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Abstract. The close resemblance between rough sets and topology arises from the analogy be-
tween topological operators and rough approximations. This connection fosters combined studies
between them. Therefore, this paper is created new approximations by leveraging topological con-
cepts. Additionally, it is depicted that how a specific combination of ideals is utilized to approach
rough from a topological perspective. As, ideals are valuable topological tools for reducing uncer-
tainty. So, ideal structures are used to create new generalized approximation spaces that minimize
vagueness. Initially, new topologies concepts are proposed relying on various types of the subset
neighborhoods via ideals, and their relationships are analyzed. Thereafter, new approximations
are derived from the proposed topological concepts. Moreover, all the present results are com-
pared with earlier models to highlight the advantages and merits of the current technique. The
present manners are more precise than previous approaches as they are particularly valuable for
reducing vagueness. More importantly, three distinct perspectives are presented to elicit mem-
bership functions. To emphasize the importance of this paper, a numerical example related to
Chikungunya disease is provided. This enables specialists to accurately assess the factors influ-
encing Chikungunya disease. So, specialists and consultants can handle insufficient data regarding
disease symptoms, resulting in easier and more accurate patient diagnoses. The study wraps up
with a summary and proposals for future research.

2020 Mathematics Subject Classifications: 03E99, 54A05, 54E99

Key Words and Phrases: Rough set, topology, ideal, subset neighborhood

1. Introduction

The issues of imprecision in information systems used for data analysis have long been
a concern. Many researchers, especially those specializing in artificial intelligence, had
sought effective tools to address these challenges. One such tool that have been proposed
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is rough set theory. It is emerged as a non-statistical method for analyzing the data
[37, 38]. This theory addresses complex real-life problems by partitioning a data set with
inherent uncertainty into three distinct regions: the lower approximation, which encom-
passes the confirmed information; the upper approximation, which includes information
whose membership in the set cannot be definitively determined; and the boundary area,
represented by the gap between the upper and lower approximations. Vagueness is related
to the boundary, where objects cannot be clearly classified. Consequently, the level of
set’s ambiguity, depends on the boundary contains element or not. A nonempty boundary
indicates insufficient knowledge to precisely define the set. Therefore, a key goal is to
minimize the boundary and enhance the set’s accuracy.

In standard model, approximations were defined in terms of equivalence classes. How-
ever, the equivalence relations were overly constraining for applications. To broaden the
aspects of this theory, researchers have suggested various extensions. For instance, equiv-
alence classes have been replaced with other models in several studies (see: [34, 36]).
Additionally, neighborhood systems extend rough set theory by substituting equivalence
classes with neighborhoods in the definition of approximations (see: [3, 5–13, 16, 25, 42]).

Topology is a prevalent across nearly all branches of mathematics (see: [29, 40]). It
has become a significant unifying idea in mathematics. The upper and lower approxi-
mations correspond to the closure and interior of a set. Therefore, different studies have
explored the intersection of topological space and rough set theory (see: [22, 33, 39, 44]).
Many mathematicians redirected their attention to the near (or nearly) open concept as
an extension of open sets in topology [4, 20]. Hosny [22], Hosny and Al-Shami [26] pre-
sented ℘-nearly open and ℘-nearly approximations via ideals. These manners generalize
℘-nearly open and ℘-nearly approximations. Meanwhile, various techniques have been
developed to construct topological spaces using neighborhood systems and their general-
ization. In this direction, initial right neighborhoods were presented in [18]. Thereafter,
the remaining seven notions of initial neighborhoods were suggested under the name subset
neighborhoods in [10]. More recently, Yildirim [43] formed a topology based on the subset
neighborhoods. Moreover, she [43] presented near open sets relying on various types of
subset neighborhoods, namely S℘-near open sets. In [43], approximations were established
and evaluate related to [1, 2, 30] under the restricted condition of similarity relations.

A nonempty collection D of subsets of a set V is known an ideal on V , if D is closed
under finite unions and subsets [28]. Ideal in topological spaces was first studied in (see:
[32, 41]). Thereafter, high-quality papers presented (see: [17, 19, 28]). The primary
advantage of incorporating ideals into this theory was their ability to reduce vagueness
by refining the boundaries of concepts. So, it increases the certain knowledge, thereby
enhancing the reliability of decision making methods. Accordingly, using ideals is a robust
technique for clarifying and precisely defining concepts. So, the exploration of rough
set theory with ideals has become a prominent and engaging research area, attracting
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significant attention from researchers (see [20, 21, 23, 24, 27, 35]). Hence, ideals have been
widely applied within this theoretical framework.

The aim of this manuscript is to advance research in these directions. It highlights that
ideals are crucial in this study. This work comprises seven sections. The fundamental
definitions and properties are given in Section 2. Afterwards, Section 3 introduces and
examines new S℘-nearly open sets related to an ideal D, denoted by D-αS℘-open, D-θβS℘-
open, D-PS℘-open, D-SS℘-open, D-βS℘-open and D-θβS℘-open sets. After substituting
D = {∅} into the current definitions, we find that the resulting definitions are equiva-
lent to those defined by Yildirim [43]. This equivalence shows that the specific case of
the current framework are coincided with Yildirim’s definitions. So, the last definitions
[43] are considered as a special case of the current ones. Moreover, the essential compar-
isons of these manners with the prior ones [1, 2, 22, 26, 30] are stated. Furthermore, it
is demonstrated that D-αS℘O(V ) and D-PS℘O(V ) are distinct (see Example 3.1), even
though every element in αS℘ is in PS℘O(V ) as noted in [43]. Section 4 seeks to exhibit ap-
proximations derived from S℘-nearly open sets in the context of ideals. The relationships
between these approximations and those proposed in [1, 2, 22, 26, 30, 43] are presented
in Theorems 4.1, 4.2, 4.3 and Corollaries 4.1, 4.3, 4.5. Section 5 focuses on defining three
types of membership functions. Thereafter, the core features and relationships of these
functions are derived and compared to the earlier ones in [1, 22, 26]. In Section 6, the
paper presents a medical application to show the practical applicability and effectiveness
of the suggested models and exhibits how ideals play a crucial role in decision-making.
Accordingly, the current manners allow specialists to classify people with Chikungunya
disease easily and with high accuracy. Eventually, a summary of the work’s contributions
and recommendations directions are given.

2. Preliminaries

Definition 2.1. [1, 14, 15, 31] Let Υ be an arbitrary binary relation on a finite set V ̸= ∅
and t ∈ V. Then, the ℘-neighborhood of t ∈ V (in brief, ℵ℘(t)), ∀℘ ∈ {R,L, I, U, ⟨R⟩, ⟨L⟩, ⟨I⟩, ⟨U⟩}
is introduced by:

(i) R-neighborhood: ℵR(t) = {s ∈ V : (t, s) ∈ Υ}.

(ii) L-left neighborhood: ℵL(t) = {a ∈ V : (s, t) ∈ Υ}.

(iii) ℵI(t) = ℵR(t) ∩ ℵL(t).

(iv) ℵU (t) = ℵR(t) ∪ ℵL(t).

(v) ℵ⟨R⟩(t) =
⋂

t∈ℵR(s) ℵR(s).

(vi) ℵ⟨L⟩(t) =
⋂

t∈ℵL(s)
ℵL(s).

(vii) ℵ⟨I⟩(t) = ℵ⟨R⟩(t) ∩ ℵ⟨L⟩(t).
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(viii) ℵ⟨U⟩(t) = ℵ⟨R⟩(t) ∪ ℵ⟨L⟩(t).

(ix) the triple (V,Υ,Π℘) is known as a ℘-neighborhood space (or ℘-NS for short), with
Π℘ being a mapping from V to P (V ) that assigns each t ∈ V with a ℘-neighborhood.

Theorem 2.1. [1, 2, 30] The topology on V derived from an approximation space (V,Υ)
given by τ℘ = {M ⊆ V : ℵ℘(t) ⊆ M,∀t ∈ M}, ∀℘. Sets in τ℘ are termed ℘-open, their
complements are ℘-closed set and all ℘-closed set is denoted by ℸ℘.

Definition 2.2. [1, 2, 30] The ℘-lower and ℘-upper approximations, boundary region and
accuracy of a set M are

N℘(M) = ∪{N ∈ τ℘ : N ⊆ M} = int℘(M) (represents the topological ℘-interior
operator),

N℘(M) = ∩{Q : Q
′ ∈ τ℘ and M ⊆ Q} = cl℘(M) (represents the topological ℘-closure

operator),

B℘(M) = N℘(M)−N℘(M),

A℘(M) =
|N℘(M)|
|N℘(M)| , where M is nonempty.

Definition 2.3. [1, 2, 30] Let (V,Υ,Π℘) be a ℘-nbdS. M ⊆ V is termed a ℘-exact set if
N℘(M) = N℘(M). Otherwise, M is known as a ℘-rough set.

Definition 2.4. [22, 26] Let (V,Υ,Π℘) be a ℘-nbdS and D be an ideal on V . M ⊆ V is
called

(i) D-P℘-open, if ∃G ∈ τ℘· ∋ ·(M − G) ∈ D and (G − cl℘(M)) ∈ D.

(ii) D-S℘-open), if ∃G ∈ τ℘· ∋ ·(M − cl℘(G)) ∈ D and (G −M) ∈ D.

(iii) D-β℘-open, if ∃G ∈ τ℘· ∋ ·(M − cl℘(G)) ∈ D and (G − cl℘(M)) ∈ D.

(iv) D-θβ℘-open if ∃ G ∈ τ℘· ∋ ·(M − clS℘(G)) ∈ D and (G − clθ℘(M)) ∈ D,clθ℘(M) = {t ∈
V : M ∩ cl℘(G) ̸= ∅,G ∈ τ℘ and t ∈ G}.

These are named D-℘-nearly open, their complements are named D-℘-nearly closed, all
D-℘-nearly open of V indicated by D-ξ℘O(V ) and all D-℘-nearly closed of V indicated by
D-ξ℘C(V ), ∀ξ ∈ {P, S, α, β, θβ}.

Definition 2.5. [22, 26] Let(V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M ⊆ V. The
D-℘-nearly lower, D-℘-nearly upper approximations, D-℘-nearly boundary regions and D-
℘-nearly accuracy of M are:
ND−ξ

℘ (M) = ∪{G ∈ D-ξ℘O(V ) : G ⊆ M},

N
D−ξ
℘ (M) = ∩{H ∈ D-ξ℘C(V ) : M ⊆ H},

BD−ξ
℘ (M) = N

D−ξ
℘ (M)−ND−ξ

℘ (M).

AD−ξ
℘ (M) =

|ND−ξ
℘ (M)|

|ND−ξ
℘ (M)|

, where |ND−ξ
℘ (M)| ≠ 0.
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Definition 2.6. [22, 26] Let (V,Υ,Π℘) be a ℘-nbdS and D be an ideal on V . A subset

M ⊆ V is termed a D-ξ℘-exact set if N
D−ξ
℘ (M) = ND−ξ

℘ (M). Otherwise, M is known as
a D-ξ℘-rough set.

Definition 2.7. [10] Take Υ as an arbitrary binary relation on a finite set V ̸= ∅ and
t ∈ V. Then the subset neighborhood of t ∈ V (briefly,S℘(t)),∀℘ is defined by follows,

(i) SR(t) = {s ∈ V : ℵR(t) ⊆ ℵR(s)}[18].

(ii) SL(t) = {s ∈ V : ℵL(t) ⊆ ℵL(s)}[10].

(iii) SI(t) = SR(t) ∩ SL(t)[10].

(iv) SU (t) = SR(t) ∪ SL(t)[10].

(v) S⟨R⟩(t) = {s ∈ V : ℵ⟨R⟩(t) ⊆ ℵ⟨R⟩(t)}[10].

(vi) S⟨L⟩(t) = {s ∈ V : ℵ⟨L⟩(t) ⊆ ℵ⟨L⟩(t)}[10].

(vii) S⟨I⟩(t) = S⟨R⟩(t) ∩ S⟨L⟩(t)[10].

(viii) S⟨U⟩(t) = S⟨R⟩(t) ∪ S⟨L⟩(t)[10].

Theorem 2.2. [43] Let (V,Υ,Π℘) be a ℘-nbdS. Then τS℘ = {M ⊆ V : S℘(t) ⊆ M,∀t ∈
M}, ∀S℘ constitutes a topology on V. Sets in τS℘ are termed S℘-open, their complements
are S℘-closed set and all S℘-closed set is indicated by ℸS℘ .

Definition 2.8. [43] Let (V,Υ,Π℘) be a ℘-nbdS. Then S℘-lower and S℘-upper approxima-
tions, boundary region and accuracy of a set M derived from a topological space (V, τS℘)
are respectively determined by

NS℘(M) = ∪{N ∈ τS℘ : N ⊆ M} = intS℘(M) (represents the topological S℘-interior
operator),

NS℘(M) = ∩{Q : Q
′ ∈ τS℘ and M ⊆ Q} = clS℘(M) (represents the topological S℘-closure

operator),

BS℘(M) = NS℘(M)−NS℘(M),

AS℘(M) =
|NS℘ (M)|
|NS℘ (M)| , where M is nonempty.

Definition 2.9. [43] Let (V,Υ,Π℘) be a ℘-nbdS. A subset M ⊆ V is termed a S℘-exact
set if NS℘(M)) = NS℘(M). Otherwise, M is known as a S℘-rough set.

Proposition 2.1. [43] Let (V,Υ,ΠS℘) be a ℘-nbdS, Υ be a similarity relation, ℘ ∈
{R,L, I, U} and M ⊆ V. Then, τ℘ ⊆ τS℘ .
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Theorem 2.3. [43] Let (V,Υ,ΠS℘) be a ℘-nbdS, Υ be a similarity relation, ℘ ∈ {R,L, I, U}
and M ⊆ V. Then,

(i) τ℘ ⊆ τS℘ .

(ii) N℘(M) ⊆ NS℘(M).

(iii) NS℘(M) ⊆ N℘(M).

(iv) BS℘(M) ⊆ B℘(M).

(v) A℘(M) ≤ AS℘(M).

Definition 2.10. [43] Let (V,Υ,Π℘) be a ℘-nbdS. M ⊆ V is

(i) S℘-preopen (PS℘-open), if intS℘(clS℘(M)) ⊇ M.

(ii) S℘-semiopen (SS℘-open), if clS℘(intS℘(M)) ⊇ M.

(iii) αS℘-open, if M ⊆ intS℘ [clS℘(intS℘(M))].

(iv) βS℘-open (semi preopen), if M ⊆ clS℘ [intS℘(clS℘(M))].

(v) θβS℘-open , if M ⊆ clS℘ [intS℘(cl
θ
S℘(M))], where clθS℘(M) = {t ∈ V : M ∩ clS℘(G) ̸=

∅,G ∈ τS℘ and t ∈ G}.

These are named S℘-nearly open, all S℘-nearly open of V indicated by ξS℘O(V ), their
complements are named S℘-nearly closed and all S℘-nearly closed of V indicated by ξS℘C(V ),
∀ξ ∈ {P, S, α, β, θβ}.

Proposition 2.2. [43] Let (V,Υ,Π℘) be a ℘-nbdS. Then, the implications between τS℘ ,ℸS℘ , ξS℘O(V )
and ξS℘C(V ) are

τS℘(ℸS℘) ⇒ αS℘O(αS℘C) ⇒ PS℘O(PS℘C)
⇓ ⇓

SS℘O(SS℘C) ⇒ βS℘O(βS℘C) ⇒ θβS℘O(θβS℘C).

Definition 2.11. [43] Let (V,Υ,Π℘) be a ℘-nbdS, M ⊆ V. The S℘-nearly lower, S℘-nearly
upper approximations, S℘-nearly boundary regions and S℘-nearly accuracy of M are:

Nξ
S℘(M) is the union of all S℘-nearly open sets which are subset of M = S℘-nearly interior

of M .
N

ξ
S℘(M) is the intersection of all S℘-nearly closed sets which are superset of M = S℘-nearly closure of A.

Bξ
S℘(M) = N

ξ
S℘(M)−Nξ

S℘(M).

Aξ
S℘(M) =

|Nξ
S℘

(M)|

|Nξ
S℘ (M)|

, where |Nξ
S℘(M)| ≠ 0.

Definition 2.12. [43] Let (V,Υ,Π℘) be a ℘-nbdS. M ⊆ V is S℘-nearly exact if N
ξ
S℘(M) =

Nξ
S℘(M). Otherwise, M is S℘-nearly rough.
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Theorem 2.4. [43] Let (V,Υ,Π℘) be a ℘-nbdS and M ⊆ V. Then, NS℘(M) ⊆ Nξ
S℘(M) ⊆

M ⊆ N
ξ
S℘(M) ⊆ NS℘(M).

Definition 2.13. [1] Let (V,Υ,Π℘) be a ℘-nbdS, t ∈ V and M ⊆ V

(i) if t ∈ N℘(M), then t is ℘-surely belongs to M , denoted by t ∈℘M

(ii) if t ∈ N℘(M), then t is ℘-possibly belongs to M , denoted by t ∈℘M

Definition 2.14. [1] Let (V,Υ,Π℘) be a ℘-nbdS and M ⊆ V and t ∈ V. The ℘-rough mem-

bership functions of M are presented by ω℘
M : V → [0, 1], with ω℘

M (t) =
|∩ℵ℘(t)∩M |
|∩ℵ℘(t)| ,∩ℵ℘(t) ̸=

∅ and |M | is cardinality of M.

Definition 2.15. [22, 26] The subsequent features valid for each subset M .

(i) If t ∈ RD−ξ
℘ (M), then t is D− ξ℘-certainly belongs to M , symbolized by t ∈D−ξ

℘ M .

(ii) If t ∈ RD−ξ
℘ (M), then t is D− ξ℘-probably belongs to M , symbolized by t ∈D−ξ

℘ M .

Definition 2.16. [22, 26] Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,M ⊆ V and
t ∈ V. The D-S℘-nearly rough membership functions of a ℘-nbdS on V for a M are defines

by ω
D−ξ℘
M : V → [0, 1], where

ω
D−ξ℘
M (t) = {1 if 1∈χD−ξ℘

M (t).

min(χ
D−ξ℘
M (t)) otherwise.

}.

and χ
D−ξ℘
M (t) =

|D−ξ℘(t)∩M |
|D−ξ℘(t)| , t ∈ D− ξ℘(t), D− ξ℘(t) ∈ D-ξ℘O(V ).

3. S℘-nearly open sets via ideals and comparisons with the prior studies

This section introduces a new nearly open sets, namely D-αS℘-open sets. These sets are
defined using subset neighbourhood and ideal to be a preliminary step toward developing
rough set paradigms. Moreover, the key characteristics of these classes are outlined and
clarified how it relates to the previously discussed classes.

3.1. S℘-nearly open sets via ideals

Definition 3.1. Let (V,Υ,Π℘) be a ℘-nbdS and D be an ideal on V . M ⊆ V is called

(i) D-αS℘-open, if ∃G ∈ τS℘ · ∋ ·(M − intS℘(clS℘((G)) ∈ D and (G −M) ∈ D.

(ii) D-S℘-Preopen (shortly D-PS℘-open), if ∃G ∈ τS℘ · ∋ ·(M − G) ∈ D and (G −
clS℘(M)) ∈ D.

(iii) D-S℘-Semi open (shortly D-SS℘-open), if ∃G ∈ τS℘ · ∋ ·(M − clS℘(G)) ∈ D and
(G −M) ∈ D.

(iv) D-βS℘-open, if ∃G ∈ τS℘ · ∋ ·(M − clS℘(G)) ∈ D and (G − clS℘(M)) ∈ D.
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(v) D-θβS℘-open if ∃ G ∈ τS℘ · ∋ ·(M − clS℘(G)) ∈ D and (G − clθS℘(M)) ∈ D.

These are named D-S℘-nearly open, their complements are named D-S℘-nearly closed, all
D-S℘-nearly open of V indicated by D-ξS℘O(V ) and all D-S℘-nearly closed of V indicated
by D-ξS℘C(V ), ∀ξ ∈ {P, S, α, β, θβ}.

Example 3.1. Let V = {l1, l2, l3, l4}, Υ = {(l1, l1), (l2, l1), (l2, l4), (l3, l1), (l3, l3), (l4, l1), (l4, l3)},
and D = {∅, {l1}, {l2}, {l1, l2}}. Then, τSR = {V, ϕ, {l2}, {l3, l4}, {l2, l3, l4}}, and M =
{l1} ∈ D-βSRO(V ) (respectively, D-SSRO(V ), D-PSRO(V ), D-αSRO(V ) ), butM={  l1} ̸∈
βSRO(V ) (respectively, SSRO(V ), PSRO(V ), αSRO(V )).

The following finding highlights the rapports among the D-S℘-nearly open sets.

Proposition 3.1. Let (V,Υ,Π℘) be a ℘-nbdS and D be an ideal on V. Then

D-αS℘-open D-PS℘-open
⇓ ⇓

D-SS℘-open ⇒ D-βS℘-open ⇒ D-θβS℘-open.

Proof. Straightforward by Definition 3.1.

Remark 3.1. In Example 3.1

(i) {l3} ∈ D-βSRO(V ), ̸∈ D-αSRO(V ), ̸∈ D-SSRO(V ).

(ii) {l3} ∈ D-PSRO(V ), ̸∈ D-αSRO(V ).

(iii) if D = {∅, {l2}}, then

(a) {l1, l2} ∈ D-SSRO(V ) ̸∈ D-αSRO(V ).

(b) {l1, l2} ∈ D-βSRO(V ), but it is not D-PSRO(V ).

(c) {l1, l3, l4} ∈ D-SSRO(V ) ̸∈ D-PSRO(V ).

(d) {l4} ∈ D-PSRO(V ) ̸∈ D-PSRO(V ).

(e) {l1} ∈ D-αSRO(V ) ̸∈ D-PSRO(V ).

(f) {l3} ∈ D-PSRO(V ) ̸∈ D-αSRO(V ).

(g) {l1} ∈ D-θβSRO(V ) ̸∈ D-βSRO(V ). Accordingly, it is not SRO(V ), D-αSRO(V ),
D-SSRO(V ) and D-PSRO(V ).

Remark 3.2. Example 3.1 clarifies that

(i) D-αS℘O(V ) and D-PS℘O(V ) are distinct even though every element in αS℘O(V ) is in
PS℘O(V ) [43].

(ii) D-SS℘-open sets and D-PS℘-open sets are incomparable.

Proposition 3.2. Let (V,Υ,Π℘) be a ℘-nbdS and let D be an ideal on V . Then
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τS℘(ΓS℘) ⇒ D-αS℘O(D-αS℘C) D-PS℘O(D-PS℘C)
⇓ ⇓

D-SS℘O(D-SS℘C) ⇒ D-βS℘O(D-βS℘C) ⇒ D-θβS℘O(D-
θβS℘C).

Proof. By Proposition 2.2 [43], and Propositions 3.4,3.1, the proof is evident.

Remark 3.3. “ τS℘(ΓS℘) ⇐ D-αS℘O(D-αS℘C)” is false. In Example 3.1, M = {l1} ∈ D-
αSRO(V ), ̸∈ τSR .

Proposition 3.3. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity
relation, ℘ ∈ {R,L, I, U} and M ⊆ V. Then

τ℘(Γ℘) ⇒ τS℘(ΓS℘) ⇒ D-αS℘O(D-αS℘C) D-PS℘O(D-PS℘C)
⇓ ⇓

D-SS℘O(D-SS℘C) ⇒ D-βS℘O(D-βS℘C) ⇒ D-θβS℘O(D-
θβS℘C).

Proof. By Theorem 2.3 and Proposition 3.2 the proof is uncomplicated.

Remark 3.4. It should be noted that

(i) the similarity relation in Proposition 3.3 is indispensable as

Example 3.2. Let V = {l1, l2, l3, l4} and Υ = {(l1, l1), (l2, l2), (l1, l3), (l2, l3), (l2, l4)}.
Then, τR = {V, ∅, {l3}, {l4}, {l3, l4}, {l2, l3, l4}} and τSR = {V, ∅, {l1}, {l2}, {l1, l2}}
are incomparable.

(ii) “τ℘(Γ℘) ⇐ D-αS℘O(D-αS℘C)” is incorrect as:

Example 3.3. Let V = {l1, l2, l3, l4}, Υ = {(l1, l1), (l2, l2),
(l3, l3), (l4, l4), (l1, l2), (l2, l1), (l2, l4), (l4, l2), (l3, l4), (l4, l3)}, and D = {∅, {l3}}. Then
it is clear that, {l2} ∈ D-αSR , ̸∈ τR

(iii) Example 3.3 shows also that τS℘ , τ℘ are not comparable if ℘ ∈ {< R >,< L >,<
I >,< U >}. Then,
τS<R>

= {V, ∅, {l1}, {l3}, {l1, l2}, {l1, l3}, {l3, l4}, {l1, l2, l3}, {l1, l3, l4}} and τ<R> =
{V, ∅, {l2}, {l4}, {l1, l2}, {l2, l4}, {l3, l4}, {l1, l2, l4}, {l2, l3, l4}}. So, Proposition 3.3 ap-
plies only for ℘ ∈ {R,L, I, U}.

Theorem 3.1. Let (V,Υ,Π℘) be a ℘-nbdS and D be an ideal on V. Then, the union of two
D-αS℘-open (respectively, D-SS℘-open, D-PS℘-open, D-βS℘-open) sets is also D-αS℘-open
(respectively, D-SS℘-open, D-PS℘-open, D-βJ -open) set.

Proof. We prove in the case of D-αS℘-open sets and the others cases are similarly.
Let M,N ∈ D-αS℘O(V ). Then, ∃G,H ∈ τS℘ such that (M − intS℘clS℘(G)) ∈ D, (G−M) ∈
D, (N − intS℘clS℘(H)) ∈ D and (H − N) ∈ D. Since, (G − (M ∪ N)) ⊆ (G − M) and
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(G − M) ∈ D, so (G − (M ∪ N)) ∈ D. Similarly, (H − (M ∪ N)) ∈ D, and hence
(G − (M ∪ N)) ∪ (H − (M ∪ N)) ∈ D. Let W = G ∪ H, then (W − (M ∪ N)) ∈
D. Also, (M − intS℘clS℘(W )) ⊆ (M − intS℘clS℘(G)) ∈ D and (N − intS℘clS℘(W )) ⊆
(N − intS℘clS℘(H)) ∈ D. Then, (M − intS℘clS℘(W )) ∪ (N − intS℘clS℘(W )) ∈ D and
so ((M ∪ N) − intS℘clS℘(W )) ⊆ (M − intS℘clS℘(G)) ∪ (N − intS℘clS℘(H)) ∈ D. Thus,
M ∪N ∈ D-αS℘O(V ).

Remark 3.5. D-ξS℘O(V ) do not generate a topology as in Example 3.1, take D =
{∅, {l1}, {l4}, {l1, l4}}, then M = {l1, l2}, N = {l1, l4} ∈ D-αSRO(V ), but M ∩N = {l1} ̸∈
D-αSRO(V ). Additionally, if D = {∅, {l2}}, then

(i) M = {l1, l2, l3}, N = {l1, l2, l4} ∈ D-PSRO(V ), but M ∩N = {l1, l2} ̸∈ D-PSRO(V ).

(ii) M = {l1, l2}, N = {l1, l3, l4} ∈ D-SSRO(V ), but M ∩N = {l1} ̸∈ D-SSRO(V ).

(iii) M = {l1, l2}, N = {l1, l3} ∈ D-βSRO(X), but M ∩N = {l1} ̸∈ D-βSRO(V ).

Remark 3.6. Let (V,Υ,Π℘) be a ℘-nbdS and D be an ideal on V. Hence, the statements
below are not true in most cases:

(i) D-ξUO(V ) ⊆ D-ξRO(V ) ⊆ D-ξIO(V ).

(ii) D-ξUO(V ) ⊆ D-ξLO(V ) ⊆ D-ξIO(V ).

(iii) D-ξ<U>O(V ) ⊆ D-ξ<R>O(V ) ⊆ D-ξ<I>O(V ).

(iv) D-ξ<U>O(V ) ⊆ D-ξ<L>O(V ) ⊆ D-ξ<I>O(V ).

(v) D-ξRO(V ) is the dual of D-ξLO(V ).

(vi) D-ξ<R>O(V ) is the dual of D-ξ<L>O(V ).

Example 3.4. Let V = {l1, l2, l3, l4}, Υ = {(l1, l1), (l1, l2), (l1, l3), (l2, l4), (l2, l3)}, and if
D = {∅, {l3}}. Then, D-βSRO(V ) = {∅, V, {l1}, {l2}, {l1, l2}, {l1, l3}, {l1, l4}, {l2, l3}, {l2, l4},
{l1, l2, l3}, {l1, l2, l4}, {l1, l3, l4}, {l2, l3, l4}},D-βSUO(V ) = P (V ). So, D-βSUO(V ) ⊈ D-
βSRO(V ). Additionally, if D = {∅, {l2}}. Then,

(i) D-βSRO(V ) = D-βSUO(V ) = D-βS<L>
O(V ) = D-βS<U>

O(V ) = P (V ).

(ii) D-βSLO(V ) = {∅, V, {l2}, {l1, l3}, {l2, l3}, {l3, l4}, , {l1, l2, l3}, {l1, l3, l4}, {l2, l3, l4}}.

(iii) D-βSIO(V ) = {∅, V, {l1}, {l2}, {l3}, {l1, l2}, {l1, l3}, {l2, l3}, {l3, l4}, {l1, l2, l3}, {l1, l3, l4},
{l2, l3, l4}}.

(iv) D-βS<R>
O(V ) = P (V )− {l1}.

(v) D-βS<I>
O(V ) = {∅, V, {l1}, {l2}, {l4}, {l1, l2}, {l1, l4}, {l2, l4}, {l1, l2, l4}}.

So, D-βSRO(V ) ⊈ D-βSIO(V ),D-βSUO(V ) ⊈ D-βSLO(V ) ⊈ D-βSIO(V ),D-βS<U>
O(V ) ⊈

D-βS<R>
O(V ) ⊈ D-βS<I>

O(V ),D-βS<L>
O(V ) ⊈ D-βS<I>

O(V ),D-βSRO(V ) is not the
dual of D-βSRO(V ) and D-βS<R>

O(V ) is not the dual of D-βS<L>
O(V ).
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3.2. Comparisons with the prior studies

The following findings confirm that the suggested Definition 3.1 is superior than
Yildirim’s Definition 2.10 [43].

Proposition 3.4. Let (V,Υ,Π℘) be a ℘-nbdS and D be an ideal on V . Then

αS℘-open ⇒ D-αS℘-open.
PS℘-open ⇒ D-PS℘-open.
SS℘-open ⇒ D-SS℘-open.
βS℘-open ⇒ D-βS℘-open.
θβS℘-open ⇒ D-θβS℘-open.

Proof. By applying Definitions 2.10 and 3.1.

Example 3.1 confirms that the reverse implications of Proposition 3.4 is not guar-
anteed to be true as M = {l1} ∈ D-βSRO(V ) (respectively, D-SSRO(V ), D-PSRO(V ),
D-αSRO(V )), but M = {l1} ̸∈ βSRO(V ) (respectively, SSRO(V ), PSRO(V ), αSRO(V )).

Theorem 3.2. Let (V,Υ,Π℘) be a ℘-nbdS and D be an ideal on V . If D = {∅} in the
present manner 3.1, then Yildirim’s Definition is obtained 2.10 [43].

Proof. Straightforward.

Theorem 3.2 emphasizes that Yildirim’s definitions [43] can be interpreted as a special
case of the current ones. As, when D = {∅} in the current definitions, we see that
the resulting definitions equivalent to those put forth by Yildirim [43]. This equivalence
suggests that the specific case in the current framework aligns with Yildirim’s definitions.

Proposition 3.5. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity
relation, ℘ ∈ {R,L, I, U} and M ⊆ V. Then

D-PS℘-open ⇒ D-P℘-open.
D-SS℘-open ⇒ D-S℘-open.
D-βS℘-open ⇒ D-β℘-open.
D-θβS℘-open ⇒ D-θβ℘-open.

Proof. By applying Definitions 2.4 and 3.1.

Example 3.3 clarifies that the converse of Proposition 3.5 does not always apply, con-
sequently the prior manners in [22, 26] are preferable than the present one in the case of
similarity relation.
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4. Approximations by using D-S℘-nearly open sets and comparisons to
the prior ones

In this section, new rough paradigms inspired by the family D-S℘-nearly open sets are
introduced. Additionally, the proposed models for all cases of D-S℘-nearly open sets are
compared using counterexamples to illustrate their distinctions. More importantly, it is
showed that how these novel paradigms contribute to decision-making. As, it improves
the accuracy of the knowledge extracted, compared to existing ones.

4.1. Approximations by using D-S℘-nearly open sets

Definition 4.1. Let(V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M ⊆ V. The D-
S℘-nearly lower, D-S℘-nearly upper approximations, D-S℘-nearly boundary regions and
D-S℘-nearly accuracy of M are:

ND−ξ
S℘ (M) = ∪{G ∈ D-ξS℘O(V ) : G ⊆ M} = D-S℘-nearly interior of M .

N
D−ξ
S℘ (M) = ∩{H ∈ D-ξS℘C(V ) : M ⊆ H} = D-S℘-nearly closure of M .

BD−ξ
S℘ (M) = N

D−ξ
S℘ (M)−ND−ξ

S℘ (M).

AD−ξ
S℘ (M) =

|ND−ξ
S℘ (M)|

|ND−ξ
S℘ (M)|

, where |ND−ξ
S℘ (M)| ≠ 0.

Proposition 4.1. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M,N ⊆ V. Then,

(i) ND−ξ
S℘ (M) ⊆ M ⊆ N

D−ξ
S℘ (M) equality hold if M = ∅ or V.

(ii) M ⊆ N ⇒ N
D−ξ
S℘ (M) ⊆ N

D−ξ
S℘ (N).

(iii) M ⊆ N ⇒ ND−ξ
S℘ (M) ⊆ ND−ξ

S℘ (N).

(iv) N
D−ξ
S℘ (M ∩N) ⊆ N

D−ξ
S℘ (M) ∩N

D−ξ
S℘ (N).

(v) ND−ξ
S℘ (M ∪N) ⊇ ND−ξ

S℘ (M) ∪ND−ξ
S℘ (N).

(vi) N
D−ξ
S℘ (M ∪N) ⊇ N

D−ξ
S℘ (M) ∪N

D−ξ
S℘ (N).

(vii) ND−ξ
S℘ (M ∩N) ⊆ ND−ξ

S℘ (M) ∩ND−ξ
S℘ (N).

(viii) ND−ξ
S℘ (M) = (N

D−ξ
S℘ (M

′
))

′
, N

D−ξ
S℘ (M) = (ND−ξ

S℘ (M
′
))

′
.

(ix) N
D−ξ
S℘ (N

D−ξ
S℘ (M)) = N

D−ξ
S℘ (M).

(x) ND−ξ
S℘ (ND−ξ

S℘ (M)) = ND−ξ
S℘ (M).

(xi) ND−ξ
S℘ (ND−ξ

S℘ (M)) ⊆ N
D−ξ
S℘ (ND−ξ

S℘ (M)).
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(xii) ND−ξ
S℘ (N

D−ξ
S℘ (M)) ⊆ N

D−ξ
S℘ (N

D−ξ
S℘ (M)).

Straightforward using D-S℘-nearly interior and D-S℘-nearly closure, so it is not be
detailed here.

Remark 4.1. In Example 3.1, take D = {∅, {l2}}. It shows that

(i) if M = {l1}, then ND−β
SR (M) = ϕ, so, A ⊈ ND−β

SR (M). Additionally, take M =

{l2, l3, l4},N
D−β
SR (M) = V , then N

D−β
SR (M) ⊈ M .

(ii) if M = {l1, l2}, N = {l2, l3},M ∩N = {l2},N
D−S
SR (M) = M,N

D−S
SR (N)

= V,N
D−S
SR (M ∩ N) = {l2}, then N

D−S
SR (M) ∩ N

D−S
SR (N) = {l1, l2} ⊈ {l2} =

N
D−S
SR (M ∩N).

(iii) if M = {l1, l4}, N = {l3, l4},M ∪ N = {l1, l3, l4},ND−S
SR (M) = ∅,ND−S

SR (N) =

{l3, l4},ND−S
SR (M ∪ N) = {l1, l3, l4}, then ND−S

SR (M ∪ N) = {l1, l3, l4} ⊈ {l3, l4} =

ND−S
SR (M) ∪ND−S

SR (N).

(iv) if M = {l2, l3}, N = {l2, l4},M ∪ N = {l2, l3, l4},N
D−β
SR (M) = {l2, l3},N

D−β
SR (N) =

{l2, l4},N
D−β
SR (M ∪ N) = V , then N

D−β
SR (M ∪ N) = V ⊈ {l2, l3, l4} = N

D−β
SR (M) ∪

N
D−β
SR (N).

(v) if M = {l1, l3}, N = {l1, l4},M∩N = {l1},ND−β
SR (M) = {l1, l3},ND−β

SR (N) = {l1, l4},ND−β
SR (M∩

N) = ∅, then ND−β
SR (M) ∩ND−β

SR (N) = {l1} ⊈ ∅ = ND−β
SR (M ∩N).

(vi) if M = {l2, l3, l4},ND−β
SR (ND−β

SR (M)) = M,N
D−β
SR (ND−β

SR (M)) = V , then

N
D−β
SR (ND−β

SR (M)) ⊈ ND−β
SR (ND−β

SR (M)).

(vii) for part 12, if M = {l1},N
D−β
SR (N

D−β
SR (M)) = M,ND−β

SR (N
D−β
SR (M)) = ∅, then

N
D−β
SR (N

D−β
SR (M)) ⊈ ND−β

SR (N
D−β
SR (M)).

(viii) if M = {l1}, N = {l2, l3, l4}, then N
D−β
SR (M) = {l1},N

D−β
SR (N)) = V . Therefore,

N
D−β
SR (M) ⊆ N

D−β
SR (N), but M ⊈ N.

(ix) if M = {l1}, N = {l3}, then ND−β
SR (M) = ∅,ND−β

SR (N) = {l3}. Therefore, ND−β
SR (M) ⊆

ND−β
SR (N), but M ⊈ N.

Definition 4.2. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V, and M ⊆ V. M is D-

ξS℘-nearly definable (D-ξS℘-nearly exact) set if N
D−ξ
S℘ (M) = ND−ξ

S℘ (M). Otherwise, M is
D-ξS℘-nearly rough set.
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In Example 3.1, take D = {∅, {l2}} and M = {l2} is D-βSR-exact, while N = {l1} is
D-βSR-rough.

Remark 4.2. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V. Then the intersection of
two D-ξS℘-rough sets need not to be D-ξS℘-rough set as in Example 3.1 {l1, l3} and {l1, l4},
are D-SSR-rough sets, {l1, l3} ∩ {l1, l4} = {l1} is not D-SSR-rough set.

4.2. Relationships among the proposed approximations and comparisons
to the prior ones

The following results underscore the advantages of the present manner 4.1 with the
comparison of the prior one in Definitions 2.8 and 2.11 [43].

Theorem 4.1. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M ⊆ V. Then

(i) Nξ
S℘(M) ⊆ ND−ξ

S℘ (M).

(ii) NS℘(M) ⊆ ND−ξ
S℘ (M).

(iii) N
D−ξ
S℘ (M) ⊆ N

ξ
S℘(M).

(iv) N
D−ξ
S℘ (M) ⊆ NS℘(M).

Proof.

(1) Nξ
S℘(M) = ∪{G ∈ ξS℘O(V ) : G ⊆ M} ⊆ ∪{G ∈ D-ξS℘O(V ) : G ⊆ M} = ND−ξ

S℘ (M)

(by Proposition 3.1).

(2) By Theorem 2.4, NS℘(M) ⊆ Nξ
S℘(M), and by (1) Nξ

S℘(M) ⊆ ND−ξ
S℘ (M). Hence,

NS℘(M) ⊆ ND−ξ
S℘ (M).

(3) and (4) Similar to (1) and (2).

Corollary 4.1. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M ⊆ V. Then

(i) BD−ξ
S℘ (M) ⊆ Bξ

S℘(M).

(ii) BD−ξ
S℘ (M) ⊆ BS℘(M).

(iii) Aξ
S℘(M) ⩽ AD−ξ

S℘ (M).

(iv) AS℘(M) ⩽ AD−ξ
S℘ (M).

Corollary 4.2. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V. Then

(i) Every ξS℘-nearly exact subset in V is D-ξS℘-nearly exact.

(ii) Every S℘-exact subset in V is D-ξS℘-nearly exact.

(iii) Every D-ξS℘-nearly rough subset in V is ξS℘-nearly rough.

(iv) Every D-ξS℘-nearly rough subset in V is S℘-rough.
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The boundary regions and accuracy by the prior manner in 2.8 [43] and the present man-
ner in 4.1 are calculated in Table 1 by using Example 3.1 whenD = {∅, {l2}}. Whereas, the
boundary regions and accuracy by the prior manner in 2.11 [43] and the present manner
in 4.1 are computed in Tables 2, 3 by using Example 3.1.

Definition 4.1 is superior to Definition 2.2 [1, 2, 30], as exhibited by the subsequent
findings.

Theorem 4.2. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity relation,
℘ ∈ {R,L, I, U} and M ⊆ V. Then

(i) N℘(M) ⊆ ND−ξ
S℘ (M).

(ii) N
D−ξ
S℘ (M) ⊆ N℘(M).

Proof.

(1) By Theorem 2.3, N℘(M) ⊆ NS℘(M), and by (2) in Theorem 4.1NS℘(M) ⊆ ND−ξ
S℘ (M).

So, N℘(M) ⊆ ND−ξ
S℘ (M).

(2) Similar to (1).

Corollary 4.3. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity relation
℘ ∈ {R,L, I, U} and M ⊆ V. Then

(i) BD−ξ
S℘ (M) ⊆ B℘(M).

(ii) A℘(M) ⩽ AD−ξ
S℘ (M).

Corollary 4.4. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity relation,
℘ ∈ {R,L, I, U} and M ⊆ V. Then

(i) Every ℘-exact subset in V is D-ξS℘-nearly exact.

(ii) Every D-ξS℘-nearly rough subset in V is ℘-rough.

The prior approximations in Definition 2.5 [22, 26] are outperform those in Definition
4.1 in the case of similarity relation, as displayed in the subsequent results.

Theorem 4.3. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity relation,
℘ ∈ {R,L, I, U} and M ⊆ V. Then

(i) ND−ξ
S℘ (M) ⊆ ND−ξ

℘ (M).

(ii) N
D−ξ
℘ (M) ⊆ N

D−ξ
S℘ (M).

Proof. By Proposition 3.5, the proof is evident.
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Corollary 4.5. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity relation
℘ ∈ {R,L, I, U} and M ⊆ V. Then

(i) BD−ξ
℘ (M) ⊆ BD−ξ

S℘ (M).

(ii) AD−ξ
S℘ (M) ⩽ AD−ξ

℘ (M).

Corollary 4.6. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity relation,
℘ ∈ {R,L, I, U} and M ⊆ V. Then

(i) Every D-ξS℘-nearly exact in V is D-ξ℘-nearly exact.

(ii) Every D-ξ℘-nearly rough in V is D-ξS℘-nearly rough.

Remark 4.3. It should be noted that

(i) the similarity relation in Theorems 4.2,4.3, Corollaries 4.3, 4.44.5, 4.6 is not dis-
pensable as shown in Example 3.2 that τ℘ and τS℘ are not comparable. Consequently,
it is meant that we can not apply Theorems 4.2,4.3, Corollaries 4.3, 4.44.5, 4.6.

(ii) the boundary regions and accuracy by the prior manner in 2.2 [1, 2, 30], 2.5 [22, 26]
and the present manner in 4.1 are calculated in Tables 4, 5 by using Example 3.3.
The results underscore the advantages of the present manner compared to 2.2 [1, 2,
30] and the superiority of the old ones 2.5 [22, 26] compared to the current ones in
the presence of the similarity relation.

(iii) Example 3.3 shows also that τS℘ , τ℘ are not comparable if ℘ ∈ {< R >,< L >
,< I >,< U >}. So, Theorems 4.2,4.3, Corollaries 4.3, 4.44.5, 4.6 apply only for
℘ ∈ {R,L, I, U}.
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The connections among the D-S℘-nearly lower (upper) approximations, D-S℘-nearly
boundary regions and D-S℘-nearly accuracy are introduced in the following results.

Proposition 4.2. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M ⊆ V. Then

(i) ND−P
S℘ (M) ⊆ ND−β

S℘ (M) ⊆ ND−θβ
S℘ (M).

(ii) ND−α
S℘ (M) ⊆ ND−S

S℘ (M) ⊆ ND−β
S℘ (M) ⊆ ND−θβ

S℘ (M).

(iii) N
D−θβ
S℘ (M) ⊆ N

D−β
S℘ (M) ⊆ N

D−P
S℘ (M).

(iv) N
D−θβ
S℘ (M) ⊆ N

D−β
S℘ (M) ⊆ N

D−S
S℘ (M) ⊆ N

D−α
S℘ (M).

Proof. Proposition 3.1 renders the proof clear.

Corollary 4.7. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M ⊆ V. Then

(i) BD−θβ
S℘ (M) ⊆ BD−β

S℘ (M) ⊆ BD−P
S℘ (M).

(ii) BD−θβ
S℘ (M) ⊆ BD−β

S℘ (M) ⊆ BD−S
S℘ (M) ⊆ BD−α

S℘ (M).

(iii) AD−P
S℘ (M) ⩽ AD−β

S℘ (M) ⩽ AD−θβ
S℘ (M).

(iv) AD−α
S℘ (M) ⩽ AD−S

S℘ (M) ⩽ AD−β
S℘ (M) ⩽ AD−θβ

S℘ (M).

Corollary 4.8. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M ⊆ V. Then

(i) M is S℘-exact ⇒ M is D-αS℘-exact ⇒ M D-SS℘-exact ⇒ M D-βS℘-exact ⇒ M
D-θβS℘-exact.

(ii) M is D-PS℘-exact ⇒ M D-βS℘-exact ⇒ M D-θβS℘-exact.

Table 1 illustrates that, in general, the opposite of Corollaries 4.7, 4.8, as well as Propo-
sition 4.2, does not hold.

Remark 4.4. It is evident that various methods exist for approximating. Among these,
the most effective approach involves using D-θβS℘ for constructing set approximations.
This family reduces or eliminates boundary regions. D-θβS℘-accuracy shows to be more
precise compared to other families.

5. S℘-rough, S℘-nearly rough membership functions and generalization
via ideals

Various types of rough membership functions are defined to characterize the approx-
imation operators. Their core properties are studied and the relationships among them
are given. Additionally, it is proved that they extended the traditional rough membership
functions.
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5.1. S℘-rough membership functions

Definition 5.1. Let (V,Υ,Π℘) be a ℘-nbdS, t ∈ V and M ⊆ V.

(i) if t ∈ NS℘(M), then t is S℘-nearly surely (S℘-surely) belongs to M, denoted by
t ∈S℘M

(ii) if t ∈ NS℘(M), then t is S℘-nearly possibly (S℘-possibly) belongs to M, denoted by
t ∈S℘M

It is known as S℘-strong and S℘-weak membership relations.

Remark 5.1. The S℘-approximations 2.8 [43] are redefined for any M ⊆ V by using ∈S℘
and ∈S℘ as follows:

(i) NS℘(M) = {t ∈ V : t ∈S℘M}.

(ii) NS℘(M) = {t ∈ V : t ∈S℘M}.

Lemma 5.1. Let (V,Υ,Π℘) be a ℘-nbdS and M ⊆ V. Then

(i) if t ∈S℘M, then t ∈ M.

(ii) if t ∈ M, then t ∈S℘M.

Proof. Straightforward.

Remark 5.2. In Example 3.3

(i) if M = {l3}, then l3 ∈ M, but l3 ̸∈SR
M.

(ii) if M = {l2}, then l1 ∈SRA, but l1 ̸∈ M.

Definition 5.2. Let (V,Υ,Π℘) be a ℘-nbdS, M ⊆ V and t ∈ V. The S℘-rough membership

functions of M are symbolized by ω
S℘
M : V → [0, 1], with

ω
S℘
M (t) = {1 if 1∈ χ

S℘
M (t).

min(χ
S℘
M (t)) otherwise.

},

and χ
S℘
M (t) =

|∩S℘(t)∩M |
|∩S℘(t)| ,∩S℘(t) ̸= ∅.

Remark 5.3. The S℘-rough membership functions serve to establish the S℘-lower (upper)
approximations in the following manner:

(i) NS℘(M) = {t ∈ V : ω
S℘
M (t) = 1}.

(ii) NS℘(M) = {t ∈ V : ω
S℘
M (t) > 0}.

(iii) BS℘(M) = {t ∈ V : 0 < ω
S℘
M (t) < 1}.

Proposition 5.1. Let (V,Υ,Π℘) be a ℘-nbdS and M,N ⊆ V. Then,
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(i) if ω
S℘
M (t) = 1 ⇔ t∈S℘M.

(ii) if ω
S℘
M (t) = 0 ⇔ t ∈ V −NS℘(M).

(iii) if 0 < ω
S℘
M (t) < 1 ⇔ t ∈ BS℘(M).

(iv) if ω
S℘
M ′ (t) = 1− ω

S℘
M (t), ∀ t ∈ V.

(v) if ω
S℘
M∪N (t) ≥ max(ω

S℘
M (t), ω

S℘
N (t)), ∀ t ∈ V.

(vi) if ω
S℘
M∩N (t) ≤ min(ω

S℘
M (t), ω

S℘
N (t)), ∀ t ∈ V.

Proof. We prove (1) and handle the others in a similar manner. t∈S℘M ⇔ t ∈
NS℘(M). Since NS℘(M) is S℘-open contained in M , thus
|NS℘ (M)∩A|
|NS℘ (M)| =

|NS℘ (M)|
|NS℘ (M)| = 1. Then, 1 ∈ χ

S℘
M (t) so ω

S℘
M (t) = 1.

5.2. S℘-nearly rough membership functions

Definition 5.3. Let (V,Υ,Π℘) be a ℘-nbdS, t ∈ V and M ⊆ V.

(i) if t ∈ Nξ
S℘(M), then t is S℘-nearly surely (ξS℘-surely) belongs to M, denoted by

t ∈ξ
S℘M

(ii) if t ∈ N
ξ
S℘(M), then t is S℘-nearly possibly (ξS℘-possibly) belongs to M, denoted by

t ∈ξ
S℘M

It is known as S℘-nearly strong and S℘-nearly weak membership relations.

Remark 5.4. The S℘-nearly approximations are redefined for any M ⊆ V by using ∈ξ
S℘

and ∈ξ
S℘ as follows:

(i) Nξ
S℘(M) = {t ∈ V : t ∈ξ

S℘M}.

(ii) N
ξ
S℘(M) = {t ∈ V : t ∈ξ

S℘M}.

Lemma 5.2. Let (V,Υ,Π℘) be a ℘-nbdS and M ⊆ V. Then

(i) if t ∈ξ
S℘M, then t ∈ M.

(ii) if t ∈ M, then t ∈ξ
S℘M.

Proof. Straightforward.

Remark 5.5. In Example 3.1
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(i) if M = {l1}, then l1 ∈ M, but l1 ̸∈β
SR

M.

(ii) if M = {l2, l3, l4}, then l1 ∈β
SRM, but l1 ̸∈ M.

Definition 5.4. Let (V,Υ,Π℘) be a ℘-nbdS, M ⊆ V and t ∈ V. The S℘-rough nearly

membership functions of M are defined by ω
ξS℘
M : V → [0, 1], where

ω
ξS℘
M (t) = {1 if 1∈ χ

ξS℘
M (t).

min(χ
ξS℘
M (t)) otherwise.

}.

and χ
ξS℘
M (t) =

|ξS℘ (t)∩M |
|ξS℘ (t)|

, t ∈ ξS℘(t), ξS℘(t) ∈ ξS℘O(V ).

Remark 5.6. The S℘-rough nearly membership functions are employed to define the S℘-
nearly lower (upper) approximations as outlined below:

(i) Nξ
S℘(M) = {t ∈ V : ω

ξS℘
M (t) = 1}.

(ii) N
ξ
S℘(M) = {t ∈ V : ω

ξS℘
M (t) > 0}.

(iii) Bξ
S℘(M) = {t ∈ V : 0 < ω

ξS℘
M (t) < 1}.

Lemma 5.3. Let (V,Υ,Π℘) be a ℘-nbdS and M ⊆ V. Then,

(i) ω
S℘
M (t) = 1 ⇒ ω

ξS℘
M (t) = 1,∀ t ∈ V.

(ii) ω
S℘
M (t) = 0 ⇒ ω

ξS℘
M (t) = 0,∀ t ∈ V.

Proposition 5.2. Let (V,Υ,Π℘) be a ℘-nbdS and M,N ⊆ V. Then,

(i) if ω
ξS℘
M (t) = 1 ⇔ t ∈ ∈ξS℘

S℘ M.

(ii) if ω
ξS℘
M (t) = 0 ⇔ t ∈ V −N

ξ
S℘(M).

(iii) if 0 < ω
ξS℘
M (t) < 1 ⇔ x ∈ Bξ

S℘(M).

(iv) if ω
ξS℘
M ′ (t) = 1− ω

ξS℘
M (x),∀ t ∈ V.

(v) if ω
ξS℘
M∪N (t) ≥ max(ω

ξS℘
M (t), ω

ξS℘
N (t)),∀ t ∈ V.

(vi) if ω
ξS℘
M∩N (t) ≤ min(ω

ξS℘
M (t), ω

ξS℘
N (t)),∀ t ∈ V.

Proof. It resembles Proposition 5.1.
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5.3. S℘-nearly rough membership functions via ideals

Definition 5.5. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and t ∈ V .

(i) if t ∈ ND−ξ
S℘ (M), then t is S℘-nearly surely with respect to D ( D−ξS℘-surely) belongs

to M , denoted by t ∈D−ξ
S℘ M.

(ii) if t ∈ N
D−ξ
S℘ (M), then t is S℘-nearly possibly with respect to D (D − ξS℘-possibly)

belongs to M , denoted by t ∈D−ξ
S℘ M.

It is known as S℘-nearly strong and S℘-nearly weak membership relations with respect to
D respectively.

Remark 5.7. Based on Definition 5.5 the S℘-nearly approximations via ideal for any
M ⊆ V can be expressed as:

(i) ND−ξ
S℘ (M) = {t ∈ V : t ∈D−ξ

S℘ M}.

(ii) N
D−ξ
S℘ (M) = {t ∈ V : t ∈D−ξ

S℘ M}.

Lemma 5.4. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M ⊆ V. Then

(i) if t ∈D−ξ
S℘ M, then t ∈ M.

(ii) if t ∈ M, then t ∈D−ξ
S℘ M.

Proof. Straightforward.

Remark 5.8. In Example 3.1, if D = {∅, l2}, then

(i) l1 ∈ {l1}, but l1 ̸∈D−β
SR

M.

(ii) l1 ∈D−β
R M, but l1 ̸∈ {l2, l3, l4}.

Proposition 5.3. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M ⊆ V. Then

(i) if t ∈S℘M ⇒ t ∈ξ
S℘M ⇒ t ∈D−ξ

S℘ M.

(ii) if t ∈D−ξ
S℘ M ⇒ t ∈ξ

S℘M ⇒ t ∈S℘M.

Proof. We demonstrate (1) and address the others similarly. t ∈S℘M ⇒ t ∈
NS℘(M) ⇒ t ∈ Nξ

S℘(M) by Theorem 2.3 [43]. Hence, t ∈ξ
S℘M, so, t ∈ Nξ

S℘(M) ⇒
t ∈ ND−ξ

S℘ (M) by Theorem 4.1. Therefore, t ∈D−ξ
S℘ M.

Remark 5.9. In Example 3.1

(i) if M = {l1}, then l1 ∈D−β
SR M, but l1 ̸∈β

SR
M and l1 ̸∈R

M.

(ii) if M = {l2}, then l1 ∈RM, but l1 ̸∈
β
SRM and l1 ̸∈

D−β
SR M.
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The present membership relations is more accurate than the previous ones in [1, 22, 26]
as it illustrated in the following consequences.

Proposition 5.4. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity
relation, ℘ ∈ {R,L, I, U} and M ⊆ V. Then

(i) if t ∈℘M ⇒ t ∈S℘M ⇒ t ∈ξ
S℘M ⇒ t ∈D−ξ

S℘ M.

(ii) if t ∈D−ξ
S℘ M ⇒ t ∈ξ

S℘M ⇒ t ∈S℘M ⇒ t ∈℘M.

Proof.

(i) We only prove t ∈℘M ⇒ t ∈S℘M and the other cases directly by Proposition 5.3.
Let t ∈℘M ⇒ t ∈ N℘(M) ⇒ t ∈ NS℘(M) by Theorem 2.3. Therefore, t ∈S℘M.

(ii) Similar to (1).

Proposition 5.5. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity
relation, ℘ ∈ {R,L, I, U} and M ⊆ V. Then

(i) if t ∈D−ξ
S℘ M ⇒ t ∈D−ξ

℘ M.

(ii) if t ∈D−ξ
℘ M ⇒ t ∈D−ξ

S℘ M.

Proof.

(i) Let t ∈D−ξ
S℘ M ⇒ t ∈ ND−ξ

S℘ (M) ⇒ t ∈ ND−ξ
℘ (M) by Theorem 4.3. Therefore,

t ∈D−ξ
℘ M.

(ii) Similar to (1).

Definition 5.6. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,M ⊆ V and t ∈ V. The
D-S℘-nearly rough membership functions of a ℘-nbdS on V for a M are symbolized by

ω
D−ξS℘
M : V → [0, 1], where

ω
D−ξS℘
M (t) = {1 if 1∈χ

D−ξS℘
M (t).

min(χ
D−ξS℘
M (t)) otherwise.

}.

and χ
D−ξS℘
M (t) =

|D−ξS℘ (t)∩M |
|D−ξS℘ (t)|

, t ∈ D− ξS℘(t), D− ξS℘(t) ∈ D-ξS℘O(V ).

Remark 5.10. The D-S℘-nearly rough membership functions are utilized to present the
D-S℘-nearly lower (upper) approximations as:

(i) ND−ξ
S℘ (M) = {t ∈ V : ω

D−ξS℘
M (t) = 1}.

(ii) N
D−ξ
S℘ (M) = {t ∈ V : ω

D−ξS℘
M (t) > 0}.

(iii) BD−ξ
S℘ (M) = {t ∈ V : 0 < ω

D−ξS℘
M (t) < 1}.
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Proposition 5.6. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M,N ⊆ V. Then

(i) if ω
D−ξS℘
M (t) = 1 ⇔ t ∈ ∈D−ξS℘

S℘ M.

(ii) if ω
D−ξS℘
M (x) = 0 ⇔ t ∈ V −N

D−ξ
S℘ (M).

(iii) if 0 < ω
D−ξS℘
M (t) < 1 ⇔ t ∈ BD−ξ

S℘ (M).

(iv) if ω
D−ξS℘
M ′ (t) = 1− ω

D−ξS℘
M (t),∀ t ∈ V.

(v) if ω
D−ξS℘
M∪N (t) ≥ max(ω

D−ξS℘
M (t), ω

D−ξS℘
N (t)), ∀ t ∈ V.

(vi) if ω
D−ξS℘
M∩N (t) ≤ min(ω

D−ξS℘
M (t), ω

D−ξS℘
N (t)), ∀ t ∈ V.

Proof. It is similar to Proposition 5.1.

Lemma 5.5. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V and M ⊆ V. Then

(i) ω
S℘
M (t) = 1 ⇒ ω

ξS℘
M (t) = 1 ⇒ ω

D−ξS℘
M (t) = 1, ∀ t ∈ V.

(ii) ω
S℘
M (t) = 0 ⇒ ω

ξS℘
M (t) = 0 ⇒ ω

D−ξS℘
M (t) = 0,∀ t ∈ V.

Proof.

(i) ω
S℘
M (t) = 1 ⇒ t ∈ NS℘(M) ⇒ t ∈ Nξ

S℘(M) by Theorem 2.4 [43]. Therefore, ω
ξS℘
M (t) =

1. Let ω
ξS℘
M (x) = 1, then t ∈ Nξ

S℘(M) ⇒ t ∈ ND−ξ
S℘ (M) by Theorem 4.1. Hence,

ω
D−ξS℘
M (t) = 1,∀ t ∈ V.

(ii) ω
S℘
M (t) = 0 ⇒ t ∈ V − NS℘(M) ⇒ t ∈ V − N

ξ
S℘(M) by Theorem 2.4 [43]. Hence,

ω
ξS℘
M (t) = 0. Let ω

ξS℘
M (t) = 0, then t ∈ V −N

ξ
S℘(M) ⇒ t ∈ V −N

D−ξ
S℘ (M) by Theorem

4.1. Hence, ω
D−ξS℘
M (t) = 0,∀ t ∈ V.

Remark 5.11. The opposite of Lemma 5.5 is incorrect, as shown in Example 3.1.

The different types of membership functions defined in this manuscript are more precise
and general than the last ones in [1] as it is presented in the following consequences.

Lemma 5.6. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity relation,
℘ ∈ {R,L, I, U} and M ⊆ V. Then

(i) ω℘
M (t) = 1 ⇒ ω

S℘
M (t) = 1 ⇒ ω

ξS℘
M (t) = 1 ⇒ ω

D−ξS℘
M (t) = 1, ∀ t ∈ V.

(ii) ω℘
M (t) = 0 ⇒ ω

S℘
M (t) = 0 ⇒ ω

ξS℘
M (t) = 0 ⇒ ω

D−ξS℘
M (t) = 0, ∀ t ∈ V.

Proof.
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(i) ω℘
M (t) = 1 ⇒ t ∈ N℘(M) ⇒ t ∈ NS℘(M) by Theorem 2.3. Therefore, ω

S℘
M (t) = 1.

(ii) ω℘
M (t) = 0 ⇒ t ∈ V −N℘(M) ⇒ t ∈ V −NS℘(M) by Theorem 2.3. Hence, ω

S℘
M (t) =

0.
The other cases directly by Lemma 5.5.

Lemma 5.7. Let (V,Υ,Π℘) be a ℘-nbdS, D be an ideal on V,Υ be a similarity relation,
℘ ∈ {R,L, I, U} and M ⊆ V. Then

(i) ω
D−ξS℘
M (t) = 1 ⇒ ω

D−ξ℘
M (t) = 1, ∀ t ∈ V.

(ii) ω
D−ξS℘
M (t) = 0 ⇒ ω

D−ξ℘
M (t) = 0, ∀ t ∈ V.

Proof.

(i) ω
D−ξS℘
M (t) = 1 ⇒ t ∈ ND−ξ

S℘ (M) ⇒ t ∈ ND−ξ
℘ (M). by Theorem 4.3. Therefore,

ω
D−ξ℘
M (t) = 1.

(ii) ω
D−ξS℘
M (t) = 0 ⇒ t ∈ V −N

D−ξ
S℘ (M) ⇒ t ∈ V −N

D−ξ
℘ (M) by Theorem 4.3. Hence,

ω
D−ξ℘
M (t) = 0.

Example 3.2 confirms that the similarity relation in Propositions 5.4, 5.5 and Lemma
5.6 is not dispensable. Additionally, Example 3.3 illustrates that, in general, the opposite
of Propositions 5.4, 5.5 and Lemma 5.6 dose not hold and τS℘ , τ℘ are incomparable if
℘ ∈ {< R >,< L >,< I >,< U >}. So, Propositions 5.4, 5.5 and Lemma 5.6 apply only
for ℘ ∈ {R,L, I, U}.

6. Medical example: Chikungunya disease

This section primarily seeks to evaluate the suggested technique by comparing it with
the prior approach in [1, 2, 30, 43], using the Chikungunya disease information system.
Common symptoms include joint pain, fever, while joint swelling, headache, and rash
may also occur but vary among individuals. Until now, there is no specific treatment or
vaccine for chikungunya. However, some symptoms relief can be obtained through fluids,
rest, and over-the-counter pain relievers. Although most patients recover within a week,
the riskiness of this sickness is that joint pain can be intense and long-lasting, potentially
persisting for months. Chikungunya poses a significant medical challenge in many regions

In the following analysis assist the decision-makers in making a precise decision for the
specific subset of patients which are considered. Table 6 lists patients V = {l1, l2, l3, l4, l5, l6, l7}
in rows, and the details of symptoms (attributes)in columns: ⊺1 represents a fever, ⊺2 rep-
resents joint pains, ⊺3 represents joint swelling, and ⊺4 represents a headache, ⊺5 is rash,
where ⊺1,⊺2, ⊺3,⊺4 represented by two values: “⊤•” and “⊤◦” which respectively show
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whether each symptom is present or absent for the patients. While, ⊺5 represented by
three values: (F1), (F2) and (F3). The disease decision D is displayed in the seventh
column by two possible values “yes” or “no”.

V ⊺1 ⊺2 ⊺3 ⊺4 ⊺5 Chikungunya disease

l1 ⊤• ⊤◦ ⊤◦ ⊤◦ (F1) no
l2 ⊤• ⊤• ⊤◦ ⊤◦ (F3) yes
l3 ⊤◦ ⊤◦ ⊤• ⊤• (F1) no
l4 ⊤• ⊤• ⊤• ⊤◦ (F3) yes
l5 ⊤◦ ⊤◦ ⊤• ⊤• (F1) no
l6 ⊤◦ ⊤• ⊤◦ ⊤• (F2) no
l7 ⊤• ⊤◦ ⊤• ⊤• (F2) yes

Table 6: information system of Chikungunya disease

ϖ(li, lj) represents the similarity between two patients li, lj . It is computed in Table 7
by

ϖ(li, lj) =

∑n
k=1(⊺k(li) = ⊺k(lj))

n
(1)

where, n the number of symptoms.

l1 l2 l3 l4 l5 l6 l7
l1 1 0.6 0.4 0.4 0.4 0.2 0.4
l2 0.6 1 0 0.8 0 0.4 0.2
l3 0.4 0 1 0.2 1 0.4 0.6
l4 0.4 0.8 0.2 1 0.2 0.2 0.6
l5 0.4 0 1 0.2 1 0.4 0.6
l6 0.2 0.4 0.4 0.2 0.4 1 0.4
l7 0.4 0.2 0.6 0.4 0.6 0.4 1

Table 7: Similarities of the patients’ symptoms

The relation between patients are based on their shared symptoms and represented by
liΥlj ⇐⇒ ϖ(li, lj) ≥ 0.6. Relation is introduced by the system’s experts, therefore it may
be changed under their considerations. Hence, Υ = {(l1, l1), (l2, l2), (l3, l3), (l4, l4), (l5, l5), (l6, l6),
(l7, l7), (l1, l2), (l2, l1), (l2, l4), (l3, l7), (l4, l2), (l4, l7), (l5, l7), (l7, l3), (l7, l5)} and letD = {∅, {l7}}.

The uninfected patients with Chikungunya are represented by the set M = {l1, l3, l5, l6}
while the infected N = {l2, l4, l7}. Their approximation, boundary regions and accuracy
by the prior manner in [1, 43] and the present manner are calculated as follows.

(i) The uninfected patients M = {l1, l3, l5, l6}

(i) The prior manner in 2.2 [1, 2, 30]:
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• NR(M) = {l6};
• NR(M) = V ;

• BR(M) = V \ {l6};
• AR(M) = 1

7 .

(ii) Yildirim’s manner in Definition 2.8 [43]:

• NSR(M) = {l6};
• NSR(M) = {l1, l3, l5, l6};
• BSR(M) = {l1, l3, l5};
• ASR(M) = 1

4 .

(iii) Yildirim’s manner in Definition 2.11 [43]:

• Nβ
SR(M) = {l6};

• N
β
SR(M) = {l1, l3, l5, l6};

• Bβ
SR(M) = {l1, l3, l5};

• Aβ
SR(M) = 1

4 .

(iv) The present manner in Definition 4.1

• ND−β
SR (M) = {l1, l3, l5, l6};

• N
D−β
SR (M) = {l1, l3, l5, l6};

• BD−β
SR (M) = ∅;

• AD−β
SR (M) = 1.

(ii) The infection patients N = {l2, l4, l7}

(i) The prior manner 2.2 [1, 2, 30]:

• NR(M) = ∅;
• NR(M) = V ;

• BR(M) = V ;

• AR(M) = 0.

(ii) Yildirim’s manner in Definition 2.8 [43]:

• NSR(N) = {l2, l4, l7};
• NSR(N) = {l1, l2, l3, l4, l5, l7};
• BSR(N) = {l1, l3, l5};
• ASR(N) = 1

2 .

(iii) Yildirim’s manner in Definition 2.11 [43]:

• Nβ
SR(N) = {l2, l4, l7};

• N
β
SR(N) = {l1, l2, l4, l7};
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• Bβ
SR(N) = {l1};

• Aβ
SR(N) = 3

4 .

(iv) The present manner in Definition 4.1

• ND−β
SR (N) = {l2, l4, l7};

• N
D−β
SR (N) = {l2, l4, l7};

• BD−β
SR (N) = ∅;

• AD−β
SR (N) = 1.

Based on this calculations, the boundary regions for the uninfected and infected sets
according to the manners in [1, 2, 30, 43] are V, {l1, l2, l3, l4, l5, l7}, {l1, l2, l4, l7}, respectively.
This indicates that, in this case, it is difficult to determine whether individuals are infected
or not. Therefore, the vagueness is increased and accordingly the accuracy of made-
decision loses. The boundary relied on the present manner is ∅. It is indicated to a
successful reduction in vagueness for the two sets which achieved an enhanced accuracy.

7. Conclusions

The primary goal of this theory is to minimize the boundary by reducing upper and
increasing lower, thereby maximizing the accuracy measure. Rough set theory is a vast
domain with numerous innovations with various branches. One of these branches is the
derivation of rough sets from topology, highlighting a strong homogeneity between rough
set theory and topology. Topological concepts are widely recognized as essential for un-
derstanding rough set theory, with ideals being particularly important. Ideals have sig-
nificantly contributed to the generalization of rough sets. Specifically, ideals had proven
effective in enhancing lower approximations and reducing upper approximations, thereby
narrowing the boundary region and improving accuracy. This process effectively addressed
vagueness which is a crucial objective in rough set theory.

In the present results, new topological concepts utilizing ideals were explored. More-
over, the characteristics of the proposed concepts were analyzed, and their features were
discussed. Relationships among different types of these notions were conducted. After
that, new operators were presented relying on ideals. Ideal increased the data which de-
rived from the information systems by using rough set. Comparisons between the current
and previous versions were provided, demonstrating that the current approach was both
more accurate and more general. As, the current approach helped in reducing vagueness
and, as a result, improved accuracy. Additionally, three types of rough membership func-
tions were introduced. Relationships among them were also highlighted. Furthermore, an
example from the medical field was given to prove the utility of the present concepts in a
practical context. The proposed manners through this medical example had proven to be
effective and robust in reducing the boundary and enhancing the accuracy.
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A promising direction for future work will focus on investigating new approximations
using distinct and innovative neighborhoods via two ideals and expanding the current
rough set paradigms to rough multiset with multiset ideals.
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