form of the fifth-order equation you're focusing on (e.g., constant coefficients or
variable coefficients).The conditions under which the stability analysis is conducted, such
as the smoothness of the solution or boundary conditions. We consider a fifth-order linear
differential equation with constant coefficients, where we assume that the solutions are
continuous and differentiable up to the fifth derivative. These assumptions are essential for
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ensuring that the equation can be analyzed within the framework of Hyers-Ulam stability.

In practical applications, stability often refers to the system’s ability to resist or
dampen perturbations. When you discuss an example showing Hyers-Ulam stability, in-
terpret it by explaining how small deviations in the inputs (such as initial conditions or
external forces) do not lead to exponential or uncontrolled growth in the system’s response.
In this example, the fifth-order differential equation models the motion of a mechanical
system with multiple feedback loops. The stability results demonstrate that even with
slight variations in the input forces or initial velocities, the motion remains bounded. This
is particularly important in control systems, where small inaccuracies in the measurement
or control signals can lead to significant errors in the system’s behavior. By ensuring
Hyers-Ulam stability, we know that such small deviations will not cause instability, en-
suring the system operates predictably. “Many physical systems governed by fifth-order
differential equations, such as beam vibrations or wave propagation, rely on stability for
consistent performance. When interpreting examples, explain how the stability results
ensure that the system remains predictable and controllable, even when exposed to small
disturbances. In the case of wave propagation, the stability result indicates that small
perturbations in the medium (such as density or pressure) will not cause the wave to
grow uncontrollably in amplitude. This property is crucial for the design of wave guides
or telecommunications systems, where small variations in the physical properties of the
medium can lead to large-scale disruptions if the system is unstable.”

One of the most natural future directions is extending the methods and stability results
developed for linear fifth-order differential equations to nonlinear systems. In practical ap-
plications, many systems exhibit nonlinear behavior, especially when dealing with large
deviations from equilibrium or complex feedback mechanisms. For instance, in engineering
or physics, systems often become nonlinear when subjected to strong external forces or
interactions between components. Boundary value problems for fifth-order systems often
arise in the study of elastic structures and fluid dynamics. Investigating how the stability
results extend to these problems would be essential for expanding the applicability of the
current results. Boundary conditions can introduce additional constraints or complexities
that affect the stability behavior. The stability of fifth-order linear differential equations
opens several exciting future research directions. Potential extensions include generaliz-
ing the results to nonlinear and fractional differential equations, handling systems with
variable coefficients, investigating boundary value problems, and exploring applications in
control theory. Additionally, addressing the challenges of non-classical solutions and weak
forms provides a pathway for further theoretical development. These future directions
not only deepen the understanding of stability in complex systems but also offer practical
tools for tackling real-world problems in various scientific and engineering fields.

The paper concludes by summarizing the key findings and contributions. We discuss
the significance of extending Hyers-Ulam stability to fifth-order equations and suggest
potential directions for future research, including the extension of these results to nonlinear
equations and other higher-order systems.

Let X be a normed space over a scalar field K and let Z be an open span. Expect that
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o, C1, ---, Cp, are fixed components of K. We say that the differential equation
en ()™ (t) + o1 ()T (@E) 4 .o+ e1(8)S' () 4 cos(t) + h(t) = 0 (1.1)

has the Hyers—Ulam stability, if for any function g : Z — X satisfies the differential
inequality

le(8)"™ () + en—1 ()" V(1) + + er(t)s' (1) + cos(t) + h(t)]| < e,

for all ¢ € I and for some € > 0. Then there exists a solution f:Z — X of (1.1) such that
llg(t) — f(t)]| < K(e), for any t € I, where K (€) is an articulation for € as it were.

The stability of differential equation explored by [1] if € > 0, a differentiable function
g : Z — R fulfills the differential disparity |¢’(t) —<(t)| < €, where Z is an open subinterval
of R, at that point there exists a differentiable function gy : Z — R fulfilling g{,(¢t) = go(t)
such that |g(t) — go(t)| < 3¢, for all t € 7.

Li and Shen [12] have explored the Hyers—Ulam stability of the linear differential
equations of the second order

(%) + o<’ (z) + Bs(x) = g(x), (1.2)

where ¢ € C?[a,b], g € C[a,b] and —oc < a < b < oco. In fact they demonstrated that if the
condition A% + a\ + B = 0 has two distinctive positive roots, at that point the condition
J"(z) + ad’(z) + Bs(z) = g(x) has the Hyers—Ulam stability. Recently, Luo [13-17, 26]
investigated the Hyers-Ulam stability results of differential equations in fractional order.

In this paper we will examine the stability of differential equations of fifth order. In
section 2, we will give a vital and adequate condition all together that the fifth order linear
differential equation and established Hyers-Ulam stability constant under those conditions.
In section 3, we will apply this results to fifth order differential equations by numerical
examples.

Definition:1.1 [19] Let Z be any interval and let z : Z — R", A: Z — R"*", B:Z — R"
at that point
2'(t) + A(t)z(t) + B(t) =0 (1.3)

is Hyers-Ulam-Rassias stable as for ¢ : T — [0,00) with [|z(¢)| = Y., |zi(t)], if there
exists a real consistent K > 0 with the end goal that for every arrangement s € C'(Z, R")
of the inequality

12°(8) + A(t)=(t) + Bt)l| < ¥(t),
there exists an answer z € C1(Z, R") of condition (1.3) with

[s(t) = 2(@)[| < Kep(t), vt € L.

Definition:1.2 [21] For a nonempty set X', a function d : X x X — [0,00] is called a
generalized metric on X if and only if d satisfies :
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(i) d(z,y) =0 if and only if z =y
(i) d(z,y) =d(y,x), for all z,y € X
(iii) d(z,z) <d(z,y)+d(y, z), for all x,y,z € X.

Definition:1.3 [12] We denote (1.2) has the Hyers-Ulam stability if there exists a steady
v1 > 0 with the accompanying property, for every ¢ > 0,¢ € ¢?[k, ], if
" +as’ +bs| <e, (1.4)

as such, 3 u € [k, [] that satisfies:

W + au' + bu| =0, (1.5)

such that [¢(x) — u(z)| < vie. We denote v; be a Hyers-Ulam stability constant for (1.2).
Definition:1.4 [12] We indicate that the augmentation of (1.2) has the Hyers-Ulam sta-
bility, if there exists a consistent v; > 0 with the going with property, for each ¢ > 0,
s € A3k, if

" 4+ as” +bs +es| <, (1.6)
as such, 3 u € c3[k, ] that satisfies:

W +au 4 bu + cu| =0, (1.7)

such that |¢(z) — u(z)| < vi€, where vy is a Hyers-Ulam stability constant for (1.6).
Definition:1.5 [12] We mean that the augmentation of (1.6) has the Hyers-Ulam stability,
if there exists a consistent v; > 0 with the going with property, for each e > 0, ¢ € c[k, ], if

[SeEE 7715" + 772<” + 7]3§/ + nas| < g, (1.8)
as such, 3 u € c*[k, ] that satisfies:

™ +mu” +mou’ +mau’ + naul =0, (1.9)

such that |¢(x) — u(z)| < vie, where vy is a stability constant for (1.8).
Definition:1.6 We indicate that the augmentation of (1.8) has the Hyers-Ulam stability,
if there exists a consistent v1 > 0 with the going with property, for each e > 0, ¢ € 3|k, [], if

€%+ 6™+ mas” + 36 + s + 15| < e (1.10)
as such, 3 u € c[k, 1] that satisfies:

[u” + ™ 4”4 mgu” 4+ naw + nsul = 0, (1.11)
such that |¢(z) — u(z)| < vie, where vy is a constant for (1.10).
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2. Main results

In this section, the authors discussed Hyers-Ulam stability of linear differential equation
and also the critical consequences of this investigation are given in the accompanying
hypothesis.

Lemma 2.1.The differential equation ¢¥(z) + <™ (z) + mas (&) + n3s () + nas’ (x) +
nss(z) = Q(z) has the Hyers - Ulam stability, where ¢ € c[k, (] and Q € [a, b].
proof: Suppose that vy, v2, v3, vy, vs are the (real or complex) roots of m3+mym?+mm*+
nom® + ngm? + nam + 05 = 0 with p; = Ruy, po = Rue, p3 = Rva, ps = Rus, ps = Rus. Here
R denotes the real part. Let ¢ > 0 and ¢ € ¢°[k,[] with
[ (@) +ms™ (@) +mas” (@) + mas” (2) +mas (2) +mss (@) = Q)| =0 (2.1)
and let
g9(@) = "(@) + (o1 +m)s” (@) + (vF + mor +m)s (2)
+(vF + mvf + navr +03)s (2)+ (2.2)
(v + mo? + navf + mzv1 + na)s ().
Then we obtain
z)

x) (2.3)
+(v] + ot + v + n3v? + mavr +05)s(x),

g'(x) = ¢"(x) + (v1 + m)s™ () + (vF +mor +1m2)s
F(0} 4+ mod + v +13)s” (2) 4+ (v} + vt 4+ mevd + nzvr + ma)s

—~~

YV x € [k,l] and

|g'(z) —v1g(z) — Qz)] < e (2.4)
g/ () — vig(x) — Q)| = [s"(2) + (v1 + 7)™ () + (0] + mo1 + m2)s (@)
+(f +mo 4 nvr +m3)s (@) + (vf + mui + moof +mzvr + 774)< (x)

(] + vt + 10} + 30+ mavr + n5)6(2) — v1 [ () + (01 +m)s (@) (2.5)
+(f +mvr +m)s (2) + (0F + mo? + navr + s (@)
|

+(vf + mod + movd + nzvr +ma)s(x)] — Q(z)

9 (z) — vig(z) — w(z)| = [s"(2) + v1s" () + m<" () + v?<”’(ﬂf)+
mois (x) +ms (2) + s’ (2) + mods (z)

(

_l’_

/

novis (z) + 3¢ () +vis (z) + mois (z)

_l’_

+npvic (2) + mavis (2) + mas (2 )
muis(z) + mavis(z) + ngvlc(fv) + navis(x)+ (2.6)
nss(x) — 1 [ (x) + vis” (z) +ms ()
+ois” (@) + muis’ (z) +mas” () + vis (2)
mvis () + mvis () +1ss () + vis(z)+
muis(z) + mois(z) + nsvis(z) + ms(@)] — Q)|

)+ vis(x
(

x)+
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g/ () —v19(x) = Q)| = [s" (@) +m1s™ () + 028" () +136” (2) +m16 () +756 () — Q(x)!( < e;
2.7
g/ (z) —vig(z) — Q)| <e. (2.8)

Equivalently ¢’ satisfies
—e < g (x) —vig(z) — Qx) <e. (2.9)

z—k)

Multiplying the equation by e 1 , we get

—ee 1K) < g (3)e 1 ER) _ oy g(z)e 1 R — Q(a)em (R < gemuilE=R) 0 (2.10)

Without loss of consensus, we may expect to be that v; > 1, thus

—viee” T < g (@) T —ypg(a)e 1R — ()
(2.11)
< vyee V1 @—k),

for any = € [k,!]. Integrating (2.11) from x to [, we get

l
—v1 (z—k) —v1(z—k) l
—v1E (61)> < g(l)e_vl(l—k) _ UIW) _ / Q(t>e—v1(t—k)dt
—uy 1 ;

e—vl(m—k) !
<wvie | ——
x

—v1(l—k) _ ,—vi(z—k) l
e (6 16 ) S g(l)e_vl(l_k) o g(x)e_vl(x_k) _ / Q(t)e—vl(t—k)dt

(e—vl(l—k) _ e—vl(m—k)>
<e 1

l
—e (e—vl(x—k) _ e—vl(l—k)) < g(l)e_vl(l_k) _ g(x)e_vl(x_k) _ Q(t)e_yl(t_k)dt
z (2.12)

<e <e—v1(z—k) . e—Ul(l—k)>

T

I
e k) < g(1)emR) _ ggmnll=h) _ gy =i (@—h) _/ Q(t)e—1 =R gy
v (2.13)

<e (efvl(x*k) - e*vl(l*k))

l
—gemvE—k) < g(l)e—vl(l—k) — e vi(l=k) _ g(:n)e_vl(x_k) _ / Q(t)e_vl(t_k)dt

< e V1 (z—k) )
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vi(z—k)

Multiplying the equation by e , we get

eVl (m—k)evl (z—k) < g(l)e_vl (I-k) ev1 (z—k) _ ce V1 (z—k) eVl (z—k)

!
—g(z)e T Revla=h) / Q(t)e 1 (=h) gpevr (k) (2.14)
< 8671}1(17k)61}1($7k‘)

l
—& < (g(l) —e)e —viltviktviz—vik _ g(x) / Q(t)e —vittvik+viz—vik gy <e
— < (g(1) —e)e Y — /Q Je P 0dt < e

—e< g(l)e”l(”_l) gevt@=l) _ g(z) —/ Q(t)e”l(“” Dt < e

l
—e < g()enr @D —gen1 @l _ g(z) — 1T / Q(t)e vtdt < e. (2.15)

Let x(z) = g(1)enr(#=h) — g1 fi Q(t)e"rtdt. Then x(z) satisfies x (z) — v x(x) — Q(z) = 0
by X (z) = vix(z) + Q(x),z € [k, 1].

l
X(2) = ()| = |e D (l)—g(fﬂ)—e’”/ Q(t)e™"dt]
l
Ix(z) —g(z)] < 6“/ le™lg'(t) — vig(t) — Q(t)|dt

!
Ix(z) —g(z)| < sep”/ e Pldt. (2.16)

If p1 # 0, then

l

kﬁ@—g@ﬂéeﬁw/efmﬁ

xT

B —p1 —p1
< & pa [e—ml _ e—plm]
U
€ o _
S - |:€plw6 p1 _epl-'ﬂe p1$:|
—h
< & [epl(wfl) _ 1}
B U1
(@) - g(@)] < — [1—e D] 0 € k1) (2.17)
b1
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If p1 = 0, then
l
() — g(x)] < e / e Mgy
!
(@) — gla)| < / dt
Ix(z) —g(z)| <e(l —z);2 € [k,]]
Ix(x) —g(x)| <e(l—k);z € [k, 1. (2.18)
Therefore, .
loeX0-Ple
~ ol Y if x#0
Ix(2) — g(z)| < {(l_kX)&_; i x—o. (2.19)
Ve k.

Theorem 2.2.The differential equation
V(@) +ms™(x) +mas (@) +m3s (2)+ms (2)+ns56(z) = Q(z) has the Hyers-Ulam stability,
Where ¢ € c®[k,l] and € € [k,[]. Therefore

[1—e~P2(I—Fk)][1—e P1(—F))

o ;if pp2#0
[1—e7P2(-k)]I-K]e. . —
D) = $(@)| < § (1o Prinic z.f p27# 0,p1 =0 (2.20)
o ; if p2=0,p1 #0

(l—k)? € ifpa,p1=0

with respect to x € [k, ].
Proof: Similar to the proof of lemma 2.1.
Let consider ¢(x) = ¢'(z) + (v2 + m)s(z) by

¢'(z) = " (x) + (v2 + M) (z) + (V5 + mva + n2)s(z).

Also [¢/(x) — vag(x) — x ()] = [x(x) — g(x)|.
Then,
¢ (x) — v2g(z) — x(2)| <€
=[5 (x) + (v2 + m)s"(2) + (v + mva +n2)s(x) — va (' (2) + (v2 + m)s(x) — x(2))|
= | (2) + vos' (x) + <’ () + v35(x) + Mmvas(x) 4 n2s(x) — vos' (2) — vis(x) — Mmuas(z) — x(z)]
= ['(x) + m<'(x) + n2s(z) — x(2)| (2:21)

¢ () — ved(z) — x(@)] = |¢" (%) — vac' (@) — v2('(2) — vas(z)) — x(@)]
|6/ () — v2d(z) — x(@)] = [¢" (@) + m<' () + mac(2) — x(2)] <€
|6/ () — v20p(x) — x(2)] <€ . (2.22)
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Proportionally '¢’ satisfies,

— €< ¢/(z) — v20(2) — x(2) <€. (2.23)

z—k)

Multiplying the equation by e2( , we get

_ € efvg(xfk) < gb/<m_)67v2(acfk) - ,U2¢($)€fv2(x7k) o X(x>67112(a:7k’) <e efvg(asz). (224)
Without loss of consensus, we may expect to be that v > 1, thus

—vy € efvg(a:fk) < ¢/(x)67v2(xfk) o Uz(b(x)efm(mfk) o X(x)efvg(:rfk) <c 7}2671}2(527,{),
(2.25)
V x € [k,l]. Integrating (2.24) from x to [, we get
l
— e (efvg(mfk) o efvg(lfk)) < (p(l)efvg(lfk) - (Zs(x)efvg(xfk) - X(t)efvg(tfk)dt

T

ce (o _ emut)

!
_ g e v2(e—k) < qf)(l)e_”Q(l_k)— € e v2(=F) _ ¢(x)e—v2($—k) _ / X(t)e_m(t_k)dt

€ (6_”2 (r_k)) )

8

(2.26)

IN

Multiplying the equation by ¢*2(#=%) we get

— € e—vg(:c—k)evz(x—k:) < (b(l)e—vz(l—k)evg(x—k)_ e e—vg(l—k)evz(a:—k) - ¢(x)€—v2(x—k)ev2(x—k‘)

l
_/ X(t)efvz(tfk)ew(xfk)dt <c (671)2(17]@)61;2(;5,]6))

!
—e< ¢(n)e V20— g gmv2(=T) _g(g) — 61}2:0/ x(t)e 2tdt <c . (2.27)

Let I'(z) = ¢(1)ev2(==) — gv2® fé x(t)e~v2tdt, for all z € [k,1].
Then I''(z) — vol'(x) — x(z) = 0 is defined by I'(z) = vol'(x) + x(z),z € [k,I] and

l
(@) = o) = [ 6(D) — o(a) — e [ X(t)e”tdt’

l
(@) = (o)) = | [l 1) ~ vao) - x(t)]dt]

b
IT'(x) — ¢(x)] <€ em‘”/ e P2, (2.28)
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If ps # 0, then

l

IT(x) — ¢(x)] <€ epzw/ e P2t

x

D(z) — ¢(z)] < ——[eP0=2) 1]

—P2
ID(z) — p(2)] < =[1— e P02 3 € [k, I
D2
D(@) - ¢(a)| < —[1 - e PPz e [k,1) (2.20)
D2

If po = 0, then
l

IT(x) — ¢(x)] <€ ep”/ e P2t

x

IT(z) — ¢(z)| <€ ™ /l e Odt

xT

l
ID(z) — ¢(2)] <e/ it
IT(z) — ¢(x)| <€ (I —x);x € [k,]]

IT(z) — ¢(z)| <€ (I —k);z € [k, 1]. (2.30)

It follows from (2.19), we conclude our result (2.20).

Theorem.2.3.The differential equation

V(@) +ms™(x) +mas (@) +m3s (2)+ms (2)+nms56(z) = Q(z) has the Hyers-Ulam stability,
Where ¢ € c®[k,1] and € € [k,[]. Therefore

[1—eP3(=R)][1—eP1U-R)][1_eP2(l-F)]¢

) ifp17p37p27éo
) ifp17p37é07p2:0
3 ifp1>p27é07173:0

p3pP1p2
[l—e_pl(l_k)}[l—e_p?)g_k)](l—k)e

pP1p3
[1—e P1U=R)][1—eP2U=F)|(]—k)e

p1p2
[1—e P20-R)][1—eP3U=F)|(|—k)e

[u(w) = @) < {1 PR " mmeomo O
- ’ if po,p3 =0,p1 #0
e PP 0P if p1ypg = 0,p2 # 0
[1,efp3(l;:>](sz)2s’ if p1,p2 =0,p3 #0
(- k)P, if p,p2,p3 =0
Ve k.

proof: Let us consider ¢(z) = u”(x) + (v2 + n1)u'(z) + (v3 + M2 + n2)u(x).
Then we obtain

"

J(@) =u" (2) + (v +n)u” () + (V3 + g 4+ n2)u () + (V3 4+ nv3 + nav + n3)u(x)
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and
() — vas(@) — T(2)| = u" () + (v2 + nu)u’ (x) + (V5 + o2 + n2)u/
+(v3 + n1v3 + nava + m3)u(z) — vl (x) + (v2 + m)u
+(v3 + mu2 + nz)u(x)] I'(z)

z)

)

|

[¢/(x) = vas(z) = T(2)| = |u” (2) +vau (@) + mu’ (z) + v3u/(x)
()

|

(
'

X

et () + mou’ () + viu(z) + moiu(z) + novau(z) + nau(x
—vs[u” (2) + vt (@) + e () + viu(e) + mozu(z) + nu(z)] - T(w)

¢/ () = vas(a) = T(@)| = |u" (x) + mu’ (&) + o (@) + ngu(z) — T(x)| <€
Is'(z) — vos(z) — ()| <€. (2.32)

Proportionally ¢ satisfies,
—e <¢'(x) —vas(z) = T(z) <e. (2.33)
Multiplying the equation by e~"2(==%) we get
ce 2 R) < o7V @=R) (1) pog(z)e V2@ R — D(g)e (R < g2k (2.34)
Without loss of consensus, we may expect to be that v > 1, thus
—vgee V2@ k) < o2 (@R (1) — pq(2)e 2P TR) D (2)e 2R < pee 2R (2.35)

for any x € [k,[]. Integrating (2.34) from x to [, we obtain

l
_86—v2(x—k) < g(n)e—vg(l—k) - 5€—v2(l—k) - g(gj)e_vz(m_k) - / F(t)e—vg(t—a)dt < €€_U2(x_k),
(2.36)

va(z—k)

Multiplying the equation by e , we get

_Eefvg(xfk)evg(wfk) < g(l)efvz(lfk)evg(xfk) - Eefvg(lfk)e'ug(:rfk) - g(x)efvg(sz)evg(xfk)
l
—/ F(t)e_”(t_k)dte”(z_k)
< Eefvg(xfk)evg(xfk)
l
—e < g(b)e?2 @V — gev2(rl) _ ¢ (g) — evﬂ/ ['(t)e v2'dt <e. (2.37)

= ( Jer2 @) — ev2r (LD ($)e=v2tdt then W/ (z) — vou(z) — T(z) = 0 by u/(z) =
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l
lu(z) — ¢(z)| < ep”/ e P2t
xT
If po # 0, then
l

T

lu(z) —s(x)] < sepzx/ e P2t
€

[u(@) = s(@)| < = e ~1] ;2 € [k,

—p2
[u(@) — s(@)| < = [1 = )] sz € [k,
b2
lu(z) —¢(x)| < < [1 — e_pQ(l_k)} sz € [k, 1.
D2
If po = 0, then

!
lu(z) —¢(x)] < 5ep2x/ e Pt

x

l

lu(x) — o(z)] < s/ dt

lu(z) —¢(x)| <e(l —x);z € [k,
lu(@) —<(@)| < e(l — k);z € [k, 1].

If follows from (2.20), we conclude our result (2.31),
Ve k.
Theorem.2.4.The differential equation

3598

(2.38)

(2.39)

(2.40)

¢U(x) +ms?(x) +772§W (z) +173§N (2) +774§, () +ns5(x) = Q(x) has the Hyers-Ulam stability,

where ¢ € [k, 1] and Q € [k,[]. Then
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1—e—P1(— k)}l e—p2(l—k) [1 e—pP3(l— k)Hl e—pPa(l— k)]

1—e—P1(— k)} 1—

e—P3(l— k)}(l ke

pip2 3

??'U

1—e—P10— k)} 1—e—P2(l— 1—e—Pa(l— k)

|

e A
]
kit

1—e—P1(— k)}

G
_e—Pa(l— k)}
]

1—e—P2(l— k)}

1—e Pal=R)](I—k)e

1—e—P1(— k)}

T(x) = x(2)] <

1—e—P2(l= k)} 1 e p3(l B (1—k)2e

)
1—e—P2(l— k)} 1 e p4(l B(1—k)2e

i

[
[
[
-
-
1—e—P10— k)Hl e Pz(l
[
[
[
[
[

1—e~P3(l=h)] 1 e e pa-h) (I—k)2e

)
1—e—P1(— k)}

)
1—e p2(l k)}

i

)

[

[

[

[

[

[ it
| e
[1—e=P1(=P)] 1 e e pai- R (1—k)2e
[ I
[ J(
[ }
[

[

[

[

l1—e Ps<l k}(l k)3
Ja-

1—e p4(l k)

with respect to x € [k, ]

9

3599

if p1,p2,p3,p4 # 0

if p1,p2,p3 # 0,ps =0
if p1,p2,pa #0,p3 =0
if p1,p3,pa #0,p2 =0
if pa,p3,psa #0,p1 =0
if p1,p2 # 0,p3,p4 =0
if p1,p3 # 0,p2,pa =0
if p1,ps # 0,p2,p3 =0
if p2,p3 # 0,p1,p4 =0
if p2,pa # 0,p1,p3 =0
if p3,pa # 0,p1,p2 =0
if p1 # 0,p2,p3,p4 =0
if po # 0,p1,p3,p4 =0
if p3 # 0,p1,p2,p4 =0

if ps # 0,p1,p2,p3 =0

if p1,p2,p3,p4 =0
(2.41)

proof: Similar to the proof of theorem (2.3), let €> 0 and Q € [k, ].

Let us consider x(z) =< () + (v3+11)s

?73)§(33)7

we obtain
X' (z) ="(x) + (vs+m)s
+(v§ + mv3 + mevs +n3)s’(
for all z € [k,l]. Then

I\ (z) — vs(x(2)) —u(x)] < e

X' () — v3x(z) —

(w) + (U?Q, + nivs + n2)s
) + (v3 4+ M1V + 17203 + N33 + Ma)s (),

"(z) + (3 + mu+ )’ (z) + (v + mu’ + vz +

"

()

(2.42)

)| =" (x) + (v +m)s (@

+(U3 +mus + 772)< x

+(U3 + 771113 + T]2U3 + n3v3 + ma)s(x

+v3[y (x) + (v3 + m)g x

+(v3 + mus + 1)<’ () + V5 + M3 + novs + 1m3)s(2)] —

()

()

+(v§ + mv3 + n2vs + n3)<’ (z)
(z)

()

|

u(z)
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X () = vax(@) — u(z)| = [¢"(z) + vss (x )+771€ ()

+u3s” (x) + mvss” + a6 ()

03¢’ () + mu3s’ (z) + navss’ () + n3<’ () + vis(z) + mod g(a:)

+nav3s (@) + m3vss(x) + mas(z) —vss (x) — vis" —muss (x)

—03<' () — moi<' () — mavas’ (x) — vss(x) — mogs(x) — mois(e)

—n3v3s () — u(z)]
(

X (x) = vax(x) = u(@)] = ["(@) +ms” (@) + 128" () + 136 (x) + mas (@) — u(x)
‘X’(m) —vgx(x) — u(:n)‘ <e. (2.43)
Proportionally y satisfies,
- < x/(2) —v3x(x) —u(z) <e. (2.44)

Multiplying the equation by e~"3==%)  we get
—ee~ (k) < X'(x)e_”3(m_k) — vgx(:v)e_”?’(m_k) — u(az)e_”?’(x_k) < ge~vs(@—k) (2.45)
Without loss of consensus, we may expect to be that vs > 1, thus
—evge 3k < X’(m)e*%(x*k) — vgx(m‘)e*”S(x*k) — u(x)e*”S(‘T*k) < geusl@—k) (2.46)

for all x € [k,[]. Integrating (2.45) from = to I, we get

l
_E(e—vg(x—k) o e—vg(l—k)) < X(l)e—vg(az—k) ( —v3(:v k) / wu(t —v3 (t— k)dt

vg(x k) 7’03([ k))

—ee TR <y (1)emUR) _ gemvsl=R) _y(g)emvsl@—R) /x u(t)e™ "t (2.47)

< 66—@3(a¢—k) )

Multiplying the equation by e3(*~%) we get

66—1}3($—k)ev3(a¢—k) < X(l)e—vg(l—k)evg(x—k) _ ge—vg(l—k)evg(x—k) o X(:L,)e—vg(a:—k)evg(m—k)

I
_/ u(t)e R grevs@=k) < gemva@—h) pus(@—k)

l
—e < X(l)ev?,(x—k) _ Eevs(x—k) _ X(UC) _ evsx/ u(t)e—vg(t)dt <e. (2.48)

Let T(z) = x(1)e¥3(*=) — gvs® f YeUstdt and T'(x) satisfies T"(z) — v3T(x) — u(x) =0
by T'(x) = v3T(z) + u(z ) Then

l
[7(0) = ) =[x = xa) = e [Cutyear
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If py # 0, then

If pg = 0, then

l
|T(x) — x(z)| < 5ep4z/ e P,

xT

x) — x(x P G ;X
T() ~x@) < — - | 152 e [k

x) — x(z e,
T(x) ~x(@)] < |1 R
T() = x(@)] < [1-e D] swe [kl

IT(2) - x(2)] < e(l - k)i € [k, I).

It follows from (2.31), we conclude our result (2.41), for all x € [k, 1].
Let €> 0 and ¢ € [k, ).
Theorem.2.5 The differential equation <¥(x) 4+ n1<™ () + o’ () + m35 () + mas () +

3601

(2.49)

(2.50)

(2.51)
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[K () — L(x)] <
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1—e—P1(— k)] 1—e—P2(l— k)][l e—P3(l— k)] 1—e—Pa(l— k)]

P1p2p3p4aps

Pp1p2p3pa

[

[
11 =R [1—e—ral=k)][1e~Pa(—R)] [1_c~Po(i- k]
1—e~P1U=R)][1—e—P2(l~ kﬁl[fﬂ’egpsw F][1—e~Ps(=F)
1 e=p1 (=] [ —e—P3(i—Fk) [ DabABs - B][1—ePs(1=0)](
1—e—pa(l=k)][1_e—pa(i- k)pl[f?’i‘lpil(l k>][1 e-Ps(—R)](
1P| [1—e=p2(—H)] [T e b3 -] 1
1o 0-B)][] e mzl:i [1—e—Pal=)] (1 z‘f
l—e-P1=B)][1—e pS(lp:; [1-ePal-R)] (1 if
1—e—P1U—k) 1ep2(p2k‘;[1ep5(lk] zf
1—e—Pa(l=K)][1_g—pall 412 [1—e—Ps=)] (1 z‘f
1—e—pa—R)][1_e-ps :; [1-evs0-R)] (1 if
1eP2lk1eP3 4’2[1e?5(l’€] if
1—e—pa(l—k) [1—e—Ps=8)] (1 if
1 —e=P1 (=] [1—e—pa (it [1—ePs=8)] (1 if
1ep1lk: 1— l3/£[1ep5(lk] ,Lf

G

1 e P3(l k)

1 e p4(l

—k)
1—ePall=k)

k)3e

k)
lep5(lkl
k)

1 e Ps(’

1 e p4(l k)

1 e p5(l

—k)
1—e—P2(l=k)

Ic
lep4(lkl

k)3e

1 e 105(’ k)

[
[
[
[
[
[
[
[
[
[
[
[
[1—e
[
[
(-
[
[
[
[
[
[
[
[
[

1 e ps(l k)

J
|
|
]
T
|
]
?
T
kﬁ
T
T
T
-
)=
I
-
-
(=
I
Jo-
)=

—k)
lepllk

k
k

[

[

[ ]
[ ]
[ ]
[ ']
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[1 e—p1(— k)]
[1=emr2h)]
[1- '
[ ]
)
[1=em 0]
[1- ']
[ ']
[1=emr20)]
[1- ']
[ Ja-
1R
[1- =
[1- ]
[1-e-rsh]a-

ps

Zf Y2 7& 0 P1,P2,P3,P5

| (b — a)®cifp1, p2,p3, P4, 5 = 0.

p1,p2 # 0 p3,pa,ps =0
p2,p3 # 0 p1,pa,ps =0
p3,pa # 0 p1,p2,ps =0
pa,p5 # 0 p1,p2,p3 =0

“if

“if

“if

if

“if p1.ps # 0 p2,pa,ps =0
“if p1.pa# 0 pa,ps,ps =0
“if p1,ps # 0 p2,ps,pa =0
if p2,pa#0p1,p3,p5 =0
“if p2.ps # 0 p1,ps,pa =0
“if p3,ps # 0 p1,p2, =0
Zf p1 # 0 p2,p3,pa,ps =0

Zf p2 # 0 p1,p3,pa,p5 =0

Zf p3 # 0 p1,p2, pa,p5s =0

=0

Zf ps 7# 0 p1,p2,p3,p4 =0

3602

= Q(z) has the Hyers-Ulam stability, where ¢ € c®[k,[] and Q € [k, ], therefore,
([memP =R [1—e—P2(t=R)] [1——rPalt—R)][1 —e—Pali—) ][1_67175(!7@]5

if p1,D2,P3,P4,05 # 0

Zf P1,p2,p3,04 # 0 ps =0
Zf P1,02,P3,p5 #0ps =0
Zf P1,02,P4,p5 # 0 p3 =0
Zf P1,P3,P4,P5 # 0 p2 =0
if pops,paps # 0 pr =0
Zf p1,p2,3 # 0 pa,ps =0
p1,p2,p4 7 0 p3,p5 =0
p1p3ps # 0 p2,p5 =0
P1,p2,05 7 0 p3,pa =0
p2,P4,p5 7 0 p1,p3 =0
p2,03,P5 7 0 p1,pa =0
p2,p4,p5 # 0 p1,pa =0
p3,P4,P5 7 0 p1,p2 =0
P1,03,P5 7 0 p2,pa =0
p1,pa,ps # 0 pa,p3 =0

(2.52)
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Vr € [k,I].
Proof: Let us consider,

L(z) = <" (@) + (vs +m)s (z) + (V2 + mvs +m2)y () + (v3

1103 + 0205 + 13)s (z) + (Vs + MvE + 7203 + n3vs + M) (),
we obtain

L'(2) = <"(x) + (v5 + )™ (x) + (vF + mvs +m2)s ()

“(
+ (03 + mvE + npvs +m3)s () + (vE + mvd + nav? + nzvs + ma)s ()
—i—(vg + 771v§ + ngvg + ngvg + navs + n5)s(x),

V x € [k,l]. Then

|L'(z) = vsL(z) = T(z)| <e. (2.53)

|/ (x) = vsL(z) = T(x)| = [s" (@) + (vs +m)s" () + (v + mvs +m)s " (

(U5 + 77105 + novs + 773)§ x

+(U5 + 7]11)5 + 7]2’[)5 + 7731)5 + Navs + n5)s(x
—v5[c™(2) + (vs + )y () + (V7 + s +m)s (2

()
()
+(U5 + 771”5 + 772”5 + 1305 + 1)<’ (2)
(z)
()
+(v3 4+ mus 4+ mavs +13)s () + (v + mvE + 1208 + M35 +ma)s(2)] — T ()]

|L'(z) — vsL(z) — T(2)] = [s@) + vss™ (x) + mis™ (x) + 03" () + muss (x) + 16" (2
+U§§N (z) + 771U§<N (z) + 772U5€ ( ) + 773< x
+vlc(z) + muas(z) + nevis(z) + nyvis(z

"(x)
(x)
(2)
+n4v56 (2 )+775€( ) — 056" () —U§€m(ﬂf)—v5m€m($)
5¢(z)
(z)
(2)
|

/
T

036" (x) — mods” (x) — mavss (z) —
—771U§</(9C) —772U§§I( ) — M3U56
—(v3s(w) — muss(x) — pvis(x) — n3vis(e
—navss(z) — T'(z)

/
T

|L'(x) — vsL(z) — T(z)| =

|L'(z) — wL(z) — T(x)| <e. (2.54)
Proportionally L satisfies,
—e < L'(x) —vsL(z) — T(z) < e. (2.55)
Multiplying the equation by e~ %)  we get

ee @R < /(1)U @R _ s L(x)e @R — T(g)e (R < gems@R) - (2.56)

SV s () + s (x) + 36 () + s (2) + mss(z) — T(x)| < e
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Without loss of consensus, we may expect to be that vs > 1, thus

_gefvs(sz) < Ll(x)ef%(:rfk) - USL(x)efvg,(:vfk)

7T(x)e—v5(z—k) < 66_U5(z_k), (257)

V x € [k,l]. Integrating (2.56) from z to I, we obtain

!
—e (e*%(mfk) _ efvs(l*k)) < L(l)e*%(l*k) _ L(x)efvf)(x*k) _/ T(x)ef%(t*k)dt

xT

< e (emtnleh) — )

l
e vs(z—k) < L(l)e_”5(l_k) — e vsl=k) _ L(x)e—vs(fﬂ—l) _/ T(x)e_”5(t_k)dt
- * (2.58)

< 867’05($7k).
Multiplying the equation by e~ we get

et ER) s (a—k) < [ (])eus(k) gus(eh) _ gomvs(k) gus(a—k)

!
_L(x)ef%(:pfk)e%(xfk) o / T(x)ef%(tfk) dtev5(xfk) < gefvs(xfk) evs (z—k)

xT

!
—e < L)V — gevs =l _ () — 6”5‘”/ T(t)e vstdt <e. (2.59)

Let K (z) = L(l)e*@= — ¢vs® [17(t)e st dt. Then
l

xT

|K(z) — L(z)| = ‘L(l)e”f’(’”_l) — L(x) — e%® / T(t)e‘”f’tdt‘

l
K (2) — L(z)| < e / et | |L/(t) — usL(t) — T()| dt

l
|K(x) — L(x)| < eP” / e Pt |L'(t) — vs L(t) — T(t)] dt

T

|K (z) — L(z)| < eeP>® / l e Pstdt, (2.60)

x

If ps # 0, then

l
|K(z) — L(z)| < sep"’”"/ e Pt

xT

K (z) — L(z)| < _ips [e—psﬂ—x) - 1]

[1 - e_pf’(l_x)} sz € [k,
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x)— L(x £ i—em=hn]. 4 ) )
()~ L) < 1 |50 (2.61)

If ps = 0, then
l
K (2) — L(z)] < eeP / e Pt
l
K (2) — L(z)| < g/ dt
|K(2) — L(z)| < (I —z);2 € [k,]]
K (2) — L(x)| < (- K);z € [k, 1. (2.62)

It follow from (2.41), we desired our result (2.52), for all = € [k, ]
Thus, the proof is completed.

3. Illustrative Examples

In this section, the following numerical examples are discussed to prove the usefulness
of the theortical in this paper
Example 3.1 Consider the following differential equation

TU(X) + 27(X) + 77(X) + 77(X) + 27 (X) + 37(X) = Q(X); X € [2,3]. (3.1)
Suppose €> 0, as such
|T(X) + 277 (X)) 4+ 7"(X) + 77 (X) + 27 (X) + 37(X) — QX)| <€ . X € [2,3]. (3.2)
Suppose v; = 1, then

g(X) = T“’(X) +37"(X) + 47"(X) + 57(X) + 77(X) and
g(X) = 79(X) + 377(X) + 47"(X) + 57"(X) + 77 (X) + T7(X) & € [2,3].

The conditions (2.16), (2.29), (2.42) and (2.53) of theorem 2.4 are fulfilled. Consequently,
there is a capacity X' € ¢°[2, 3], which is a gentle arrangement of

u’(X) 4 20" (X) + o (X) + u" (X) 4 20/ (X) + 3u(X) = Q(X)

that is satisfied by equation (3.2).

Example 3.2 Consider the following differential equation
TU(X) +477(X) + 77(X) + 277(X) + 7/(X) + 07(X) = Q(X); X € [3,2]. (3.3)
Suppose €> 0 and 2 € [3,2], such that

|T(X) 4+ 477(X) + 77(X) + 277(X) + 7 (X) + 07(X) — QX)| <€ . X € [3,2]. (3.4)
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T T T T T
o 1 2 3 4 5
x

—— =13, y=14, o=1.5, =16 E=0.6, w=0.7, v=0.8,3=0.9
—— o=0.1, y=0.2, v=04,1=0.5

£=0.9,6=1.0, v=1.1A=12 E=1,0=2, y=3, v=4,}=3

Figure 1: The solution of 7(X’) by equation (3.2)
We take

g(X) = T“’(X) +57"(X) + 67" (X) + 87'(X) + T7(X), X € [3,2].

(X)) =71%(X) +57(X) + 67" (X) + 87"(X) + 77 (X) + T1(X), X € [3,2].
Such that,
19/ (X) = g(X) = QUX)| = |7(X) + 47 (X) + 7" (X) + 27" (X) + 7/(X) 4+ 07(X) — QU X)| <€,

for all X € [k,1].
The conditions (2.16), (2.29), (2.42) and (2.53) of theorem 2.4 are fulfilled. Consequently,
there is a capacity X € ¢°[2, 3], which is a gentle arrangement of

U (X) +u" (X)) +u"(X) = U(X)

that is satisfied by equation (3.4).

4. Conclusions

We have researched the Hyers-Ulam stability as for the linear differential equation of
fifth-order in this investigation. The adequacy of the proposed technique has been shown
in the numerical examples. In future work, the proposed scheme will be taken into account
for time delay with disturbances.



REFERENCES 3607

T T T T T T T T T T
0 1 2 3 4 5

—— E=0.9.6=1.0. v=1.1=12 —— E=1.3, y=1.4. 6=1 5. +=1.6 = 5=0.1. w=0.2, v=04.}=0.5 E=0.6, y=0.7. v=0.8.3=09
— =1,0=2, w=3,v=4.0=5

Figure 2: The solution of 7(X') by equation (3.4)
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