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Abstract. We study the dynamics of a recent model of Rothman for long timescale carbon cycle.
We reproduce and extend various results of the Rothman model. We present numerical results
showing that the model exhibits both stable and unstable limit cycles via Hopf bifurcations as the
parameters are varied. We numerically find normal forms of Bautin bifurcations to confirm their
criticality. We also extend the analysis of the normal form coefficients to identify where the fold
limit cycle bifurcation occurs
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1. Introduction

A modern view of climate variability represents a qualitative change in the dynamics
of the Earth system as shown in [15]. On short time scales, the Earth’s carbon cycles
are between photosynthesis, which converts carbon dioxide (CO2) to organic carbon, and
respiration, which converts organic carbon back to CO2. Human activities have caused
changes in atmospheric CO2 levels that have recently increased by 50% compared to the
previous years in ages past, most of which has been absorbed by the oceans [8]. There is
a lot of interest in forecasting how the climate will respond to these changes, as shown in
[15]. Over long timescales, other reasons of carbon can vary, in particular in the ocean.
Significant disruptions from the global carbon cycle are caused by the changes in the
concentration of carbon in the ocean. Rothman [12] studied the evolution of the carbonate
system in the upper ocean as part of the marine carbon cycle. These changes affect the
marine carbonate system, which is a major element of fundamental importance to the
Earth’s carbon cycle. Environmental perturbations can significantly result in considerable
disruptions in the Earth’s carbon cycle.

To understand these observations, Rothman [12] suggested a mathematical model to
describe the characteristic rate of change in the marine carbon cycle. This model formed
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as a two-equation dynamical system to describe the dynamics of carbon and the response
feedback mechanisms of shallow-oceans in the marine carbon cycle. Rothman’s carbon
cycle model builds upon a foundation of dynamical systems approaches in climate science.
Recent work by Crucifix [1] on oscillators and relaxation phenomena in Pleistocene cli-
mate theory provides context for understanding the significance of Rothman’s model in
capturing complex carbon cycle dynamics. Additionally, Lenton et al. [5] introduced the
concept of tipping elements in the Earth system, many of which involve the carbon cycle,
underscoring the importance of identifying critical thresholds and bifurcations in climate
models. The theory of dynamical systems provides many useful techniques to analyse the
observed behaviour of the model, such as bifurcation phenomena. This approach can help
us to understand the important features of the marine carbonate system.

In this article presents a study of oscillations in a long-timescale carbon cycle model
(7) introduced by Rothman [12]. We briefly introduce the carbon cycle model, analyse
the stability of the equilibrium point and show the region of stability in parameter space.
We present numerical results showing that the model exhibits both stable and unstable
limit cycles via Hopf bifurcations as the parameters are varied. We study the normal form
of Hopf and Bautin bifurcations for Rothman’s carbon cycle model (7). We review the
technique for computing Lyapunov coefficients. We use MAPLE to compute the first and
second Lyapunov coefficients l1 and l2 in the normal form at a bifurcation point where
l0 = 0. We also extend the analysis of the normal form coefficients to identify where the
fold limit cycle bifurcation occurs.

2. Rothman’s Carbon Cycle Model

A model of the marine carbon cycle illustrates the interactions of shallow-ocean res-
piration with fluxes of carbon into and out of the shallow ocean. We consider the upper
ocean to be a well-mixed open system. The main carbonate input is dissolved calcium
carbonate (CaCO3) which is transported to the shallow ocean by rivers and the output
from the shallow ocean to the sediments. Rothman’s carbon cycle model builds upon his
previous studies on carbon cycle dynamics [10, 11, 13]. The system can be written in the
following mathematical form [12]:

ȧ = 2[jin −B(a,w)],

ẇ = (1 + ν)jin −B(a,w) +R(a,w)− (w − w0)/τw
(1)

where a is total alkalinity, w is total dissolved inorganic carbon, and other terms represent
various fluxes and parameters. Key advancements in this model (1) include the explicit
representation of ocean carbonate chemistry, allowing for a more detailed analysis of ma-
rine carbon dynamics. The incorporation of nonlinear feedbacks captures complex interac-
tions within the carbonate system, enabling the model to produce rich dynamical behavior.
While Rothman’s earlier works [10, 13] primarily addressed either long-term (million-year)
carbon cycle stability or conceptual frameworks, and other models in the field often fo-
cused on short-term (annual to decadal) fluctuations, this model uniquely bridges the gap
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by exploring carbon cycle variations on intermediate timescales, ranging from thousands
to hundreds of thousands of years. Notably, the model demonstrates the potential for self-
sustained oscillations, providing a mechanism for intrinsic carbon cycle variability that
does not depend on external forcing. While Saltzman and Maasch’s low-order models [7]
focus on glacial-interglacial cycles, Rothman’s approach specifically addresses the dynam-
ics of the upper ocean carbonate system on intermediate timescales, providing a more
detailed treatment of carbonate chemistry feedbacks. Paillard and Parrenin’s conceptual
model [9] relies heavily on threshold mechanisms; in contrast, Rothman’s model demon-
strates how continuous nonlinear feedbacks can lead to complex dynamics, including limit
cycles.

This model’s significance lies in its ability to bridge short-term variability and long-
term trends in the carbon cycle, offering new insights into intrinsic carbon cycle variability
and potential explanations for observed historical variations.

The model (1) expresses the concentrations of total alkalinity (a) and total dissolved
inorganic carbon (DIC) w in units of µmot.kg−1. Figure 1 illustrates a schematic diagram
of (1), jin is the rate equivalent to the change of dissolved CaCO3 concentration added by
the rivers in oceans. The flux B(a,w) indicates the rate at which CaCO3 exits from the
system to be buried in sediments in the deep ocean. The flux R(a,w) shows the rate of
the upper ocean production of CO2 by the respiration process. The dimensionless term ν
corresponds to the strength of an external source of CO2 (e.g. volcanic emissions).

The functional specification of feedback (B and R) is expressed below

B(a,w) = B[c(a,w)] = b ∗ jins(c, cp), s(c, cp) =
cγ

cγ + cγp
(2)

where s is a sigmodial function, and bjin denotes the maximum rate of carbonate burial
B. For s = 0.5, cp represents the transitional carbonate ion concentration. The exponent
γ is the sigmoid sharpness of the transition

R(a,w) = R[c(a,w)] = θjins̄(c, cx), (3)

where s̄ = 1− s, θjin is the maximum value of carbonate respiration R, and cx represents
the crossover concentration at the midway point that exists when R transits from a high
state to a low state. The differential equation in (4) below describes the rate of change of
c which depends on a and w

dc

dt
=

da

dt

∂c

∂a
+

dw

dt

∂c

∂w
(4)

To approximate the magnitude of the partial derivatives ∂c
∂a and ∂c

∂w , we use the ”buffer
function” f(c) [12](see Figure 2):

∂c

∂a
≈ − ∂c

∂w
≡ f(c), f(c) = f0

cβ

cβ + cβf
(5)

where f0, β and cβf are specific values for the equilibrium of the carbonate system which
reduces equation (5) to the expression in (6):

ċ = f(c)(ȧ− ẇ) (6)
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Figure 1: Schematic diagram of the evolution of the model (1) as shown in [12]. The left
and right panels show how total alkalinity a and total dissolved inorganic carbon (DIC) w
changed over the chemical state of the upper ocean. This diagram has three blue lines: the
wavy line shows the air and water interface, and a thick line separates the shallow sea from
the deep sea. The dashed line represents the sediment–seawater interface. Concentration
fluxes are shown by arrows that only move in one direction. The dashed line between the
sediment and seawater indicates no dynamic difference between the deep sea and sediment.
This feedback B(a,w) and R(a,w) determines the extent of a and w accumulation before
leaving the system.

where c is the concentrations of CO2−
3 . By substituting (2) and (3) into model (1), we

obtain ċ as a function of c and w:

ċ/f(c) = µ[1− bs(c, cp)− θs̄(c, cx)− ν] + w − w0

ẇ = µ[1− bs(c, cp) + θs̄(c, cx) + ν]− w + w0
(7)

is called Rothman’s carbon cycle model [12] with respect to the new timescale dT =
dt/τw. The value of parameters µ, b, θ, cp, cx, cf , w0, γ and β are listed in Table 1. These
parameters correspond to the properties of the modern ocean. We change the value of
cx, b, µ, cp, θ and ν to show the stability region of (7) in the parameter space.

3. Steady state and stability analysis

In this section, we analyse the behaviour of Rothman’s carbon cycle model (7) and in
particular, the stability of the equilibrium point.

The nullclines (ċ = ẇ = 0) of (7) are given by

w0 = µ[1− bs(c, cp)− θs̄(c, cx)− ν] + w or f(c) =0

w = µ[1− bs(c, cp) + θs̄(c, cx) + ν] + w0
(8)
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Figure 2: The buffer function f(c) characterises the equilibrium chemistry of the carbonate
system. The smooth curve is approximated by (5). The parameters f0 = 0.694, β = 1.7
and cf = 43.9 are specific values for the equilibrium of the carbonate system.

where s̄(c, cx) = 1 − s(c, cx). To find the equilibrium point (c∗, w∗) of (7), we substitute
w into (ċ = 0):

µ[2− 2bs(c, cp)] = 0

bs(c, cp) = 1

b
cγ

cγ + cγp
= 1

c∗ = (b− 1)
−1
γ cγp (9)

from (3),
w∗ = µ[θ(1− s(c, cx)) + ν] + w0

w∗ = w0 + µ[θ(1− cγ

cγ + cγx
) + ν]

w∗ = w0 + µ[θ − θcγp
cγp + (b− 1)cγx

+ ν] (10)

Now, we introduce new variables v and u for shifting an equilibrium point (c∗, w∗) to
the origin (0, 0):

v = c− c∗

u = w − w∗

is an equilibrium point for a two-dimensional dynamical system:

v̇ = f(v, u)

u̇ = g(v, u)
(11)

where g and f are nonlinear, corresponding to the linear form[
v̇
u̇

]
=

[
fv fu
gv gu

] [
v
u

]
(12)

where

J(v, u) =

[
fv fu
gv gu

]
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Figure 3: The phase portrait (a) and time series (b-c) show a stable limit cycle of Roth-
man’s carbon cycle model (7) for cx = 70. The initial condition and other parameters are
given values in Table 1. The black circle represents an unstable equilibrium point (c∗, w∗).
The nullclines represent the red line ẇ = 0 and black line ċ = 0.

is the Jacobian matrix of (11) at the equilibrium point (v, u). The trace τ(v, u) and the
determinant ∆(v, u) of J are

τ = trJ = fv + gu

∆ = detJ = fvgu − gvgu

To analyse the stability of the equilibrium point, we find the eigenvalues of (J − λI) at
(u, v) where I is the identity matrix:

λ1,2 =
τ ±

√
τ2 − 4∆

2

according to τ and ∆ of J , the stable equilibrium point is (τ < 0) and unstable equilibrium
point is (τ > 0). Now, we return to the Rothman carbon cycle model (7),

τ = −1± ∆

2
(1− θbcγpc

γ
x

cγp + [(b− 1)cγx]2
) (13)
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Figure 4: This figure shows the stability region of the equilibrium point (c∗, w∗) for Roth-
man’s carbon cycle model (7) in parameter space of cp and b. Other parameters are given
in Table 1. The stability region is divided into four regions. The yellow and green regions
represent the stable and unstable node respectively, where (c∗, w∗) has real eigenvalues.
The blue and red regions represent a stable spiral and an unstable spiral where (c∗, w∗)
has complex eigenvalues. Note Hopf bifurcations occur on the boundary between the blue
and red regions where (c∗, w∗) has purely imaginary eigenvalues.

where,

∆ =
2µγf0(b− 1)

1
γ
+1

cβ−1
p

b(b− 1)β/γcβf + bcβp
(14)

since b > 1 and all parameters are positive, the sign of τ depends on θ and µ (i.e. τ > 0
when µ ≫ 0 and τ < 0 when θ > 0). λ1,2 are pure imaginary when τ = 0 (let µ = µc

where τ = 0). The stability of this equilibrium point (c∗, w∗) is determined by the sign
of the eigenvalues λ1,2 of the Jacobian Matrix. We use (13) and (14) to find numerically
(using MATLAB) λ1,2. In Figure 5, we examine the stability of (c∗, w∗) over a range of
values of parameters b (a-b) and cp (c-d), respectively. Other parameter values of (7)
are given in Table 1. The colored branch shows the location and the stability of (c∗, w∗)
when one parameter is varied. Green/yellow branches indicate that a stable/unstable node
equilibrium point has positive /negative real eigenvalues, respectively. Red/blue branches
indicate that a stable/unstable spiral equilibrium point has negative/positive real parts of
complex eigenvalues, respectively.

As discussed in [12], Rothman identifies supercritical and subcritical Hopf bifurcation
branches and the stable equilibrium point are in the parameter space. Here, we review
some results from [12] to extend in the analysis of the equilibrium point in the parameter
spaces as shown in Figure 6. The stability of (c∗, w∗) is indicated by the yellow region
(stable node), the green region (unstable node), the blue region (stable spiral) and the red
region (unstable node). A Hopf bifurcation occurs in the boundary between the red and
blue regions where the eigenvalues have pure imaginary values as shown in [12, Fig.3].
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Figure 5: The location and stability of the equilibrium point are shown for Rothman’s
carbon cycle model (7) with parameters as given in Table 1. Panels (a) and (b) show
the location and the stability of the equilibrium point (c∗, w∗) for varying the parameter
b. Similarly, panels (c) and (d) show the location and stability, but for the parameter cp
instead. In all cases, other parameter values are given in Table 1. The stability of the
equilibrium point (c∗, w∗) is determined by the sign of the eigenvalues λ1,2. The location
and the stability of (c∗, w∗) is indicated by blue (stable spiral) and red (unstable spiral).

The analysis and explanation of Rothman’s carbon cycle model is discussed in more
detail in [12]. The model (7) exhibits both stable and unstable limit cycles via Hopf
bifurcations as the parameter cx is varied. There is only one stable equilibrium point
(c∗, w∗) of (7) for cx < 55.89 (See Figure 7). An unstable limit cycle appears between the
stable equilibrium point and the stable limit cycle when 55.89 < cx < 62.61 (See Figure
8). There is a stable limit cycle and an unstable equilibrium point when cx > 62.61 (See
Figure 3).

4. Bifurcations of Rothman’s carbon cycle model

This section illustrates the normal form of Hopf and Bautin bifurcations, which include
the saddle-node bifurcation of limit cycles. Section 4.1 illustrates the conditions and
highlights the Lyapunov coefficients that appear in this normal form. In addition, we
review the technique for computing Lyapunov coefficients. We use Theorem 1 in Section
4.1 and Theorem 2 in Section 4.2 to identify the topological normal form for Hopf and
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Figure 6: The stability region of the equilibrium point (c∗, w∗) is shown for Rothman’s
carbon cycle model (7). In the parameter space (a-d), two parameters are varying and
other parameters are given in Table 1. (a-c) show the stability diagram for the parameter
spaces of µ against b, cx and θ, (d) shows the parameter space of θ and cx. The stability
region is divided into four regions: yellow (stable node) and green (unstable node) regions,
which indicate where (c∗, w∗) has real eigenvalues. Stable and unstable spiral equilibrium
points are indicated by blue and red regions where (c∗, w∗) has complex eigenvalues. Note
Hopf bifurcations occur at the boundary between blue and red regions where (c∗, w∗) has
purely imaginary eigenvalues.

Bautin bifurcations. Section 5 derives the normal form of Hopf and Bautin bifurcations for
Rothman’s carbon cycle model (7). In this section, we identify the Bautin bifurcation and
classify its criticality by finding appropriate coefficients in the normal form. In addition,
we use the normal form coefficients to identify the saddle-node bifurcation of limit cycles
when it occurs.

4.1. Computation of the critical normal form coefficients

The coefficients of the normal form at the bifurcation point can be calculated in several
ways. We follow a method that is used in [4] and then we apply it to an example of ODEs
dependent on one parameter. We consider the autonomous system

ẋ = f(x, α) (15)
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Figure 7: The phase portraits show solutions of Rothman’s carbon cycle model (7) for
ν = 0.4. The parameter cx = 55.88 (a), cx = 60 (b) and cx = 62.62 (c), and other
parameters are given in Table 1. (b-c) show solutions of (7) with different initial conditions.
The model (7) exhibits both stable and unstable limit cycles via Hopf bifurcations as the
parameter cx is varied. In (a-b), there is a stable equilibrium point (black point) (c∗, w∗).
(b) An unstable limit cycle appears between the stable equilibrium point and the stable
limit cycle. In (c), there is a stable limit cycle and an unstable equilibrium point (black
circle) when cx = 62.62.

with smooth right hand side f and the vector of state variables x ∈ Rn and parameters
α ∈ Rm, having at (x, α) = (0, 0) an equilibrium point with eigenvalues λ1,2 = ±iω0,
ω0 > 0. Consider the system (15) can be written as

ẋ = A(α)x+ F (x, α) (16)

where A(α) is the Jacobian matrix of (15) and F is a smooth vector field with zero
Jacobian, so the Taylor expansion in x starts with the quadratic term as follows:

F (x, 0) =
1

2!
B(X,X) +

1

3!
C(X,X,X) +

1

4!
D(X,X,X,X) +O(||X||)5 (17)
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Figure 8: The phase portrait (a) and time series (b-c) are shown for Rothman’s carbon
cycle model (7) when cx = 55.88. The initial conditions and parameters are given in Table
1. The black point represents the stable equilibrium point (c∗, w∗) and the nullclines are
shown by the red line ẇ = 0 and black line ċ = 0.

where B,C and D are multilinear symmetric functions [4]:

B(X,Y ) =

n∑
j,k=1

∂2Fi(ξ)

∂ξj∂ξk

∣∣∣∣
ξ=0

XjYk, i = 1, . . . , n (18)

C(X,Y, Z) =

n∑
j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂l

∣∣∣∣
ξ=0

XjYkZl, i = 1, . . . , n (19)

C(X,Y, Z, U) =

n∑
j,k,l,r=1

∂4Fi(ξ)

∂ξj∂ξk∂ξl∂ξr

∣∣∣∣
ξ=0

XjYkZlUr, i = 1, . . . , n (20)

The Jacobian matrix A of (15) at the equilibrium point (x, α) = (0, 0) has pure imaginary
eigenvalues λ1,2 = ±iω0 (the Hopf bifurcation condition is satisfied).
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parameter value description

µ 250 characteristic concentration jinτw

b 4 maximum CaCO3 burial rate

θ 5 maximum respiration feedback rate

cx 70 respiration

cp 110 burial

ν 0 injection rate

w0 2000 reference DIC concentration

γ 4 sigmoid sharpness index

f0 0.694 maximum buffer factor

cf 43.9 buffering

β 1.7 sigmoid sharpness index

Table 1: This table shows the default parameters for Rothman’s carbon cycle model (7)
[12, SI Appendix, Table S1].

Let q(α) ∈ C2 be an eigenvector of A corresponding to λ(α), and p(α) ∈ C2 be an
eigenvector of the transpose AT corresponding to λ(α). It follows that:

A(α)q(α) = λ(α)q(α),

AT (α)p(α) = λ(α)q(α)

⟨p, q⟩ =
2∑

i=1

p̄iqi = 1

We introduce the complex variable z = (p, x), where x = zq + z̄q̄ System (15) can be
written as the formula [4, Lemma 3.3, p.66]:

ż = λ(α)z + g(z, z, α), (21)

where g(z, z̄, α) = ⟨p, F (zq + z̄q̄, α)⟩ is a smooth function and can be written as a formal
Taylor series in two complex variables (z and z̄):

g(z, z̄, α) =
∑

k+l≥2

1

k!l!
gkl(α)z

kz̄l, k, l = 0, 1, ... (22)

where gkl(α) =
∂k+l

∂zk∂z̄l
⟨p, F (zq+ z̄q̄, α)⟩

∣∣
z=0

. To simplify (15), we remove all the quadratic
terms by coordinate changes as shown by the following [[4],Lemma(3.6) p.96]:

ż = λz +
g30
6

z3 +
g21
2

z2z̄ +
g12
2

zz̄2 +
g03
6

z̄3 +O(|z|)4 (23)

where λ = µ(α) ± iω(α), µ(0) = 0 ,ω(0) = ω0 > 0 and gij = gij(α), can be transformed
by an invertible parameter-dependent change of complex coordinates,
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z = w +
h20
2

w2 + h11ww̄ +
h02
2

w̄2 +
h03
6

w3 +
h12
2

ww̄2 +
h03
6

w̄3

h20 =
g20
λ

,

h11 =
g11
λ

,

h02 =
g02

2λ̄− λ
,

h03 =
g03

2λ̄− λ

h12 =
g12
2λ̄

(24)

for all sufficiently small |α|, for an equation with only one cubic term:

ẇ = λw + c1w
2w̄ +O(|w|)4 (25)

where c1 =
g20g11(2λ+λ̄)

2|λ|2 + |g11|2
λ + |g02|2

2(2λ−λ̄)
+ g21

2 . From [4, Lemma 3.7, p 98], suppose µ(0) ̸= 0

and Re(c1(0)) ̸= 0. Then, the equation can be transformed by a parameter-dependent
linear coordinate transformation, a time rescaling, and a nonlinear time reparametrization
into an equation of the form

du

dθ
= (β + i)u+

l1(β)

|l1(β)|
u|u|2 +O(|u|4) = (β + i)u+ su|u|2 +O(|u|4) (26)

where u is a new complex coordinate, and θ is the time and β is a new parameter, and
s = sign l1(0) = sign Re(c1(0)) = ±1. The real function l1(β) is called the first Lyapunov
coefficient [4, Definition 3.3,p 99]. To describe bifurcation analytically, we present an
example of the first Lyapunov coefficient l1 in the complex form of the dynamical system
near the original equilibrium point.

Example 1. Consider the two differential equations which depend on one parameter:

ẋ =αx− y − x(x2 + y2)

ẏ =x+ αy − y(x2 + y2)
(27)

This equation has the equilibrium (x, y) = (0, 0) with eigenvalues λ1,2 = α ± i. For
bifurcations of equilibria, topological normal forms present general bifurcation diagrams.
Together with system (27), let us introduce a new variable z = x + iy, z̄ = x − iy,
|z|2 = zz̄ = x2 + y2 and the differential equation as

ż = ẋ+ iẏ = α(x+ iy) + i(x+ iy)− (x+ iy)(x2 + y2) (28)

Now we can rewrite system (27) in the following complex form:

ż = (α+ i)z − z|z|2. (29)
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This is the normal form of (27). To present the polar form , let z = reiθ(t)

ż = ṙeiθ(t) + riθ̇eiθ(t) (30)

Substituting into (6.12), we obtain the polar form:

ṙeiθ(t) + riθ̇eiθ(t) = reiθ(α+ i− r2) (31)

Now we can rewrite (6.14) as:
ṙ =r(α− r2)

θ̇ =1
(32)

where r and θ are independent in uncouple system (32). The first equation has the equi-
librium of (32) at r = 0 and α = 0. This equilibrium is a stable spiral for α < 0 and an
unstable spiral for α > 0. It is possible to notice from (32) that the system has a unique
and stable limit cycle for any α > 0 of radius r =

√
α.

More generally, when α passes through zero, under certain non-degeneracy conditions,
we have a bifurcation in system (27) called the Andronov-Hopf bifurcation [14]. A cubic
coefficient (called the first Lyapunov coefficient) in the complex form (29), determines the
behaviour of (27) in the neighbourhood of a Hopf bifurcation point, if it is non-zero. We
recall this in the following theorem:

Theorem 1. [4, Topological normal form for the Hopf bifurcation, p100] Suppose two-
dimensional dynamical system,

ẋ = f(x, α), x ∈ R2, α ∈ R (33)

with smooth f , has for all sufficiently small |α| the equilibrium x = 0 with eigenvalues

λ1,2 = µ(α)± iω(α)

where µ(0) = 0, ω(0) = ω0 > 0. Let the following conditions be satisfied:

(H.1) l1(0) ̸= 0 , where l1 is the first Lyapunov coefficient

(H.2) µ′(0) ̸= 0.

Then there are invertible coordinate and parameter changes and a time reparametrization
transforming (33) into the complex form

ż = (l0 + i)z + l1z|z|2 +O(|z|4) (34)

where l0 = 0 and l1 ̸= 0.
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4.2. The normal form of the Bautin bifurcation

The Bautin bifurcation (or generalised Hopf bifurcation) is codimension-2 of an equilib-
rium. The Bautin point separates branches of subcritical and supercritical Andronov-Hopf
bifurcations in the parameter plane. In particular, the equilibrium has purely imaginary
eigenvalues and the first Lyapunov coefficient for Hopf bifurcation vanishes as Bautin bi-
furcation conditions. Note when two limit cycles which collide and disappear via a saddle-
node bifurcation of limit cycles. We can review the analysis of the Bautin bifurcation by
stating the following theorem.

Theorem 2. [4, Topological normal form for the Bautin bifurcation, p308] Suppose two-
dimensional dynamical system,

ẋ = f(x, α), x ∈ R2, α ∈ R2 (35)

with smooth f , has for all sufficiently small |α| the equilibrium x = 0 with eigenvalues

λ1,2 = µ(α)± iω(α)

where µ(0) = 0, ω(0) = ω0 > 0 for α = 0, let Bautin bifurcation conditions hold:

µ(0) = 0, l1(0) = 0

where l1(α)is the first Lyapunov coefficient. Let the following conditions be satisfied:

(B.1) l2(0) ̸= 0 , where l2 is the second Lyapunov coefficient.

(B.2) The map → (µ(α), l1(α))
T is regular at α = 0.

Then there are invertible coordinate and parameter changes and a time reparametrization
transforming (35) into the complex form

ż = (l0 + i)z + l1z|z|2 + l2z|z|4 +O(|z|6) (36)

where l0 = l1 = 0, l2 ̸= 0.

Computation of Lyapunov numbers

When a Hopf bifurcation point is detected as l0 = 0, the type of Hopf bifurcation of
(33) corresponds to the sign of the first Lyapunov coefficient l1. We review the technique
for computing the first and second Lyapunov coefficients at the bifurcation point. Also,
the Taylor coefficients formula gkl of the quadratic terms in g(z, z̄, 0) can be expressed by
the following [4, p311]:

l1(α) =
1

2ω2
0

Re(ig20g11 + ω0g21),

g20 = ⟨p,B(q, q)⟩,
g11 = ⟨p,B(q, q̄)⟩,
g02 = ⟨p,B(q̄, q̄)⟩

(37)
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and

g21 = ⟨p, C(q, q, q̄)⟩ − 2⟨p,B(q, A−1B(q, q̄)))⟩+ ⟨p,B(q̄, (2iω0E −A)−1B(q, q))⟩

+
1

iω0
⟨p,B(q, q)⟩⟨p,B(q, q̄)⟩ − 2

iω0
|⟨p,B(q, q̄)⟩|2 − 1

3iω0
|⟨p,B(q̄, q̄)⟩|2

At the Bautin bifurcation point l1(0, 0) = 0, the formula gives l2(0, 0):

12l2(0, 0) =
1

ω0
Reg32 +

1

ω2
0

Im

[
g20ḡ31 − g11(4g31 + 3ḡ22)−

1

3
g02(g40 + ḡ13)− g30g12

]
+

1

ω3
0

{
Re

[
g20

(
ḡ11(3g12 − ḡ30) + g02

(
ḡ12 −

1

3
g30

)
+

1

3
ḡ02g03

)
+g11

(
ḡ02

(
3

5
ḡ30 + 3g12

)
+

1

3
g02ḡ03 − 4g11g30

)]
+ 3Im(g20g11)Img21

}
+

1

ω4
0

{
Im

[
g11ḡ02(ḡ

2
20 − 3ḡ20g11 − 4g211)

]
+ Im(g20g11)

[
3Re(g20g11)− 2|g02|2

]}
(38)

where
g12 = ⟨p, C(q, q, q̄)⟩,
g30 = ⟨p, C(q, q, q)⟩,
g03 = ⟨p, C(q̄, q̄, q̄)⟩

This explains the general method for determining the critical normal form coefficients,
which include third-order coefficients for the Hopf bifurcation and fifth-order coefficients
for the Bautin bifurcation. The other formula for computation of the coefficients of the
normal form are derived in [3].

5. The normal form of bifurcations for Rothman’s carbon cycle model

In this section, we present the normal form of Hopf and Bautin bifurcations for Roth-
man’s carbon cycle model (7). Our analysis is based on the normal form theory of Hopf
and Bautin bifurcations (see Subsection 5.1 and section 4.2). We use the conditions and
highlight the Lyapunov coefficients that appear in this normal form. We use theorems 1
and 2 to identify the topological normal form for Hopf and Bautin bifurcations, and we
aim to identify the Bautin bifurcation and classify its criticality by finding the appropriate
coefficients in the normal form. We rewrite (7) here in the following complex form (36):

ż = (l0 ± iw)z + l1z|z|2 + l2z|z|4 +O(|z|6) (39)

where z ∈ C is a complex variable, and l0, l1,and l2 are real parameters. We now use the
method discussed in sections 4.1-4.2 to determine the Bautin bifurcation in Rothman’s
model (7). We implement this formula by using MAPLE to compute the normal form
coefficients of Hopf and Bautin bifurcations for (7) [6].
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Figure 9: This shows the first l1 and second l2 Lyapunov coefficients along the two Hopf
branches of (7) for varying cx ((a)-(b)) and µ ((c)-(d)). We use MAPLE to compute the
l1 and l2 in the normal form at Hopf bifurcation point where l0 = 0. The type of Hopf
bifurcation corresponds to the sign of the l1. The black stars indicate Bautin bifurcation
points.

We follow the technique in the previous section 4.1 to compute numerical values of of l1
and l2. We write the right-hand side of (7) as functions F1,2. We fix all parameters except
µ or cx as bifurcation parameters, and F1,2 is then solved in order to get an equilibrium
point (c, w). Then we compute the Jacobian matrix J and its transpose K at this point
to get a value µ when the equilibrium point (c, w) has purely imaginary eigenvalues ±iω.
We find the critical eigenvectors p of J and the critical eigenvectors q of K such that
the normalisation ⟨p, q⟩ = 1. We introduce new complex variables X1,2 to evaluate the
complex function H(z, z̄) as presented in (39). We need to expand H(z, z̄) to the fifth-
order at (z, z̄) = (0, 0). Using (37) and (38) we are able to calculate numerical values of l1
and l2 are evaluated at the Hopf bifurcation point. Figure 9 shows the first l1 and second
l2 Lyapunov coefficients along the two Hopf branches of (7) for varying cx (a)-(b)) and µ
((c)-(d)). Figure 10 shows the first l1 against second l2 Lyapunov coefficients along the
two Hopf branches of (7) for varying cx and µ.

In Figure 11, the first l1 and second l2 Lyapunov coefficients of (7) at a Hopf bifurcation
point when cx and µ as the bifurcation parameters. we highlight the red curve (l1 < 0) and
the blue curve (l1 > 0) correspond to the supercritical Hopf bifurcation and the subcritical
Hopf bifurcation respectively. The two Bautin bifurcation points are represented by black
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Figure 10: This shows the first l1 against second l2 Lyapunov coefficients along the two
Hopf branches of (7) for varying cx and µ. We use MAPLE to compute the l1 and l2 in
the normal form at Hopf bifurcation point where l0 = 0. The type of Hopf bifurcation
corresponds to the sign of the l1. The two black stars indicate Bautin bifurcation points.

points at l1 = 0, and we display these by leading at the sign of l2.

5.1. Saddle-node bifurcation of limit cycles

This complex form (39) undergoes saddle-node bifurcation of limit cycles if l1l2 < 0
and

l21 − 4l0l2 = 0 (40)

Then, we attempt to approximate the location of the saddle-node limit cycles. In Figure
12, we used a numerical continuation software XPPAUT [2] to plot the bifurcation diagram
of Rothman’s carbon cycle model (7) in the parameter plane (cx, µ), and we illustrated
the fold limit cycle and the Hopf bifurcation of (7). We illustrate the approximation using
the two methods in Figure 13.

Figure 13 shows in the parameter plane (cx, µ) the curves of bifurcation of periodic
orbits near the Bautin bifurcation (indicated by the red star). The saddle-node bifurcation
of limit cycles are both of the Hopf curve. Figures 13(a) and 13(b) consider the left and
right side of the Bautin bifurcation from Figure 12. These are computed in two ways: for
the Hopf bifurcation curve, the XPPAUT calculations and the MAPLE calculations agree
very well. On the other hand, the curve of the saddle-node bifurcation of limit cycles is
calculated by two methods.

For the Hopf curve, two method calculations have the same criticality and are lying on
the same side of the Hopf curve in Figures 13(a) and 13(b), showing that both calculations
indicate this is the subcritical Hopf bifurcation curve which lies to the left and to the right
of the Bautin bifurcation from Figure 12.
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Figure 11: This illustrates the bifurcation diagram of (7) for the parameter plane (cx, µ).
Two types of Hopf bifurcation are presented by blue (subcritical) and red (supercritical)
curves. Bautin bifurcation points are indicated by black stars. l2 is negative along red
parts of curve and l2 is positive along yellow parts of curve. All calculations were computed
with MAPLE then MATLAB was used to plot the bifurcation diagram in the parameter
space (cx, µ).

In Figure 13(a), there is reasonable agreement between the XPPAUT and MAPLE
calculations. For the Hopf bifurcation curve, the MAPLE calculations are closer to the
Hopf line than the XPPAUT calculations which are presumably more accurate. The curve
of the saddle-node bifurcation of limit cycles is plausible by using MAPLE calculations.
This curve ends up being tangent to the XPPAUT curve that is presumably the correct
curve, and then they meet at the Bautin bifurcation point.

In Figure 13(b), the Maple calculations appear to be reasonable for the Hopf curve
that agrees very well with XPPAUT. However, the MAPLE calculations of saddle-node
bifurcation of limit cycles are less capable of resolving their behaviour near the second
Bautin bifurcation. This could possibly be due to the normal form coefficients being much
smaller in this case.

6. Conclusion

These nonlinear oscillator models is the long timescale carbon cycle model of Rothman
for long term oscillations in the global marine carbon cycle. We have confirmed the
bifurcation behaviour found by Rothman [12] using analytical approximation.

In Section 4, we derive the normal form of Hopf and Bautin bifurcations for Rothman’s
carbon cycle model (7). Our analysis is based on the normal form theory of Hopf and
Bautin bifurcations (see Subsection 5.1 and 4.2). We use the conditions and highlight
the Lyapunov coefficients that appear in this normal form. We use Theorems 1 and 2 to
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Figure 12: Bifurcation diagram for (7) computed with XPPAUT in the parameter plane
(cx, µ). Hopf bifurcation for (7) is represented by blue curve. Two branches of saddle-node
bifurcation of limit cycles for (7) are represented by black lines.

identify the topological normal form for Hopf and Bautin bifurcations. From our results
in this subsection, we are able to identify the Bautin bifurcation and classify its criticality
by finding the appropriate coefficients in the normal form. We review the technique
for computing Lyapunov coefficients. We use MAPLE to compute the first and second
Lyapunov coefficients l1 and l2 in the normal form at a bifurcation point where l0 = 0.
The type of Hopf bifurcation corresponds to the sign of the first Lyapunov coefficient l1.
In Figure 11, we highlight the red curve (l1 < 0) and the blue curve (l1 > 0) correspond to
the supercritical Hopf bifurcation and the subcritical Hopf bifurcation respectively. The
Bautin bifurcation points are represented by black points at l1 = 0, and calculate the sign
of l2 at these points to determine the Bautin bifurcation scenario.

The main results are compared in Figure 13, showing the two-parameter bifurcation
diagrams of Rothman’s carbon cycle model (7), with one of the diagrams computed with
Maple and the other with XPPAUT. We use MAPLE to compute l2 at both points and
find its negative for the parameters used, which confirms that both of the Bautin bifurca-
tions are of supercritical type, then we confirm this using XPPAUT. Also, we attempt to
approximate the location of the saddle-node bifurcation of limit cycles. We illustrate the
approximation using the two methods in Figure 13. We compute the Hopf bifurcation and
saddle-node bifurcation of limit cycles using XPPAUT and also using the value of l2 com-
puted using MAPLE, and then we find that for one of these, the saddle-node bifurcation
of limit cycles was approximated reasonably well in MAPLE using the fifth order normal
form for one of them (the saddle-node bifurcation of limit cycles) but not the other.
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Figure 13: This shows (cx, µ) two-parameter bifurcation diagrams of (7). Left (a) and right
(b) show curves of bifurcations of periodic orbits near the Bautin bifurcation (indicated
by the red star). These bifurcation curves are computed using two methods: MAPLE and
XPPAUT. Hopf bifurcation and saddle-node bifurcation of limit cycles are computed using
MAPLE and represented by dashed (blue) and red lines. From the XPPAUT calculations,
the Hopf bifurcation and saddle-node bifurcation of limit cycles are respectively shown
using blue and red circles.
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