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Abstract. In this work, we establish key results on the existence theory for a category of initial
value problems (IVPs) involving hybrid fractional integro-differential equations (HFIDEs) with a
p-Laplacian operator, utilizing the modified Mittag-Leffler kernel. By employing Krasnoselskii and
Banach fixed point theorems (FPTs), we determine the conditions required for the existence of
solutions. Additionally, we examine the Hyers-Ulam (H-U) stability of the problem. Lastly, we
present an example to confirm our theoretical results.

2020 Mathematics Subject Classifications: 26A33, 34A08, 34D20

Key Words and Phrases: Fractional-order, mABC fractional derivative, Existence and
uniqueness, Stability, FPTs

1. Introduction

This paper addresses the existence of solutions for a hybrid class of mABC-HFIDEs
with a p-Laplacian operator given by the abstract form:

CDβ

Ψp

mABCDρ
0+

 w(7)− h(7, w(7))

Q(7) +
1

Γ(γ)

∫ 7

0

(7 − σ)γ−1f(σ,w(σ))dσ



 = g(7, w(7)),

w(0) = h(0, w(0)) +Q(0)ABIρ0+Θ,

(1)
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where ρ, β, γ ∈ (0, 1) and mABCDρ
0+ represents the mABC derivative, ABIρ0+ is the

Atangana-Baleanu fractional integral, CDβ signifies the Caputo fractional derivative,
Ψp, p > 1 is a p-Laplacian operator, Θ ∈ R, Q : Ω → R, where Ω = [0, Z],
f, g, h ∈ C(Ω× R,R) with Q(7) + Iγ0+f(7, w(7)) ̸= 0.

Fractional differential equations extend traditional differential equations by
incorporating derivatives of non-integer orders. This extension allows for the modeling
of processes that involve complex dynamics, such as systems with memory and hereditary
characteristics. Unlike standard derivatives, which are local operators, fractional
derivatives consider the entire history of the function, making them ideal for modeling
phenomena where past states influence the present and future behavior. This non-local
nature of fractional derivatives has made them increasingly popular in various scientific
and engineering disciplines, where they offer a more nuanced understanding of systems
exhibiting non-traditional dynamics [6, 9, 15, 22, 26].

The use of fractional differential equations has become widespread across different
fields due to their ability to model processes more accurately than traditional differential
equations. In physics, they are used to describe anomalous diffusion processes, where the
movement of particles does not follow the standard pattern seen in classical diffusion [24].
In biology, fractional differential equations help model complex biological processes, such
as the diffusion of substances across cellular membranes and the dynamics of cell potentials
[19–21]. In engineering, these equations are crucial for modeling materials with viscoelastic
properties, where the relationship between stress and strain is not instantaneous but
depends on the material’s history [27]. In finance, fractional models are employed to
capture memory effects in stock prices and to model the dynamics of financial instruments
over time. These applications highlight the versatility and effectiveness of fractional
differential equations in providing deeper insights into various complex systems.

The realm of fractional calculus has expanded remarkably with the introduction of
various fractional derivative definitions, each bringing its own advantages and specific
uses. Among the pioneering contributions is the Caputo derivative, introduced by Michele
Caputo [7] in 1967, which has gained widespread recognition for its practical utility.
Despite its widespread adoption, the Caputo derivative’s reliance on a single kernel
presents certain constraints, particularly when modeling diverse phenomena. To overcome
these limitations, Caputo and Fabrizio [8] proposed a new approach by introducing a
non-singular derivative based on the exponential function. This innovation effectively
addresses the issue of singularity, although it encounters difficulties when applied to
systems that do not naturally follow exponential patterns. Seeking to further expand
the modeling potential of fractional derivatives, Atangana and Baleanu [4] introduced
a derivative based on the extended Mittag-Leffler function. This derivative allows for
a more flexible description of non-local and non-singular kernels, thereby extending the
range of phenomena that can be accurately represented. Building on these significant
developments, Refai and Baleanu recently introduced the mABC-derivative, a novel
operator that merges the strengths of both the Caputo and Atangana-Baleanu derivatives
[2]. This new tool offers a robust solution for tackling complex problems that were
previously challenging to address with existing methodologies, marking a substantial
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advancement in the field of fractional calculus.
Initial value problems (IVPs) play a pivotal role in the mathematical modeling of

real-world systems, where the state of a system at a given initial time dictates its future
behavior. In the context of p-Laplacian equations, IVPs involve determining the evolution
of a system governed by a nonlinear differential operator. The analysis of IVPs for p-
Laplacian equations is particularly challenging due to the nonlinearity of the operator,
which can lead to complex dynamics, including the existence of multiple solutions,
bifurcations, and sensitivity to initial conditions. Understanding these aspects is crucial
for accurately predicting the behavior of the modeled systems, whether they pertain to
physical processes, biological systems, or engineering applications. In recent times, a novel
category known as hybrid boundary value problems has gained prominence, integrating
aspects from both linear and nonlinear theories. This hybrid approach facilitates a
more thorough comprehension of intricate systems, where conventional methods might
be inadequate. A notable contribution to this field is the research conducted by Dhage
[10, 13], which highlights the significance of hybrid differential equations (HDEs) in
the analysis of dynamical systems. Dhage meticulously categorized HDEs based on
different types of perturbations, emphasizing their importance in refining perturbation
techniques within the expansive domain of differential and integral equations. His work
underscores the potential of HDEs to provide deeper insights and more robust solutions to
complex mathematical problems. Following Dhage’s pioneering contributions, numerous
researchers in mathematics and related disciplines have focused on exploring various
hybrid differential equations (HDEs). A key discovery from this extensive research is that
fractional-order hybrid differential equations (FHDEs) offer a more detailed representation
of hereditary and memory effects, particularly in fields such as biology, chemistry, and
physics. This enhanced capability allows FHDEs to outperform traditional integer-order
HDEs, capturing the interest of many scholars and prompting deeper investigations into
their properties. Building on the foundational work of Dhage et al. [11, 12], who
explored the conditions for the existence and uniqueness of solutions in FHDEs, Baleanu
et al. [5] integrated Caputo fractional derivatives within a hybrid framework. Their
study of a thermostat model demonstrated the effectiveness of this approach in revealing
complex dynamical behaviors. The exploration of FHDEs has since led to a wealth
of contributions, with researchers examining various derivatives such as the Hadamard
derivative [1], the Riemann derivative [32], the Hilfer derivative [30], and the ABC
derivative [3, 18, 20, 28, 29, 31]. Additionally, innovative formulations like the mABC
derivative have been proposed [19, 21], further broadening the scope of fractional calculus
in the context of HDEs. Despite the growing interest in fractional calculus, the application
of the mABC fractional derivative in FHDEs involving the p-Laplacian operator with IVPs
remains largely unexplored in the current literature. This intriguing gap presents a unique
opportunity for further investigation and serves as the primary motivation for this work.

This work makes the following key contributions to the field.

(i) This research represents the first known attempt to address mABC-HFIDEs in
conjunction with the p-Laplacian operator for the system described in (1). It
thoroughly examines the existence, uniqueness, and stability of the proposed system.
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(ii) By utilizing the properties of the mABC derivative, we have derived the solution for
the system outlined in (1), as detailed in Lemma 2.

(iv) Expanding upon the seminal contributions of previous research [17, 20, 21, 31], this
study offers novel insights and significantly extends the applicability of prior findings.

This paper is organized in a carefully structured way. Section 2 establishes the
necessary foundation by providing the reader with essential background information.
This includes the definition of the mABC fractional derivative, relevant results, and the
fundamental concept of fixed-point theory that underpins our analysis. Section 3 addresses
the core issues of existence and uniqueness of solutions for system (1). We effectively
utilize both the Banach and Krasnoselskii FPTs to accomplish these objectives. To deepen
our understanding, Section 4 thoroughly examines the stability properties of the system,
highlighting its behavior in response to perturbations. Finally, Section 5 offers a numerical
example to demonstrate the application and importance of our main findings.

2. Preliminaries and Hypotheses

In this section, we provide a comprehensive overview of the Caputo-type Mittag-Leffler
fractional derivative (CMLFD) and integral operator and several fundamental properties.

Definition 1. [4] Let 0 < ρ < 1 and y ∈ H1(0, Z), where Z > 0, the CMLFD of order ρ
of y is defined as(ABCDρ

0+y
)
(7) =

B(ρ)

1− ρ

∫ 7

0
Eρ (−µρ(7 − σ)ρ) y′(σ)dσ, 0 < 7 < Z (2)

where µρ =
ρ

1− ρ
,B(ρ) = 1 − ρ +

ρ

Γ(ρ)
is a normalization function satisfying B(0) =

B(1) = 1. Let Eρ denote the ML function, defined by

Eρ(z) =
∞∑
k=0

zk

Γ(ρk + 1)
, ρ > 0, z ∈ C

H1(0, Z) =
{
v ∈ L2(0, Z) | v′ ∈ L2(0, Z)

}
.

Additionally, Lm denotes the space of functions for which the m-th power of their
absolute value is Lebesgue integrable.

Definition 2. [4] Let 0 < ρ < 1 and y ∈ L1(0, Z), where Z > 0, the fractional integral
associated with the above CMLFD of order ρ of y is described as:(ABIρ0+y

)
(7) =

1− ρ

B(ρ)
y(7) +

ρ

B(ρ)

(
RLIρ0+y

)
(7), 0 < 7 < Z (3)

where RLIρ0+ denotes the Riemann-Liouville fractional integral operator, given by:

RLIρ0+y(7) =
1

Γ(ρ)

∫ 7

0
(7 − σ)ρ−1y(σ)dσ, 7 > 0. (4)
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Remark 1. In (2), the kernel Eρ (−µρ(7 − σ)ρ) is non-singular. Since

Eρ (−µρ(7 − σ)ρ) = Eρ

(
− ρ

1− ρ
(7 − σ)ρ

)
.

As 7 approaches σ, the term (7 − σ)ρ approaches 0. Thus, we have

Eρ (−µρ(7 − σ)ρ) = Eρ(0) = 1.

From this, we observe that
(ABCDρ

0+y
)
(0) = 0, if y ∈ H1(0, Z).

The aforementioned operators serve as fundamental tools in establishing various
theoretical underpinnings. The efficacy of these operators in practical applications is
significantly influenced by the underlying function spaces, as elucidated by Al-Refai et al.
in [2]. For instance, we fix y(7) ∈ H1(0, Z) then the system

(ABCDρ
0+y
)
(7) − ωy(7) =

0, ω ∈ R, has only the trivial solution y(7) = 0. However, in this context, the space is
restrictive for the Caputo derivative. If we fix the space χ(y) = {y : y′ ∈ L1[0, 1]}, then
the following system

(ABCDρ
0+y
)
(7) =

{
ωy(7), 7 ∈ (0, Z);

y0, 7 = 0

with 0 < ρ < 1, we have the solution

y(7) = y0Eρ,1(−ω7ρ),

where

Eρ,1(z) =
∞∑
k=0

zk

Γ(ρk + 1)
.

This demonstrates the significant impact of space. To address this challenge, Al-Refai
et al. [2] published a research work in which a larger space is selected to eliminate the
need for additional conditions. Following [2], we presents a mABC fractional derivative
operator, which is applicable in a broader functional space to address the initialization
problem effectively.

Definition 3. [2, 25] Let y ∈ L1(0, Z), Z > 0 and ρ ∈ (0, 1), the mABC derivative is
described by (

mABCDρ
0+y
)
(7) =

B(ρ)

1− ρ
[y(7)− Eρ (−µρ7ρ) y(0)

−µρ

∫ 7

0
(7 − σ)ρ−1Eρ,ρ (−µρ(7 − σ)ρ) y(σ)dσ

]
, 0 < 7 < Z

(5)

where µρ =
ρ

1− ρ
, the normalized function B(ρ) satisfies the property B(0) = B(1) = 1

and Eρ,ρ is the two-parameters M-L function.
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We see that Definitions 1 and 3 are the same in the space H1(0, Z) ⊆ L1(0, Z).
However, if y ∈ L1(0, Z), it is not guaranteed that

(
mABCDρ

0+y
)
(0) = 0. To support

this result, we have the following example:

Example 1. Consider

u(7) =

{
7− 3

4 , 7 ̸= 0

B, 7 = 0

where B ∈ R and u ∈ L1(0, Z). For B(ρ) = 1 − ρ +
ρ

Γ(ρ)
and µρ =

ρ

1− ρ
, the modified

Atangana-Baleanu derivative in Caputo sense is:

(
mABCDρ

0+u
)
(7) =

B(ρ)

1− ρ

[
u(7)− Eρ (−µρ7ρ)u(0)

− µρ

∫ 7

0
(7 − σ)ρ−1Eρ,ρ (−µρ(7 − σ)ρ)u(σ) dσ

]
.

If ρ =
3

4
, then above expression becomes(

mABCD
3
4
0+u

)
(7) = 3.25

[
u(7)− E 3

4

(
−37

3
4

)
u(0)

− 3

∫ 7

0
(7 − σ)−

1
4E 3

4
, 3
4

(
−3(7 − σ)

3
4

)
u(σ) dσ

]
. (6)

For 7 ̸= 0:

u(7) = 7− 3
4 .

For 7 = 0:
u(0) = B.

Since ∫ 7

0
(7 − σ)−

1
4E 3

4
, 3
4

(
−3(7 − σ)

3
4

)
σ− 3

4dσ = Γ

(
1

4

)
E 3

4

(
−37

3
4

)
using the fact that∫ 7

0
(7 − σ)ρ−1Eρ,ρ (−µρ(7 − σ)ρ)σ−ρdσ = Γ(1− ρ)Eρ (−µρ7ρ) .

Thus (6) becomes(
mABCD

3
4
0+u

)
(7) = 3.25

[
7− 3

4 − E 3
4

(
−37

3
4

)
B − 3Γ

(
1

4

)
E 3

4

(
−37

3
4

)]
.

Consequently

mABCD
3
4
0+u(0) = −9.75Γ

(
1

4

)
̸= 0.
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Remark 2. In the preceding illustration, it is observed that the fractional derivative
mABCD

3
4
0+u(0) ̸= 0 at the point 7 = 0.

Finally, we recall the well-known related to Caputo fractional derivative and the
properties of the p-Laplacian operator.

Definition 4. [6, 26] For any ρ > 0 and u ∈ C(0, T ) ∩ L(0, Z), we have

Iρ0+D
ρ
0+u(7) = u(7) + c0 + c17 + . . .+ cn−17n−1,

fore some ci ∈ R, i = 1, 2, . . . , n − 1. where n = [ρ] + 1. In particular, when ρ ∈ (0, 1),
Iρ0+D

ρ
0+u(7) = u(7) + c0.

Definition 5. [23] The p-Laplacian operator is given by

Ψp(ū) = |ū|p−2ū = ūp−1, ū ≥ 0, p > 1, (7)

at which Ψ−1
p = Ψq where

1

p
+

1

q
= 1.

Lemma 1. [23] Assume that Ψp(ū), p ≥ 2, be p-Laplacian operator and |ū|, |v̄| ≤ M, then

|Ψp(ū)−Ψp(v̄)| ≤ (p− 1)Mp−2|ū− v̄|. (8)

Definition 6. A function w ∈ AC(Ω,R) is called a solution of the system (1) if function
g ∈ L1(Ω,R), and w fulfills (1).

Lemma 2. Let 0 < ρ < 1 and g ∈ L1(0, Z). Then, the solution w ∈ AC(Ω,R) of the
system (1) iff it is a solution to the subsequent integral equation:

w(7) =

(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)
(×)

[
ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

]
+ h(7, w(7)).

(9)

Proof. Since

CDβ

(
Ψp

(
mABCDρ

0+

(
w(7)− h(7, w(7))

Q(7) + Iγ0+f(7, w(7))

)))
= g(7, w(7)).

Taking Iβ0+ on both sides of the above equation, we have

Ψp

(
mABCDρ

0+

(
w(7)− h(7, w(7))

Q(7) + Iγ0+f(7, w(7))

))
= Iβ0+g(7, w(7)) + c0,
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for some c0 ∈ R. At 7 = 0, we have

Ψp

(
mABCDρ

0+

(
w(0)− h(0, w(0))

Q(0)

))
= c0.

That is

Ψp

(
mABCDρ

0+

(
w(7)− h(7, w(7))

Q(7) + Iγ0+f(7, w(7))

))
−Ψp

(
mABCDρ

0+

(
w(0)− h(0, w(0))

Q(0)

))
= Iβ0+g(7, w(7)).

By the properties of p-Laplacian operator, we have

mABCDρ
0+

(
w(7)− h(7, w(7))

Q(7) + Iγ0+f(7, w(7))

)
−mABC Dρ

0+

(
w(0)− h(0, w(0))

Q(0)

)
= Ψq

(
Iβ0+g(7, w(7))

)
.

Taking ABIρ0+ on both sides of the above equation, we have

w(7)− h(7, w(7))

Q(7) + Iγ0+f(7, w(7))
− w(0)− h(0, w(0))

Q(0)
= ABIρ0+

(
Ψq

(
Iβ0+g(7, w(7))

))
by using the fact that

(ABIρ0+
mABCDρ

0+w
)
(7) = w(7)− w(0).

Thus

w(7) =
(
Q(7) + Iγ0+f(7, w(7))

) (ABIρ0+(Θ) + ABIρ0+

(
Ψq

(
Iβ0+g(7, w(7))

)))
+ h(7, w(7))

or equivalently

w(7) =

(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)
(×)

[
ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

]
+ h(7, w(7)).

(10)

Conversely, we have

w(7)− h(7, w(7))

Q(7) + Iγ0+f(7, w(7))
= ABIρ0+(Θ) + ABIρ0+

(
Ψq

(
Iβ0+(g(7, w(7)))

))
.

Taking mABCDρ
0+ derivative on both sides of the above equation, we have

mABCDρ
0+

(
w(7)− h(7, w(7))

Q(7) + Iγ0+f(7, w(7))

)
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=mABC Dρ
0+

(
ABIρ0+(Θ) + ABIρ0+

(
Ψq

(
Iβ0+g(7, w(7))

)))
= Θ+

(
Ψq

(
Iβ0+g(7, w(7))

))
by utilizing the fact that

(
mABCDρ

0+

(ABIρ0+w
))

(7) = w(7). Taking p-Laplacian operator
on both sides, we have

Ψp

(
mABCDρ

0+

(
w(7)− h(7, w(7))

Q(7) + Iγ0+f(7, w(7))

))
= Ψp(Θ) + Iβ0+g(7, w(7)).

Taking CDβ on both sides, we get

CDβ

(
Ψp

(
mABCDρ

0+

(
w(7)− h(7, w(7))

Q(7) + Iγ0+f(7, w(7))

)))
= g(7, w(7))

by utilizing the fact that CDβIβ0+w(7) = w(7) and further w(0) = h(0, w(0))+Q(0)ABIρ0+Θ.

Describe the operator Φ : AC(Ω,R) → AC(Ω,R) by

(Φw)(7)

=

(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)
(×)

[
ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

]
+ h(7, w(7)).

(11)

According to equation (11), each fixed point of the operator Φ is associated with the
desired solution of the system (1).

Note 2.1. For our convenience, we split the operator (11) as:

(Φw)(7) = (Aw)(7) + (Bw)(7), 7 ∈ Ω,

where

(Aw)(7)

=

(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)
(×)

[
ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

]
,

(12)
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and

(Bw)(7) = h(7, w(7)), 7 ∈ Ω. (13)

Now

|(Aw)(7)− (Aw)(7)|

=

∣∣∣∣∣
(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)

(×)

[
ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

]

−
(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)
(×)

[
ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

]∣∣∣∣∣
We denote

Aw =

(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)
Bw = ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)
+

ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ;

Aw =

(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)
Bw = ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)
+

ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ.

The right side of the above expression can be written as |AwBw − AwBw|. Using the
property of absolute values for products, we can express this as:

|AwBw −AwBw| = |AwBw −AwBw +AwBw −AwBw|
≤ |Aw(Bw −Bw) +Bw(Aw −Aw)|



M. M. Arjunan / Eur. J. Pure Appl. Math, 17 (4) (2024), 4071-4092 4081

≤ |Aw||Bw −Bw|+ |Bw||Aw −Aw|. (14)

Now

|Bw −Bw| ≤

∣∣∣∣∣ABIρ0+(Θ) +
1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)
+

ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

− ABIρ0+(Θ)− 1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)
− ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

∣∣∣∣∣
≤ 1− ρ

B(ρ)

{∣∣∣∣∣Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)

−Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

) ∣∣∣∣∣
}

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

∣∣∣∣∣Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

)

−Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

) ∣∣∣∣∣dσ, (15)

and

|Aw −Aw| ≤

∣∣∣∣∣
(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)

−
(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

) ∣∣∣∣∣
≤
∣∣∣∣ 1

Γ(γ)

∫ 7

0
(7 − σ)γ−1[f(σ,w(σ))− f(s, w(s))]dσ

∣∣∣∣ . (16)

We will now outline the following assumptions:

(A1) For positive constants Lf , Lg, Lh > 0, it holds that for any elements w,w1, w, w1 ∈
AC(Ω)

|f(7, w(7))− f(7, w(7))| ≤ Lf |w(7)− w(7)|,
|g(7, w(7))− g(7, w(7))| ≤ Lg|w(7)− w(7)|,

and

|h(7, w(7))− h(7, w(7))| ≤ Lh|w(7)− w(7)|.



M. M. Arjunan / Eur. J. Pure Appl. Math, 17 (4) (2024), 4071-4092 4082

(A2) There exist functions F,G ∈ L1(Ω,R+) such that

|f(7, w(7))| ≤ F (7) and |g(7, w(7))| ≤ G(7), 7 ∈ Ω.

(A3) For any constant LQ > 0, it follows that

|Q(72)−Q(71)| ≤ LQ|72 − 71|, 71, 72 ∈ Ω.

3. Existence Results

This section initiates a thorough analysis aimed at proving the existence of solutions for
the system (1). To accomplish this, we effectively utilize two fundamental methodologies:
the Banach contraction principle and Krasnoselskii FPTs [14, 16].

Theorem 1. Given the assumptions (A1) − (A3), the system (1) possesses a unique
solution when

∆ =

[(
LQZ + |Q(0)|+ Zγ∥F∥L1

Γ(γ + 1)

)(
(q − 1)Mq−2Zβ

B(ρ)Γ(β + 1)

{
1− ρ+

Zρ

Γ(ρ)

}
Lg

)

+

(
ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

})(
LfZ

γ

Γ(γ + 1)

)
+ Lh

]
< 1.

(17)

Proof. Let w,w ∈ AC(Ω). Then from Note 2.1, we have

∥Φw − Φw∥ = max
7∈Ω

|((A+B)w)(7)− ((A+B)w)(7)|

≤ max
7∈Ω

|(Aw)(7)− (Aw)(7)|+max
7∈Ω

|(Bw)(7)− (Bw)(7)|. (18)

From (14)-(16), we have

∥Aw −Aw∥ ≤ max
7∈Ω

{|Aw||Bw −Bw|+ |Bw||Aw −Aw|} . (19)

We can now evaluate the expression mentioned earlier in the following manner:

max
7∈Ω

|Aw| = max
7∈Ω

∣∣∣∣Q(7) +
1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

∣∣∣∣
≤ max

7∈Ω
|Q(7)−Q(0)|+ |Q(0)|+ 1

Γ(γ)

∫ 7

0
(7 − σ)γ−1max

7∈Ω
|f(σ,w(σ))|dσ

≤ LQZ + |Q(0)|+ 1

Γ(γ)

∫ 7

0
(7 − σ)γ−1max

7∈Ω
F (σ)dσ

≤ LQZ + |Q(0)|+ Zγ∥F∥L1

Γ(γ + 1)
;
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max
7∈Ω

|Bw −Bw| ≤
(q − 1)Mq−2Zβ

B(ρ)Γ(β + 1)

{
1− ρ+

Zρ

Γ(ρ)

}
Lg∥w − w∥;

since

1− ρ

B(ρ)

{
max
7∈Ω

∣∣∣∣∣Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)

−Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

) ∣∣∣∣∣
}

≤ 1− ρ

B(ρ)
(q − 1)Mq−2

∣∣∣∣∣ 1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

− 1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

∣∣∣∣∣
≤ 1− ρ

B(ρ)
(q − 1)Mq−2 1

Γ(β)

∫ 7

0
(7 − σ)β−1|g(σ,w(σ))− g(σ,w(σ))|dσ

≤ 1− ρ

B(ρ)

(q − 1)Mq−2Zβ

Γ(β + 1)
Lg∥w − w∥,

and

max
7∈Ω

∣∣∣∣∣ ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

− ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

∣∣∣∣∣
≤ ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1max

7∈Ω

∣∣∣∣∣Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

)

−Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

) ∣∣∣∣∣dσ
≤ (q − 1)Mq−2Zβ+ρ

Γ(β + 1)B(ρ)Γ(ρ)
Lg∥w − w∥.

max
7∈Ω

|Bw| = max
7∈Ω

∣∣∣∣∣ABIρ0+(Θ) +
1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

∣∣∣∣∣.
Since from (7), we have ∣∣∣∣Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)∣∣∣∣
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≤ Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1G(s)dσ

)
≤ Ψq

(
Zβ∥G∥L1

Γ(β + 1)

) ∣∣ ∵ Ψq(ū) = ūq−1

=

(
Zβ∥G∥L1

Γ(β + 1)

)q−1

and ∣∣∣∣ ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

∣∣∣∣
≤
(
Zβ∥G∥L1

Γ(β + 1)

)q−1
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1dσ

≤
(
Zβ∥G∥L1

Γ(β + 1)

)q−1

· Zρ

B(ρ)Γ(ρ)
.

Thus, we have

max
7∈Ω

|Bw| ≤ ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

}
.

Finally

max
7∈Ω

|Aw −Aw| = max
7∈Ω

∣∣∣∣∣
(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)

−
(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

) ∣∣∣∣∣
≤ 1

Γ(γ)

∫ 7

0
(7 − σ)γ−1max

7∈Ω
|f(σ,w(σ))− f(s, w(s))|dσ

≤
LfZ

γ

Γ(γ + 1)
∥w − w∥.

Then (19) becomes

∥Aw −Aw∥

≤

[(
LQZ + |Q(0)|+ Zγ∥F∥L1

Γ(γ + 1)

)(
(q − 1)Mq−2Zβ

B(ρ)Γ(β + 1)

{
1− ρ+

Zρ

Γ(ρ)

}
Lg

)

+

(
ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

})(
LfZ

γ

Γ(γ + 1)

)]
∥w − w∥.

Consequently (18) becomes

∥Φw − Φw∥
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≤

[(
LQZ + |Q(0)|+ Zγ∥F∥L1

Γ(γ + 1)

)(
(q − 1)Mq−2Zβ

B(ρ)Γ(β + 1)

{
1− ρ+

Zρ

Γ(ρ)

}
Lg

)

+

(
ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

})(
LfZ

γ

Γ(γ + 1)

)
+ Lh

]
∥w − w∥

≤ ∆∥w − w∥.

From equation (17), we have the condition ∆ < 1, which guarantees that the operator
Φ is a contraction. By applying Banach’s FPT, it follows that the hybrid system ofmABC-
HFIDEs described in (1) possesses a unique solution, which corresponds to the fixed points
of the operator Φ.

Subsequently, utilizing Krasnoselskii FPT [14, 16], we establish the existence of
solutions for the system (1).

Theorem 2. Under the conditions set by hypotheses (A1)−(A3), the mABC-HFIDEs (1)
is guaranteed to have at least one solution if

Lh < 1. (20)

Proof. Fix B = AC(Ω,R) and define a subset S of B by

S = {w ∈ B : ∥w∥ ≤ Λ},

where

Λ =

(
LQZ + |Q(0)|+ Zγ∥F∥L1

Γ(γ + 1)

)(
ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

})
+ Lh∥w∥+H0

with H0 = max
7∈Ω

|h(7, 0)|. It is evident that S is a closed, convex, and bounded subset of

the Banach space B.
We will now examine two operators A and B that map from S to B, which are defined

as specified in equations (12) and (13), respectively.
At this point, the expression in (9) can be rewritten as the operator equation

w(7) = (Aw)(7) + (Bw)(7), 7 ∈ Ω.

Step 1: Let w,w ∈ S. Then from (13) and (A1), we have

∥Bw −Bw∥ = max
7∈Ω

|h(7, w(7))− h(7, w(7))|

≤ Lh∥w − w∥.

Therefore, according to (20), the operator B acts as a contraction on S with a constant
Lh < 1.
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Step 2: We will demonstrate that A is a compact operator mapping from S to B. It
suffices to show that A(S) forms a uniformly bounded and equi-continuous subset within
B. First, consider an arbitrary element w ∈ S. Then, from (12) and (A2), we have

∥Aw∥ ≤ max
7∈Ω

(
|Q(7)|+ 1

Γ(γ)

∫ 7

0

(7 − σ)γ−1|f(σ,w(σ))|dσ
)

(×)

[
ABIρ0+ |Θ|+ 1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0

(7 − σ)β−1|g(σ,w(σ))|dσ
)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0

(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0

(σ − τ)β−1|g(τ, w(τ))|dτ
))

dσ

]

≤
(
LQZ + |Q(0)|+ Zγ∥F∥L1

Γ(γ + 1)

)(
ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

})
.

This indicates that A(S) is uniformly bounded within B. Conversely, let 71, 72 ∈ Ω be
chosen arbitrarily such that 71 < 72. Then, for any w ∈ S, we obtain

|(Aw)(72)− (Aw)(71)|

≤
(
|Q(72)|+

Zγ∥F∥L1

Γ(γ + 1)

)(
(q − 1)Mq−2Zβ

B(ρ)Γ(β + 1)

{
1− ρ+

Zρ

Γ(ρ)

} ∣∣∣∣∫ 72

71

G(σ)dσ

∣∣∣∣)
+

(
ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

})(
LQ|72 − 71|

+
Zγ

Γ(γ + 1)

∣∣∣∣∫ 72

71

F (σ)dσ

∣∣∣∣
)

=

(
|Q(72)|+

Zγ∥F∥L1

Γ(γ + 1)

)(
(q − 1)Mq−2Zβ

B(ρ)Γ(β + 1)

{
1− ρ+

Zρ

Γ(ρ)

}
|ξ(72)− ξ(71)|

)
+

(
ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

})(
LQ|72 − 71|

+
Zγ

Γ(γ + 1)
|ζ(72)− ζ(71)|

)
,

where ξ(7) =

∫ 7

0
G(σ)dσ and ζ(7) =

∫ 7

0
F (σ)dσ. Given that the functions ξ and ζ are

continuous on the compact interval Ω, they are also uniformly continuous. Therefore, for
any ε > 0, ∃ a δ > 0 such that for all 71, 72 ∈ Ω and w ∈ S, the following holds:

|72 − 71| < δ =⇒ |(Aw)(72)− (Aw)(71)| < ε.

This establishes that A(S) is an equi-continuous subset of B. Since A(S) is both
uniformly bounded and equi-continuous in B, it follows from the Arzelà-Ascoli theorem
that A(S) is relatively compact. Consequently, we conclude that A is a compact operator
on S.
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Step 3: To demonstrate that A is a continuous operator from S to B, consider a sequence
{wn} in S that converges to a point w ∈ S. By applying the Lebesgue dominated
convergence theorem, we can derive the following result:

lim
n→∞

(Awn)(7)

= lim
n→∞

{(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,wn(σ))dσ

)

(×)

[
ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,wn(σ))dσ

)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, wn(τ))dτ

))
dσ

]}

=

(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1 lim

n→∞
f(σ,wn(σ))dσ

)
(×)

[
ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1 lim

n→∞
g(σ,wn(σ))dσ

)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1 lim

n→∞
g(τ, wn(τ))dτ

))
dσ

]

=

(
Q(7) +

1

Γ(γ)

∫ 7

0
(7 − σ)γ−1f(σ,w(σ))dσ

)
(×)

[
ABIρ0+(Θ) +

1− ρ

B(ρ)
Ψq

(
1

Γ(β)

∫ 7

0
(7 − σ)β−1g(σ,w(σ))dσ

)

+
ρ

B(ρ)Γ(ρ)

∫ 7

0
(7 − σ)ρ−1

(
Ψq

(
1

Γ(β)

∫ σ

0
(σ − τ)β−1g(τ, w(τ))dτ

))
dσ

]
= (Aw)(7)

for all 7 ∈ Ω. This establishes that the sequence {Awn} converges point-wise to Aw
on the interval Ω. Furthermore, by employing a similar argument as in Step 2, we can
demonstrate that the sequence {Awn} is equi-continuous. Consequently, it follows that
{Awn} converges uniformly to Aw, thereby confirming that A is a continuous operator on
S.
Step 4: We demonstrate that Aw+Bw ∈ S for all w,w ∈ S. For any w,w ∈ S and 7 ∈ Ω,
it follows that

|(Aw)(7) + (Bw)(7)|

≤
(
LQZ + |Q(0)|+ Zγ∥F∥L1

Γ(γ + 1)

)(
ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

})
+ Lf∥w∥+ F0
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≤ Λ,

it follows that Aw + Bw ∈ S for all w,w ∈ S. This confirms that all the conditions
specified in [17, Theorem 2.6] are satisfied, leading to the conclusion that the operator
equation Aw+Bw = w has a solution in the set S. Consequently, the mABC-HFIDEs (1)
has a solution that is defined on the interval Ω.

4. Stability Analysis

This section is dedicated to the study of U-H-stability of the mABC-HFIDEs (1). To
proceed, we will first recall the following definition:

Definition 7. The integral equation (11) is Ulam-Hyers stable, if for some λ1 > 0, we
have ϑ > 0 with w satisfying

∥w − Φw∥ < ϑ (21)

with w(7) of (11) with

w(7) = Φw(7) (22)

and ∥w − w∥ < ϑλ1.

Theorem 3. Under the conditions of Theorem 1, the system (11) demonstrates U-H
stability, which implies the U-H stability of the hybrid system of mABC-FDEs (1).

Proof. For any w,w∗ ∈ AC(Ω,R), we have

∥Φw − Φw∗∥ = max
7∈Ω

|((A+B)w)(7)− ((A+B)w)(7)|

≤ max
7∈Ω

|(Aw)(7)− (Aw)(7)|+max
7∈Ω

|(Bw)(7)− (Bw)(7)|.

In view of Theorem 1, we have

∥Φw − Φw∗∥

≤

[(
LQZ + |Q(0)|+ Zγ∥F∥L1

Γ(γ + 1)

)(
(q − 1)Mq−2Zβ

B(ρ)Γ(β + 1)

{
1− ρ+

Zρ

Γ(ρ)

}
Lg

)

+

(
ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

})(
LfZ

γ

Γ(γ + 1)

)
+ Lh

]
∥w − w∗∥

= ∆∥w − w∗∥. (23)

For ∆ < 1, by (21)-(23), consider the following norm

∥w − w∗∥ = ∥w − Φw +Φw − w∗∥
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≤ ∥w − Φw∥+ ∥Φw − Φw∗∥
≤ ϑ+∆∥w − w∗∥.

Hence

∥w − w∗∥ ≤ ϑ

1−∆

with λ =
1

1−∆
. Hence (11) is stable. This implies the stability of the addressing system

represented by (1).

5. Example

In this section, we will provide a justification for our findings by presenting an
illustrative example.

Consider the given mABC-HFIDEs

CDβ

Ψp

mABCDρ
0+

 w(7)−
1

16
sinw(7)

π+sin 7+
1

Γ
(
1
3

) ∫ 7

0
(7 − σ)−

2
3

1

σ + 25
sinw(σ)dσ





=
1

7 + 36
cosw(7), 7 ∈ [0, 1],

w(0) =
1

16
sinw(0) + π.

(24)

Set β =
1

4
, ρ =

1

2
, γ =

1

3
, Z = 1, LQ = 1,Θ = 0.735,ABIρ0+Θ = 1, p = q = 2,M =

1,B(ρ) = 1− ρ+
ρ

Γ(ρ)
, h(7, w(7)) =

1

16
sinw(7), Q(7) = π + sin 7, Q(0) = π, f(7, w(7)) =

1

7 + 25
sinw(7), g(7, w(7)) =

1

7 + 36
cosw(7).

Let w,w ∈ AC([0, 1]). Then, we have

|f(7, w(7))− f(7, w(7))| ≤ 1

26
|w(7)− w(7)| ,

|g(7, w(7))− g(7, w(7))| ≤ 1

37
|w(7)− w(7)| ,

and

|h(7, w(7))− h(7, w(7))| ≤ 1

16
|w(7)− w(7)| .

Then the assumptions (A1)-(A3) holds with Lf =
1

26
, Lg =

1

37
, Lh =

1

16
, LQ = 1, ∥F∥L1 =

ln

(
26

25

)
= 0.03922, ∥G∥L1 = ln

(
37

36

)
= 0.02731.
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At this point, we will examine the conditions outlined in the theorems to ensure they are
satisfied. By carefully analyzing these conditions, we can derive the necessary conclusions
and results that follow from them. This thorough verification process will allow us to
confirm the validity of our findings.

Now

Λ =

[(
LQZ + |Q(0)|+ Zγ∥F∥L1

Γ(γ + 1)

)(
(q − 1)Mq−2Zβ

B(ρ)Γ(β + 1)

{
1− ρ+

Zρ

Γ(ρ)

}
Lg

)

+

(
ABIρ0+ |Θ|+ 1

B(ρ)

(
Zβ∥G∥L1

Γ(β + 1)

)q−1{
1− ρ+

Zρ

Γ(ρ)

})(
LfZ

γ

Γ(γ + 1)

)
+ Lh

]
= 0.2782 < 1.

Consequently, we have established that the conditions specified in Theorem 1 are
indeed met. As a result of this verification, we can confidently conclude that problem (24)
possesses a unique solution.

Next,
Lh = 0.0625 < 1.

Therefore, we can confirm that the criteria outlined in Theorem 2 are also fulfilled.
This affirmation leads us to conclude that the problem presented in equation (24) has at
least one solution. Also 1− 0.2782 = 0.7218 ̸= 0. Thus (24) is U-H stable.
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