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Abstract. This study aims to provide a numerical simulation of two important models called
the Blood Ethanol Concentration (BEC) model and the Ebola Virus model in their fractional
form (Caputo-Fabrizio sense (CF)). Here, we used Simpson’s 1/3 rule as an efficient numerical
scheme for integration to solve the obtained fractional integral equations (FIEs) and reduce it to a
collection of algebraic equations. Particular emphasis is placed on elucidating the error analysis of
the given scheme. The results acquired by implementing the Runge-Kutta method (RK4M) and
others are compared to the achieved results. The results explain that the implemented scheme
offers a straightforward and effective tool for simulating solutions of these models. The primary
benefit of the implemented method is that it relies on a small number of uncomplicated steps and
does not have long-term effects. Finally, numerical simulations support the theoretical conclusions,
showing the great agreement between the two.
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1. Introduction

Given the importance of modeling and analyzing many problems in the mathematical
life sciences, which in turn provide many different data concerning biological phenomena
such as the bacterial cell and its allocation, the nervous system, viruses (such as the Ebola
virus), etc. ([4], [22]), we found that many researchers have recently focused on this branch
of science. These mathematical models of numerous real-world issues are derived and
formulated depending on the results of many biological experiments or statistical analyzes.
These mathematical models enable scientists to study and simulate the behavior of these
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realistic models, separate from modern biological experiments conducted in laboratories,
which may pose risks or be very costly ([5], [23]).

Ebola virus disease (EVD) was first revealed in 1976 in the Congo near the Ebola
River. Although this disease is rare, it often causes death [22]. The EVD infects monkeys
and humans on and off, and it also leads to outbreaks in some other African countries.
However for some time, it has been complicated for numerous biologists to locate the
original origin of the virus; but, through recent studies and experiments, it has been
set up that it is foremost transmitted from animals such as bats meaning that they are
the origin of the EVD [16]. In general, this virus can infect humans during immediate
connection with humans, the blood or body fluids of a sick or deceased person, or animal
tissues [18]. Recent studies have confirmed that EVD can pass during broken skin or
mucous membranes in the eyes, nose, and mouth when a person comes into connect with
the body fluids of an infected person. It can also be moved during sexual contact with a
person infected with the virus or who has recovered from it [7].

Scientists are currently studying more effective fractional operators. In order to ad-
dress the issue of singularity and achieve accurate and reliable modeling outcomes, a more
effective CF fractional derivative has been developed. This derivative incorporates a non-
singular kernel, as proposed by Caputo and Fabrizio, leading to improved efficiency and
robustness in recent years. The use of Laplace transformation to convert it to integer
power is regarded as a constructive method. Time-fractional Caputo-Fabrizio fractal frac-
tional derivatives (with an exponential decay kernel) are applied to the Burke-Shaw-type
nonlinear chaotic systems. Based on fixed point theory, it has been demonstrated that
such an operator exists and is unique [24]. The author solved this model by using a numer-
ical power series method with Newton’s interpolation polynomials. In the paper [3], the
authors proposed some updated and improved numerical schemes based on Newton’s inter-
polation polynomial to solve numerically the Burke-Shaw system of Caputo’s time-fractal
fractional derivative with a power-law kernel with variable order. Additionally, they cal-
culated the Lyapunov exponent of the proposed system. Furthermore, the Atangana-Seda
numerical scheme, based on Newton polynomials, has been used to solve this problem.
The authors proposed a generalized numerical scheme by using the Lagrange polynomial
interpolation to simulate variable-order fractional differential operators. Two methods,
Atangana-Baleanu-Caputo and Atangana-Seda derivatives, were used to solve a chaotic
Newton-Leipnik system problem. The fractional-order epidemic model of the hepatitis C
virus (HCV) involving partial immunity under the influence of memory effect to know the
transmission patterns and prevalence of HCV infection is studied in [17]. The authors
calculated the basic reproduction number for the HCV model using the next-generation
matrix technique to determine the model’s global dynamics. The model’s reproduction
number shows how the disease progresses. The model’s numerical solutions are obtained
using the fractional Adams method. The study in [20] introduced a family of root-solvers
for systems of nonlinear equations, leveraging the Daftardar-Gejji and Jafari decomposi-
tion technique coupled with the midpoint quadrature rule. Also, they presented a com-
prehensive analysis of their stability and semi-local convergence with the help of Taylor
series expansions and the Banach fixed point theorem. The practical efficacy and applica-
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bility of the developed methods are demonstrated through the resolution of five real-world
application problems of complex nonlinear systems.

Many mathematicians find it challenging to create numerical and approximate solu-
tions for the FDEs [11]. The Adams-Bashforth method, incorporating the CF operator,
is formulated in [19]. This method involves three steps and can be used to solve both
linear/nonlinear FDEs. Additionally, it possesses diverse uses in resolving chaotic systems
with fractional orders. The study [2] introduced a fractional MSD model that incorporates
CF-derivatives. The authors [10] have developed a trapezoidal strategy to solve the FDEs
efficiently. This scheme utilizes the CF operator and achieves a convergence order of two.
Additionally, the convergence and stability of this technique have been thoroughly inves-
tigated. Inspired by this research, we devised Simpson’s 1/3 scheme for solving FDEs.
This method achieves a high level of accuracy, with an order of four, as detailed in our
work. The proposed fractional Simpson’s 1/3 approach offers superior accuracy compared
to current methods and is straightforward to implement.

2. Preliminaries

Mathematical models using more accurate fractional derivatives (FD) have been used
by taking advantage of a non-singular kernel. This approach enhances the system’s ability
to accurately represent and capture memory effects. In 2015, Caputo and Fabrizio success-
fully introduced the CF-fractional derivative by substituting the singular kernel (t− τ)−γ

with e

(
−γ(t−τ)

1−γ

)
in the Caputo derivative [8]. Here, we will provide a succinct overview of

fundamental definitions pertaining to fractional calculus involving a non-singular kernel.

Definition 1.

For ψ(t) ∈ H1(0, a), 0 < γ < 1. Then the CF-FD, CFDγψ(t) and CF-fractional integral
CF Iγψ(t), respectively are defined by:

CFDγψ(t) :=
1

1− γ

∫ t

0
Exp

[
− γ

1− γ
(t− τ)

]
ψ̇(τ)dτ,

CF Iγψ(t) := (1− γ)ψ(t) + γ

∫ t

0
ψ(τ)dτ. (1)

3. Formulation of the two models

3.1. Description of the blood ethanol concentration model

Here, we will use the experimental study conducted in [15] to deduce the mathematical
model that describes the issue under study to locate the concentration of alcohol in the
human stomach θ1(t) & in his blood θ2(t) at any time t (mg/l), as it is the major provenance
for obtaining the real data for the present study. The proposed system in its CF-fractional
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form is specified by the subsequent equations:

CFDαθ1(t) = −λαθ1(t),
CFDβθ2(t) = λβθ1(t)− µβθ2(t),

(2)

θ1(0) = θ01, θ2(0) = 0,

where λ and µ are the rate law constants 1 and 2, respectively [15].
The true solution of this model is defined by [21]:

θ1(t) = θ01 Eα(−λαtα),

θ2(t) = θ01λ
β

∞∑
p=0

∞∑
q=0

(−λα)p(−µβ)q

Γ(pα+ qβ + β + 1)
tpα+qβ+β.

3.2. Description of the Ebola virus disease model

The fractional epidemiological system (with the total population, N) of the EVD can
be described as follows [9]:

CFDνψ1(t) = −αψ1(t)ψ2(t) + β ψ3(t)− γ N,
CFDνψ2(t) = αψ1(t)ψ2(t)− ϵ ψ2(t)− δ ψ2(t),
CFDνψ3(t) = δ ψ2(t)− β ψ3(t),
CFDνψ4(t) = ϵ ψ2(t) + γ N,

(3)

with the I.Cs ψi(0) = ψ̂0
i , i = 1, 2, 3, 4 where ν ∈ (0, 1]. All variables & constants contained

in the previous model can be described & defined as in the following table:

Symbol Description
ψ1(t), ψ2(t) and ψ3(t) The susceptible, infected, and recovery population, respectively

ψ4(t) The population died
α The rate of infection with the disease

β and γ The rate of susceptibility, and natural death respectively
ϵ and δ The rate of death, and recovery from the disease, respectively

Throughout the examination of the models presented in (2) and (3), the subsequent
approaches will be employed. We will provide the necessary definitions in the following
sections. The advanced portions will then contain numerical results, simulations, and
conclusions. The study’s primary goal is to examine the models under the CF-fractional
derivative.

4. Derivation Simpson’s-1/3 rule for CF-fractional integral

This section presents the formulation of the fractional Simpson’s-1/3 rule (FSR) for
solving CF-FDEs [6]. This aim will be achieved through the following steps:
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(i) Considering the subsequent γ-order IVP:

CFDγu(t) = f(u(t)), u(0) = u0. (4)

(ii) Applying the CF-fractional integral operator on the IVP (4) and applying Proposi-
tion 3 in [1] and formula (1), we get:

u(t) = u0 +
CF Iγf (u(t)) = u0 + (1− γ)f(u(t)) + γ

∫ t

0
f(u(s))ds. (5)

(iii) Initially, we will employ a quadratic polynomial P2 to estimate the integral function
f in Equation (5). The function will be assessed at t0, t1, and t2, where t0 is less than
t1 and t1 is less than t2. The interval is partitioned into two subintervals, denoted
as t1 − t0 = t2 − t1 = h, resulting in a combined width of 2h. The integration of the
quadratic polynomial P2 can be computed as follows:

I2f(u(t)) =

∫ b

a
f(u(t))dt ≈

∫ t2

t0

P2(u(t))dt =

∫ t2

t0

 2∑
j=0

Lj(t) f (u (tj))

 dt,
where the second-order Lagrange polynomials L0(t), L1(t), and L2(t) are defined as
follows:

Lj(t) =
2∏

i=0, i ̸= j

(t− ti)

(tj − ti)
.

(iv) Integrating the first interpolant function L0(t), by taking h = t2−t0
2 and substituting

”t = s+ t0”, gives us:∫ t2

t0

L0(t)dt =
1

2h2

∫ t0+2h

t0

(t− t1) (t− t2) dt =
1

2h2

∫ 2h

0
(s+ t0 − t2) (s+ t0 − t1) ds

=
1

2h2

∫ 2h

0
(s− 2h)(s− h)ds =

h

3
.

After making some simplifications to the rest of the terms, we have the following:

I2(f) =
h

3
[f (u (t0)) + 4f (u (t1)) + f (u (t2))] .

(v) By substituting in the equation (5), we get:

u (tn) = u0 + (1− γ)f (u (tn)) +
h

3
[f (u (t0)) + 4f (u (t1)) + f (u (t2))] , n = 0, 1, 2.
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(vi) To improve the accuracy of numerical integration, we partition [a, b] to n sub-
intervals as follows:
For any even number n ≥ 2, we establish the following definitions:

h =
b− a

n
= tk+1 − tk, k = 0, 1, 2, . . . , n.

Now, by using the quadrature rule for each pair of subintervals and implementing
the Simpson’s-1/3 rule to each of

[
t2k, t2(k+1)

]
, k = 0, 1, 2, . . . , n−2

2 , we can appoint
the following formula:

In(f) =

n−2
2∑

k=0

∫ t2k+2

t2k

f(u(t))dt =

n−2
2∑

k=0

(
h

3
[f (u (t2k)) + 4f (u (t2k+1)) + f (u (t2k+2))]

)
.

(vii) By referring uj as the approximate solution of u (tj) and using Eq.(5), we can write
the FSR for the CF-FDE (4), for j = 0[1](n− 1):

uj+1 = u0+(1−γ)f (uj+1)+γ
h

3

f (u (t0)) + 4

j∑
i=2,4,6

f (u (ti)) + 2

j−1∑
j=1,3,5

f (u (tj)) + f (u (tj+1))

 .
This formula can be rewritten in a compact form as follows:

uj+1 = u0 + (1− γ) f (uj+1) + γ h

j+1∑
r=0

ξr f (ur) , j = 0, 1, 2, . . . , n− 1, (6)

where ξr are the weights of the FSR and are defined as:

ξr =


1/3, r = 0, n+ 1,

2/3, r = 1, 3, 5, . . . ,

4/3, r = 2, 4, 6, . . . .

5. Convergence analysis

In this section, we are going to collect some theorems concerning the stability and error
analysis of the given IVP (4), and the regulated numerical scheme which investigated and
proved in ([6], [14]).

Theorem 1. [14]

Let us assume a continuous function f : [0, T ] × R → R with γ ∈ (0, 1) that satisfies
the Lipschitz condition:

|f (u(t1))− f (u(t2)) | ≤ ϵ |u(t1)− u(t2)|, ϵ > 0. (7)

Then the IVP (4) has a unique solution on C[0, T ] under the condition:

(2(1− γ) + 2γ T )ϵ

(2− γ)
< 1.
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Lemma 1.

Suppose that f(u(t)) ∈ C4([a, b]), then the error of numerical scheme (6) is estimated
by: ∣∣∣∣∣

∫ tn+1

t0

f(u(s))ds− γh

n+1∑
i=0

ξif (u(ti))

∣∣∣∣∣ ≤ h4,

where ĉ = (b−a)f (4)(ζ)
180 , for some constant a < ζ < b, h = b−a

n , and tk = a + hk, k =
0, 1, . . . , n+ 1.
The stability and error analysis of the regulated numerical scheme are investigated and
proved meanwhile the following theorems [6].

Theorem 2.

The newly designed fractional numerical technique (6) exhibits conditional stability.

Theorem 3.

The recently developed fractional numerical method exhibits conditional convergence
of order four, as stated in the equation (6):

∥u (tn+1)− un+1∥ ≤ Ch4,

where C = γĉ ch.

6. Numerical implementation

Here in this section, we will try to treat the shortcomings of the existing numerical
methods, which are represented by the slow convergence of most of them when solving
this type of problem, which in turn leads to inaccurate approximations [13]. To address
this, we use the FSR for numerical integration to calculate the resulting integral in the
system of FIEs obtained from the same models of FDEs under study.

6.1. Solving fractional blood ethanol concentration model

Now, we will numerically treat the BEC system in its fractional form by creating a
numerical scheme for it. For this purpose, let us reformulate the system (2) in an operator
form as follows:

CFDν Θ̄(t) = F(Θ̄(t), t), (8)

where

Θ̄(t) = [θ1(t), θ2(t)]
T , F(Θ̄(t), t) = [f1, f2]

T , Θ̄(0) = [θ01, 0]
T , (9)

where each one of the functions fi(θ1, θ2), i = 1, 2 are defined in the RHS of the two
equations in (2), respectively.
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Applying the CF-fractional integral operator on the model (8) and implementing
Proposition 3 in [1] and formula (1), we get:

Θ̄(t) = Θ̄(0) + CF Iν F(Θ̄(t), t) = Θ̄(0) + (1− ν)F(Θ̄(t), t) + ν

∫ t

0
F(Θ̄(s), s)ds. (10)

Applying the derived FSR for the integration on the RHS of (10), to get the following
numerical scheme as constructed in the formula (6):

Θ̄j+1 = Θ̄(0) + (1− ν)F(Θ̄j+1, tj+1) + ν h

j+1∑
r=0

ξr F(Θ̄r, tr), j = 0, 1, 2, . . . , n− 1, (11)

where the weights ξr, r = 0, 1, ..., n+ 1 of the FSR are defined in (6).
So, the system given in (2) transforms into an algebraic equations system as follows:

θk,j+1 = θk,0 + (1− ν)fk(θ1,j+1, θ2,j+1, tj+1) + ν h

j+1∑
r=0

ξr fk(θ1,r, θ2,r, tr), k = 1, 2, (12)

where the functions fk are defined in (9).

6.2. Solving fractional Ebola virus disease model

Now, we will numerically treat the Ebola Virus system in its fractional form by creating
a numerical scheme of it. For this purpose, let us reformulate the system (3) in an operator
form as follows:

CFDν Ψ̄(t) = F(Ψ̄(t), t), (13)

Ψ̄(t) = [ψ1(t), ψ2(t), ψ3(t), ψ4(t)]
T , F(Ψ̄(t), t) = [f1, f2, f3, f4]

T , Ψ̄(0) = [ψ̂0
1, ψ̂

0
2, ψ̂

0
3, ψ̂

0
4]

T ,

(14)

where each one of the functions fi(ψ1, ψ2, ψ3, ψ4), i = 1(1)4 are defined in the RHS of the
four equations in (3), respectively.

Applying the CF-fractional integral operator on the model (13) and implementing
Proposition 3 in [1] and formula (1), we get:

Ψ̄(t) = Ψ̄(0) + CF Iν F(Ψ̄(t), t) = Ψ̄(0) + (1− ν)F(Ψ̄(t), t) + ν

∫ t

0
F(Ψ̄(s), s)ds. (15)

Applying the derived FSR for the integration on the RHS of (15), to get the following
numerical scheme as constructed in the formula (6):

Ψ̄j+1 = Ψ̄(0) + (1− ν)F(Ψ̄j+1, tj+1) + ν h

j+1∑
r=0

ξr F(Ψ̄r, tr), j = 0, 1, 2, . . . , n− 1, (16)
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where the weights ξr, r = 0, 1, ..., n+ 1 of the FSR are defined in (6).
So, the system given in (3) transforms into an algebraic equations system as follows:

ψk,j+1 = ψk,0 + (1− ν)fk(ψ1,j+1, ψ2,j+1, ψ3,j+1, ψ4,j+1, tj+1)

+ ν h

j+1∑
r=0

ξr fk(ψ1,r, ψ2,r, ψ3,r, ψ4,r, tr), k = 1(1)4,
(17)

where the functions fk are defined in (14).

7. Numerical simulation

7.1. For the blood ethanol concentration model

Here, we behold the model (2) with different values of α, β, n at λ = 0.018713 and
µ = 0.084457 and initial conditions θ01 = 500, θ02 = 0 in [0,100]. We give a numerical
simulation for the BEC system by implementing the indicated scheme during in Figures
1-4 [12].

(i) Figure 1 recognizes a comparison between the numerical and true solutions with
α = 0.95, β = 0.95, & n = 200.

(ii) Figure 2 gives the absolute true error (ATE) with α = 0.9, β = 0.9, & n = 250.

(iii) Figure 3 shows the influence of the fractional order on the numerical solution with
various values of α = β = 1, 0.85, 0.75, 0.65 with n = 200.

(iv) Figure 4 shows the influence of the fractional order on the numerical solution with
various values of α = β = 0.55, 0.45, 0.35, 0.25 with n = 200.

By looking closely at these four figures, we can assert and confirm that the numerical
solution is based on the different values of α and β; it is a clear indication that the
presented numerical scheme has been well implement for solving the suggested system in
its fractional form and with this type of derivatives with small and large values of the
fractional order.

In addition, to verify the numerical convergence of the solutions in the interval [0, 100],
the fractional trapezoidal rule (FTR) for the numerical integration which achieves a con-
vergence order of two is applied to solve the given problem as the benchmarking to the
proposed FSR in terms of efficiency and accuracy [10]. In Table 1, we computed the max-
imum absolute approximate errors (AAE) to show the performance of the FSR method
against the benchmark method in solving the BEC model at various values of the fractional
order α, β and the step size h. Table 1 shows that the maximum AAE decreases when
the step-size used in the computation decreases. Therefore, the errors illustrated suffi-
cient proof of numerical convergence of the proposed numerical scheme. This comparison
confirms the thoroughness of the proposed method in this article.
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Figure 1. The numerical and true solutions with α = 0.95, β = 0.95, & n = 200.

Figure 2: The ATE with α = 0.9, β = 0.9, and n = 250.

Table 1. A comparison of the maximum absolute approximate errors from solving
the BEC model at different values of α, β, and h.

Method α/h 1
2

1
3

1
4

1
5

1
6

FSR
FTR
FSR
FTR
FSR
FTR

0.75

0.85

0.95

0.1345E-2
2.0134E-1
3.2590E-2
3.9521E-1
7.9325E-2
8.0265E-1

5.9510E-2
6.2581E-1
9.0560E-2
9.9854E-1
6.0259E-2
5.2361E-1

8.2140E-3
9.3628E-2
6.2540E-3
6.9510E-2
7.0254E-3
8.0124E-2

5.6064E-3
5.9012E-2
1.5348E-3
1.6542E-2
3.2541E-3
3.9651E-2

3.5641E-4
3.9752E-2
1.0654E-4
1.9875E-3
0.0254E-4
0.9687E-3

7.2. For the Ebola virus disease model

Here, we behold the model (3) with various quantities of ν, n, α, β, γ, δ, ϵ, N in [0, 5].
We take two cases of the I.Cs ψ0

i , i = 1, 2, 3, 4 as follows [25]:

(i) Case 1: ψ0
1 = 100, ψ0

2 = 10, ψ0
3 = 0, ψ0

4 = 0;

(ii) Case 2: ψ0
1 = 70, ψ0

2 = 2, ψ0
3 = 0, ψ0

4 = 0.
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Figure 3: The numerical solution with various values of α > 0.55 & β > 0.55 with n = 200.

Figure 4: The numerical solution with various values of α ≤ 0.55 & β ≤ 0.55 with n = 200.

We give a numerical simulation for the EVD system by implementing the indicated scheme
during in Figures 5-9.

(i) Figure 5 recognizes a comparison between the numerical solution by the proposed
scheme & the solution by RK4M (at ν = 1) with α = 0.001, γ = 0.01, β = 0.002, ϵ =
0.006, δ = 0.004, & n = 40, the I.Cs are given by Case 2.

(ii) Figure 6 gives a comparison between the numerical solutions by the introduced
scheme and the approximate solution by applying the scheme in [25] at ν = 0.9 with
the I.Cs given by Case 1, and the values of β, α, γ, δ, ϵ, n are the same in Figure 5.

(iii) Figure 7 gives the relative approximate error (RAE) with ν = 0.95 for the values
n = 40, α = 0.01, β = 0.02, γ = 0.01, ϵ = 0.6, δ = 0,, with I.Cs given by Case 1.

(iv) Figure 8 shows the impact of the fractional order ν on the numerical solution with
various quantities of ν = 1, 0.9, 0.8, 0.7, with I.Cs given by Case 2, and the values
of β, α, γ, δ, ϵ, n are the same in Figure 5.
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Figure 5. Comparison between the obtained numerical solutions & the RK4M

with the I.Cs given by Case 2.

(v) Figure 9 shows the impact of the fractional order ν on the numerical solution with
various quantities of ν = 0.5, 0.4, 0.3, 0.2, with I.Cs given by Case 2, and the values
of β, α, γ, δ, ϵ, n are the same in Figure 5.
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Figure 6. Comparison between the obtained numerical solution & the approximate solution [25]

with the I.Cs given by Case 1.

Figure 7. The RAE with ν = 0.95 for the I.Cs given by Case 1.
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Figure 8. The influence of the fractional-order ν > 0.5 on the numerical solution,

using initial conditions given in Case 2.

By looking closely at these five figures, we can assert and confirm that the behavior
of the numerical solution is based on the different amounts of ν, β, α, γ, δ, ϵ, n ; it is
a clear indication that the presented numerical scheme has been well implemented to
solve the given system in its fractional form with this type of derivatives with small and
large values of the fractional order. In addition, we can also emphasize the efficiency
of the suggested scheme and note that all studies related to convergence analysis have
been achieved. Finally, the major and important observation is that the behavior of the
numerical solutions agrees excellently with the real meaning of the problem and meets the
same behavior of the system ψk(t), k = 1, 2, 3, 4 through different values of these variables.

In addition, to verify the numerical convergence of the solutions in the interval [0, 5],
the FTR is applied to solve the given problem as the benchmarking to the proposed FSR
in terms of efficiency and accuracy [10]. In Table 2, we computed the maximum AAE
to show the performance of the FSR method against the benchmark method in solving
the EVD model at various values of ν and h. Table 2 shows that the maximum AAE
decreases when the step-size used in the computation decreases. Therefore, the errors
illustrated sufficient proof of numerical convergence of the proposed numerical scheme.
This comparison confirms the thoroughness of the proposed method in this article.
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Figure 9. The influence of the fractional-order ν ≤ 0.5 on the numerical solution,

using initial conditions given in Case 2.

Table 2. A comparison of the maximum absolute approximate errors from solving
the EVD model at different values of ν, and h.

Method ν/h 1
2

1
4

1
8

1
16

1
32

FSR
FTR
FSR
FTR
FSR
FTR

0.75

0.85

0.95

0.1345E-2
2.1593E-1
2.7562E-2
7.7530E-1
0.2580E-2
9.3520E-1

5.9510E-3
5.6542E-2
9.2458E-3
2.0147E-2
1.9507E-3
6.0147E-2

8.2140E-4
7.3571E-2
7.9630E-4
6.6529E-3
6.5219E-4
0.6541E-2

5.6064E-5
6.9510E-3
3.7532E-5
6.1597E-3
9.9425E-5
8.9327E-3

3.5641E-6
0.0145E-4
0.6528E-6
8.0581E-4
2.9324E-6
1.7538E-4

8. Conclusions and remarks

This study aims to utilize an efficient and accurate method to gain numerical solutions
for CF-fractional blood ethanol concentration system and Ebola Virus model. Simpson’s
rule 1/3 was applied in its fractional form in computing the resulting integral within the
system of FIEs corresponding to the FDEs expressing mathematically the models under
study to achieve fourth-order accuracy for the resulting solutions. This study utilized sev-
eral values of the fractional order and h to derive solutions for the models being examined.
Furthermore, we have determined that the proposed approach is remarkably effective in
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analyzing these systems. Furthermore, reducing the value of h allows us to control the
accuracy of the numerical solution. From the obtained solutions, we can confirm that
the offered approach is surprisingly successful in simulating the two models, as well as
demonstrating the accuracy and computational effectiveness of this method. Finally, the
present study may contribute to providing more robust physical explanations for future
theoretical and computational studies on the same topic. In future work, we try to use
other fractional operators and derive a suitable numerical scheme to solve a wide class of
fractional differential equations such as complex, chaotic systems, or higher-dimensional
systems.
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