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Abstract. A graph or molecular graph’s overall resilience and connectedness are gauged by the
Sombor Index (SOI). It is an improved version of the conventional SOI that is designed to
capture ambiguity in the relationships between nodes or atoms. This indicator aids in assessing
the network’s resilience and stability in erratic circumstances. We have investigated the charac-
teristics of the SOI of neutrosophic graphs (NGs) in this study. The association between the
neutrosophic first Zagreb Index (NFZI) of NGs and the neutrosophic Sombor Index (NSI)
was revealed in the study. The application of SOI based on Site Selection for Thermal Power
Plants in NGs is finally covered.
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1. Introduction

1.1. Fuzzy Graphs(FGs)

Real-world problems are rarely strict and often involve fuzziness and roughness.
With the use of FG theory, real-world problems may be efficiently and understandably
mathematically explained. Zadeh used this collection’s membership function in the
work that was given in [59]. This function assigns a membership value(MV), from zero
to one, to each member. Expanding the traditional knowledge of set theory was his
goal. Human views, judgment and assessment, according to Zadeh and Goguen, reduce
fuzziness. Fuzzy sets (FSs) are useful for solving situations where the fault is caused
by random variables rather than class membership. Scientists can study ambiguous
conceptual issues with the use of this mathematical technique. The 1960s and 1970s saw
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a modest increase in the acceptance of this notion. Researchers were interested in this
area when fuzzy systems built around rules were used to control technological processes
in the late 1970s. Its effective application in washing machines, video cameras, subway
trains and other places inspired many to carry out study in this field. Prior to 2000, there
were more than 30,000 publications on FS theory. It has expanded over the last 10 years
to encompass both an application-focused theory and an actual concept. The writers
of [62] concluded after analyzing FS theory that it may be used to bridge the gap
between formal and natural models and explain deterministic uncertainty. According
to the author of this page, a FS is defined as follows: M = {(γ, λM (γ)), γ ∈ M} is
the collection of ordered pairs and is denoted as such if M is the collection of objects
represented by γ. In this case, λM (γ) denotes the MV, and 0 ≤ λM (γ) ≤ 1. A variable
can be connected to both the possibility distribution and the probability distribution,
according to research published in 1978 by authors of [60]. In [19], the relationship
between the finite valued FS, the Zadeh FS and the n-dimensional FS is clarified.
The approaches and methods of FG theory were presented by the authors of [53] for
the analysis of multi-species fishing dynamics. The patterns of data can be obtained
by using the above work. Fuzzy refers to not being able to hear or see clearly. FGs
are useful in modeling most of the difficulties that arise in our daily lives discussed in
[46] along with an introduction to some of their characteristics. Few rooted trees that
encapsulate a particular FG, an algorithm and complexity analysis are presented [11]. In
[12] and [14] discusses FGs that account for the fuzziness of vertex and edge existence,
edge weight and connectedness. The hyper-wiener Index’s associated with various of
graph has been given in [29]. The amazing notion of fuzzy cognitive map structure
is developed by researcher in [44] through establishing a concept of output issues and
lowering the amount of concepts and connections between them.

1.2. Intuitionistic Fuzzy Graphs (IFGs)

The traditional FS theory and graphs are extended into IFSs and IFGs. In order to
handle circumstances like ambiguity and hesitation as well as the need for a more accom-
modating model of the degree of MV, non-membership value (NMV) and reluctance,
Atanassov originally proposed them in the 1980s. Developing an uncertain model: IFSs
allow for a more complex depiction of uncertainty by incorporating the concept of resis-
tance. To better reflect confusing or poorly understood information, IFS adds NMV
and objects membership to MVs [37]. Making decisions in ambiguous circumstances:
IFSs provide a framework for decision-making in ambiguous circumstances [[54], [55]].
Making decisions based on both MV and NMV helps decision-makers assess the level of
resistance associated with various choices and reach more precise conclusions. Handling
ambiguous and precise data: Graphs and IFSs can be useful in modelling ambiguous
or imprecise data. By addressing both the degree of MV and the degree of ambiguity
or uncertainty associated with the details, they increase the flexibility of information
characterisation [[32], [36]].

Formal methodologies and procedures for the research and implementation of IFSs
and IFGs are made possible by the robust mathematical underpinnings of the intu-
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itionistic fuzzy objects. For use with IFSs and graphs, a wide range of operations,
aggregation techniques and algorithms have been created. Applications encompass net-
working, control systems, image recognition, clustering, and decision-making. Fuzzy
sets and graphs with intuitive properties are employed in these and other domains. It
has been demonstrated that they increase the precision and efficacy of decision-making
processes and offer a helpful toolkit for handling ambiguous or incomplete data in a
variety of sectors. Thus, by adding the concept of hesitation or indeterminacy, IFSs
and IFGs enhance conventional FS theory and graphs. For managing ambiguity and
incomplete information, they offer a more sophisticated framework that facilitates more
precise analysis and taking decisions in a variety of domains [8]. The phrase strong IFG
graph is used by the authors in [3], who also discuss various postulations about line
graphs and self-complimentary. The scientists in [42] looked at IFG elements and used
these concepts to look at other kinds of IFG elements.

In [41] discusses an enhanced technique for identifying dominant vertex set IFGs.
IFG theory is used to explain and evaluate the connectivity of uncertain networks; in
addition, [10] looks at the vertex connectivity inside an IFG. In [49], various product
operations are defined on IFG and some key concepts are illustrated on these graphs.
In [45], the fuzzy graph energy idea is expanded to include IFG. The clustering of fuzzy
and IFG vertices is the topic of the essay [34]. The same page also introduces a few
IFG-related parameters. One can analyze [48] to get a sense of how connected IFG
is. One can review [16] in order to analyze Index concurrently with connection Index.
An intuitionistic fuzzy model has been used to analyze and make decisions for several
individuals based on multiple factors. The two main pieces of information employed in
[7] are the expert dependability ratings and the assessments of their methods.

In [30], scientists computed the third and fourth iterations of the SOI for various
graph families inside an IFG setting. They then provided an application that makes use
of these indices to enhance the efficiency of immunization facilities. The kinds of intu-
itionistic fuzzy rough graphs are specified in [61]. Nodes and links are the representation
of physical networks, such as those found in circuits in electronics, biological intricate
systems, digital networks and social networks. In these networks, things are represented
by nodes and the relationships between them are shown by links. Cities may be seen
as nodes in the transportation system, for instance and the routes connecting them as
connections. Harry Wiener first used topological indices in 1947 when he examined how
pure structural change affected paraffin’s boiling temperature in [58]. The paraffin boil-
ing temperatures are found using the linear formula sγ = pα+qβ+r, where α is the sum
of the distances between any two carbon atoms in a molecule. This was how the Wiener
Index was first presented. Numerous requirements are met in [17] in terms of various
graph features as measured by the Wiener and Harary Indices. The SOI, a novel graph
constant, is defined in [25]. The relations between the SOI and topological indices is
discussed in the paper [18]. [13] Discusses the features of Sombor Indices, examines the
extreme values of many graphical networks and suggests possible uses. The 3rd, 4th, 5th

and 6th iterations of SOI were established by Ivan Gutman in [26].
In [27], the geometric arithmetic Index and the atomic bond connectivity Index for
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various graph networks are calculated. Using indices of topology is one method of deter-
mining the correlation between a chemical compound’s structure and its characteristics
[57]. A number of features for various graph families and applications pertaining to these
indices are described in [[24]-[9]], which also define Sombor Index and topological indices
of degree-two.

A FGwhich makes it simple to define the fuzzy relationship between any item, is one
of the most versatile mathematical tools available. In [33], a number of fundamental
topological metrics are established in the context of FGs, this study covers limits of
indices and its applications. In reference [1], the fuzzy Randic Index and fuzzy harmonic
Index are introduced, their maximum values are derived and an application pertaining to
cybercrime showcased. The novel fuzzy Wiener Index and connection Index for bibolar
fuzzy incidence graphs are defined and their interrelationship s are examined in research
article [23]. In the fuzzy structure, a few topological indices are specified and in [38], the
corresponding properties were discussed for pizza-graph. Together with a cybercrime
application shown. The intersection, union and extremals of bibolar FG indices are
computed, established and analyzed in [47]. The distance between the IFSs is a well-
known regularly utilized information metric to enhance decision-making performance.
Conversely, using different distance metrics produces different numerical results. As a
result, it is worthwhile to thoroughly research the procedure for selecting an appropriate
formula for calculating distance. Two types of connection indices are defined by the
IFG design and [40] shows examples of their use on the transport network and internet
routing system.

In reference [43], the complements of an IFG and a self-complimentary IFG are
delineated, their characteristics are examined and some functions are also implemented
for these graphs. In [20], a number of degree, order and size attributes are presented; the
identical article also defines full and regular IFGs. It is confirmed that operations on
a strong IFG produce another strong IFGs in [51], where three products are specified.
Illustrations are used to define and describe a few products and references [[52], [2]]
provide calculations for the degree of vertices of IFGs that resulted from this process.
[[15], [56]] provide the notions of constant IFG, the 2nd type of IFG and generalized
IFG. In [21], a few different kinds of irregular graphs are defined and some findings on
completely irregular IFGs are also covered.

1.3. Neutrosophic Graphs(NGs)

Regarding the neutrosophic sets (NSs), Smarandache gave them the go-ahead. The
truth membership value (T MV), falsity membership value (FMV) and indeterminacy
membership value (IMV) are all included. By this work, some of the features of the
strong NG proposed in [39] have been examined and an example is shown. Estab-
lishments are made about definitions, propositions, homomorphism and isomorphism
theorems in strong neutrosophic graphs. [22] Investigated the Wiener Index in neutro-
sophic graphs by Masoud Ghods and Zahra Rostami. A significant topological Index is
the Wiener Index. With reference to the geodesic distance between two vertices, this
Index is a distance-based Index. Specifically, following the definition of the Wiener Index
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in neutrosophic graphs. [35] In addition to providing some applications for computer
networks, highway systems and transport network flow, this author employed the notion
of connectedness indices in NGs. The first six Sombor numbers for single-valued neu-
trosophic fuzzy networks are defined by Anwar et al. in [6]. The six Sombor numbers
for these basic graph families are then calculated for single-valued neutrosophic fuzzy
graphs and the degree of vertices of various graph families is established in a single-
valued neutrosophic fuzzy framework. AL-Omeri and Kaviyarasu used the NG idea in
[4] to locate the Japan Earthquake Response Center. Complex NGs are constructed
by fusing concepts from graph theory with complex NSs, as stated Alqahtani et al. in
[5]. This offers an adaptable framework for handling challenging situations involving the
solution of problems. A number of procedures, including union, join and composition
are studied in detail to enhance the management of complex NGs.

1.4. Research Gaps

The SOI was developed to extend the analysis toward molecular descriptors’ calcu-
lation while the prior strategies pay their most attention to crisp graphs; however, crisp
graphs are not well suited in uncertain or fuzzy scenarios.

This gap emerges since, in real-world graphically modeled systems e.g. for decision-
making in molecular chemistry and urban planning, there are inevitable uncertainties
and ambiguities that crisp graph theory does not consider or handle well enough.

The research question to address this gap could be: As a contribution to answering
these questions, this paper aims to demonstrate the potential of certain formalisms in
dealing with uncertainty in networks-neutrosophic graph theory and NSOI in particu-
lar.

1.5. Motivation of Study

This research is motivated by the increasing demand for sophisticated methodologies
for system analysis where formal uncertainty prevails. Sombor Indices and FGs have
some limitations in describing the indeterminacy, therefore, the proposed neutrosophic
Sombor Indices expand a range of Indices and contribute to the investigation of the
graph properties. Extending the Sombor Indices of IFGs, it provides fresh approaches
toward uncertainty management in networks and can serve as a base for potential future
studies in a variety of diverse disciplines ranging from thermal power plant site selection
to brand optimization.

1.6. Objectives of the Study

For crisp graphs, a wide range of topological indices have been investigated and
shown to have several uses. However, it is seen in many real-world applications that
many scenarios cannot be represented by crisp graphs and hence FGs can only handle
MV. Determining a IFGs is necessary. To respond to this query, a IFGs must be
defined. The definition of the Sombre index for IFGs and certain findings pertaining
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to vertex and edge critical IFGs are presented in this work. The association between
SOI of IFGs and the first Zagreb Index was also found. We used the first full SOI in
site selection for thermal power plants at the conclusion of this work.

1.7. Structure of Article

The following describes the structure of this research article: Section 2: Given the
fundamental ideas behind neutrosophic graphs, Section 3 proposes a framework for SOI
of NG and discusses their theorems and example. Applications for site selection for
thermal power plant utilizing SOI of NG are described in Section 4. Section 5 provides
findings and suggests ideas for further research at the end.

Several symbols and their associated meanings are often used in this text. Table 1
below provides a summary of these symbols together with their explanations:

Symbols Abbreviations Symbols Abbreviations

SOI Sombor Index NGs Neutrosophic Graphs

NFZI Neutrosophic First Zagreb Index NSZI Neutrosophic Second Zagreb Index

FSs Fuzzy sets FGs Fuzzy Graph

MV Membership Value IFGs Intuitionistic Fuzzy Graphs

IFSs Intuitionistic Fuzzy Sets NMV Non Membership Value

NSs Neutrosophic sets NGs Neutrosophic Graphs

T MN Truth Membership Value IMN Indeterminacy Membership Value

FMN Falsity Membership Value NSOI Neutrosophic Sombor Index

NSOI Neutrosophic Sombor Index TSOI Truth Sombor Index

ISOI Indeterminacy Sombor Index FSOI Falsity Sombor Index

TFZI Truth First Zagreb Index IFZI Indeterminacy First Zagreb Index

FFZI Falsity First Zagreb Index

Table 1: List of symbols and abbreviations.

2. Preliminaries

Definition 1. [26] Consider a simple graph G = (V, E). Let dα represent the degree of
the vertex α ∈ V(G). I.Gutman developed a new vertex-degree-based topological Index
called SOI, which is defined as follows:

SOI(G) =
∑

α,β∈E(G) =
√
(dα)2 + (dβ)2.

Definition 2. [59] Assume D is a universal set. A fuzzy set S on D is a mapping
σ : D → [0, 1]. σ represents the fuzzy set S membership function. S = (u, σ) represents
a FS.

Definition 3. [50] Given a FG such that (G,⊒, σ), the SOI of FG is stated that by
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SOI(G) =
∑

α,β∈E(G)
√
(ϖ(α)dG(α))2 + (ϖ(β)dG(β))2.

Definition 4. [28] If G = (V,W,P) is a FG, the first Zagreb Index for FGs is stated
below:

NFZI(G) =
∑m

i=1[ϖ(βi)dG(βi)]
2.

Definition 5. [31] Let’s call G a FG. The fuzzy entire Zagreb Index of G is denoted by
M z

1 , which is defined as

M z
1 :

∑
β∈V (G)(ϖ(β)d(β))2 +

∑
ϱ∈E(G)(e(ϱ)d(ϱ))

2.

Definition 6. [31] Let (G,⊒, σ) be an FG. The second entire Zagreb Index of G is
indicated by M z

2 and its defined by

M z
2 :

∑
α,β is adjacent to eachother(w(α)d(α)w(β)d(β)) +∑

β is incidente to each orther(w(β)d(β)e(ϱ)d(ϱ)),

where w is the MV of a vertex and e is the MV of an edge.

Definition 7. [4] 1. A NG indicated as G = ((τα1, ıα2,𭟋α3), (τβ1, ıβ2,𭟋β3)) is sym-
bolized as G∗ = (V, E), where V is the set of vertices and Eis the collection of edges. The
functions τα1, ıα2 and 𭟋α3 are mappings from V to the closed interval [0, 1], various
degrees of MV , IV and NMV,accordingly, for each element yi ∈ V. It holds that
0 ≤ τα1(yi) + ıα2(yi) +𭟋α3(yi) ≤ 3 for all yi ∈ V.
2. Furthermore in the framework of G∗, the functions τβ1 , ıβ2 and 𭟋β3 are mappings
from V × V to the closed interval [0, 1], representing the degrees of MV , IV and NMV,
accordingly for each edge. (yi, yj) ∈ E.

τβ1(yi, yj) ≤ τα1(yi) ∧ τα1(yj),
ıβ1(yi, yj) ≤ ıα1(yi) ∧ ıα1(yj),

𭟋β1(yi, yj) ≥ 𭟋α1(yi) ∧ Fα1(yj),

0 ≤ τβ1(yi, yj) + ıβ2(yi, yj) +𭟋β3(yi, yj) ≤ 3.

3. SOI of Neutrosophic Graphs

Definition 8. Let G = (V, ϖ, ρ) be a NG then the SOI of neutrosophic graphs is define
as, follows

NSOI(G) =
∑

α,β∈E(G)

√
(τϖ(α)τdG(α))2 + (τϖ(β)τdG(β))2 (3.1)

+
√

(ıϖ(α)ıdG(α))2 + (ıϖ(β)ıdG(β))2 +
√
(𭟋ϖ(α)𭟋dG(α))2 + (𭟋ϖ(β)𭟋dG(β))2

Example 1. Let G be a NG with V(G) = {a, b, c, d} such that ϖ(a) = (0.7, 0.5, 0.3), ϖ(b) =
(0.6, 0.4, 0.5), ϖ(c) = (0.5, 0.4, 0.2), ϖ(d) = (0.3, 0.2, 0.1), ρ(ab) = (0.6, 0.4, 0.5), ρ(bc) =
(0.5, 0.4, 0.5), ρ(cd) = (0.3, 0.2, 0.2), ρ(ac) = (0.4, 0.5, 0.4), ρ(ad) = (0.3, 0.1, 0.4) dG(a) =
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Figure 1: Neutrosophic graph

(1.3, 1, 1.3), dG(b) = (1.1, 0.8, 1), dG(c) = (1.2, 1.1, 1.1), dG(d) = (0.6, 0.3, 0.6).

NSOI(G) =
∑

α,β∈E(G)

√
(τϖ(α)τdG(α))2 + (τϖ(β)τdG(β))2

+
√
(ıϖ(α)ıdG(α))2 + (ıϖ(β)ıdG(β))2 +

√
(𭟋ϖ(α)𭟋dG(α))2 + (𭟋ϖ(β)𭟋dG(β))2

NSOI(G) =
√

((0.7)(1.3))2 + ((0.6)(1.1))2 + ((0.5)(1))2 + ((0.4)(0.8))2 + ((0.3)(1.3))2 + ((0.5)(1.3))2

+
√
((0.7)(1.3))2 + ((0.5)(1.2))2 + ((0.5)(1))2 + ((0.4)(1.1))2 + ((0.3)(1.1))2 + ((0.2)(1.1))2

+
√
((0.7)(1.3))2 + ((0.3)(0.6))2 + ((0.5)(1))2 + ((0.2)(0.3))2 + ((0.3)(1.3))2 + ((0.1)(0.6))2

+
√
((0.6)(1.1))2 + ((0.5)(1.2))2 + ((0.4)(0.8))2 + ((0.4)(1.1))2 + ((0.5)(1))2 + ((0.2)(1.1))2

+
√
((0.5)(1.2))2 + ((0.3)(0.6))2 + ((0.4)(1.1))2 + ((0.2)(0.3))2 + ((0.2)(1.1))2 + ((0.1)(0.6))2

NSOI(G) = 6.5653.

Theorem 1. Let the neutrosophic path graph be denoted by Pm̂. Consequently,
NSOI(ρm̂) ≤ 6(

√
2(m̂− 3) +

√
5).

Proof. A neutrosophic path G = Pm̂ has V(Pm̂) = {β1, β2, β3, ..βm̂} and E(Pm̂) =
{ϱ1, ϱ2, ϱ3, ..ϱm̂−1}. Assume that ϖ1, ϖ2, ϖ3, ...., ϖm̂ and ρ1, ρ2, ρ3, ρm̂−1, respectively,
denote the type ofMVs of Pm̂’s vertices and edges. Then clearly dG(β1) = ρ(ϱ1), dG(βm̂) =
ρ(ϱm̂−1) and dG(βi) = ρ(ϱi) + ρ(ϱi+1),for 2 ≤ i ≤ m̂− 2. Therefore,

NSOI(Pm̂) = TSOI(Pm̂) + ISOI(Pm̂) + FSOI(Pm̂) (3.2)

TSOI(Pm̂) =
∑

α,β∈E(G)

√
(τϖ(α)τdG(α))2 + (τϖ(β)τdG(β))2
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=
√

(τϖ(β1)τdG(β1))2 + (τϖ(β2)τdG(β2))2

+
√
(τϖ(βm̂−1)τdG(βm̂−1))2 + (τϖ(βm̂)τdG(βm̂))2

+
∑

βi,βj∈E(G)−{ϱ1,ϱm̂−1}

√
(τϖ(βi)τdG(βi))2 + (τϖ(βj)τdG(βj))2

=
√

(τϖ(β1)τρ(ϱ1))2 + (τϖ(β2)(τρ(ϱ1) + τρ(ϱ2)))2

+
√
(τϖ(βm̂)τρ(ϱm̂−1))2 + (τϖ(βm̂−1)(τρ(ϱm̂−1) + τρ(ϱm̂−2)))2

+
∑

βi,βj∈E(G)−{ϱ1,ϱm̂−1}

√
(τϖ(βi)(τρ(ϱi) + τρ(ϱj+1)))2 + (τϖ(βj)(τρ(ϱj) + ρ(ϱj+1)))2

=
√
(τϖ(β1)(τρ(ϱ1))2 + (τϖ(β2)2(τρ(ϱ1)2 + τρ(ϱ2)2) + 2τρ(ϱ1)τρ(ϱ2))

+
√

τϖ(βm̂)2τρ(ϱm̂−1)2 + (τϖ(βm̂−1)2(τρ(ϱm̂−1)2 + τρ(ϱm̂−2)2 + 2τρ(ϱm̂−1)τρ(ϱm̂−2)))

+
∑

βi,βj∈E(G)−{ϱ1,ϱm̂−1}

√√√√(τϖ(βi)
2(τρ(ϱi)

2 + τρ(ϱi+1)
2 + 2τρ(ϱi)τρ(ϱi+1)))

+ (τϖ(βj)
2(τρ(ϱj)

2 + τρ(ϱj+1)
2 + 2τρ(ϱj)τρ(ϱj+1))),

since 0 ≤ τϖ(β) ≤ 1 and 0 ≤ τρ(ϱ) ≤ 1. Therefore,

TSOI(Pm̂) =
∑

α,β∈E(G)

√
12.12 + 12(12 + 12) + 2(1))(1).1 +

√
12.12 + 12.12 + 12.12 + 2(12).1.1

= (m̂− 3)
√
12.12 + 12.12 + 2(12).1.1 + 12.12 + 12.12 + 2(12).1.1

TSOI(Pm̂) = 2
√
2(m̂− 3) + 2

√
5

TSOI(Pm̂) = 2(
√
2(m̂− 3) +

√
5) (3.3)

ISOI(Pm̂) =
∑

α,β∈E(G)

√
(ıϖ(α)ıdG(α))2 + (ıϖ(β)ıdG(β))2

=
√
(ıϖ(β1)ıdG(β1))2 + (ıϖ(β2)ıdG(β2))2

+
√

(ıϖ(βm̂−1)ıdG(βm̂−1))2 + (ıϖ(βm̂)ıdG(βm̂))2

+
∑

βi,βj∈E(G)−{ϱ1,ϱm̂−1}

√
(ıϖ(βi)ıdG(βi))2 + (ıϖ(βj)ıdG(βj))2

=
√

(ıϖ(β1)ıρ(ϱ1))2 + (ıϖ(β2)(ıρ(ϱ1) + ıρ(ϱ2)))2

+
√
(ıϖ(βm̂)ıρ(ϱm̂−1))2 + (ıϖ(βm̂−1)(ıρ(ϱm̂−1) + ıρ(ϱm̂−2)))2
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+
∑

βi,βj∈E(G)−{ϱ1,ϱm̂−1}

√
(ıϖ(βi)(ıρ(ϱi) + ıρ(ϱj+1)))2 + (ıϖ(βj)(ıρ(ϱj) + ρ(ϱj+1)))2

=
√
(ıϖ(β1)(ıρ(ϱ1))2 + (ıϖ(β2)2(ıρ(ϱi)2 + ıρ(ϱ2)2) + 2ıρ(ϱ1)ıρ(ϱ2))

+
√
ıϖ(βm̂)2ıρ(ϱm̂−1)2 + (ıϖ(βm̂−1)2(ıρ(ϱm̂−1)2 + ıρ(ϱm̂−2)2 + 2ıρ(ϱm̂−1)ıρ(ϱm̂−2)))

+
∑

βi,βj∈E(G)−{ϱ1,ϱm̂−1}

√√√√(ıϖ(βi)
2(ıρ(ϱi)

2 + ıρ(ϱi+1)
2 + 2ıρ(ϱi)ıρ(ϱi+1)))

+ (ıϖ(βj)
2(ıρ(ϱj)

2 + ıρ(ϱj+1)
2 + 2ıρ(ϱj)ıρ(ϱj+1))),

since 0 ≤ ıϖ(α) ≤ 1 and 0 ≤ ıρ(ϱ) ≤ 1. Therefore,

ISOI(Pm̂) =
∑

α,β∈E(G)

√
12.12 + 12(12 + 12) + 2(1))(1).1 +

√
12.12 + 12.12 + 12.12 + 2(12).1.1

= (m̂− 3)
√
12.12 + 12.12 + 2(12).1.1 + 12.12 + 12.12 + 2(12).1.1

ISOI(Pm̂) = 2
√
2(m̂− 3) + 2

√
5

ISOI(Pm̂) = 2(
√
2(m̂− 3) +

√
5) (3.4)

and

FSOI(Pm̂) =
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dG(α))2 + (𭟋ϖ(β)𭟋dG(β))2

=
√

(𭟋ϖ(β1)𭟋dG(β1))2 + (𭟋ϖ(β2)𭟋dG(β2))2

+
√

(𭟋ϖ(βm̂−1)𭟋dG(βm̂−1))2 + (𭟋ϖ(βm̂)𭟋dG(βm̂))2

+
∑

βi,βj∈E(G)−{ϱ1,ϱm̂−1}

√
(𭟋ϖ(βi)𭟋dG(βi))2 + (𭟋ϖ(βj)𭟋dG(βj))2

=
√

(𭟋ϖ(β1)𭟋ρ(ϱ1))2 + (𭟋ϖ(β2)(𭟋ρ(ϱ1) +𭟋ρ(ϱ2)))2

+
√
(𭟋ϖ(βm̂)𭟋ρ(ϱm̂−1))2 + (𭟋ϖ(βm̂−1)(𭟋ρ(ϱm̂−1) +𭟋ρ(ϱm̂−2)))2

+
∑

βi,βj∈E(G)−{ϱ1,ϱm̂−1}

√
(𭟋ϖ(βi)(𭟋ρ(ϱi) +𭟋ρ(ϱj+1)))2 + (𭟋ϖ(βj)(𭟋ρ(ϱj) + ρ(ϱj+1)))2

=
√

(𭟋ϖ(β1)(𭟋ρ(ϱ1))2 + (𭟋ϖ(β2)2(𭟋ρ(ϱi)2 +𭟋ρ(ϱ2)2) + 2𭟋ρ(ϱ1)𭟋ρ(ϱ2)

+
√

𭟋ϖ(βm̂)2𭟋ρ(ϱm̂−1)2 + (𭟋ϖ(βm̂−1)2(𭟋ρ(ϱm̂−1)2 +𭟋ρ(ϱm̂−2)2 + 2𭟋ρ(ϱm̂−1)𭟋ρ(ϱm̂−2)))

+
∑

βi,βj∈E(G)−{ϱ1,ϱm̂−1}

√√√√(𭟋ϖ(βi)
2(𭟋ρ(ϱi)

2 +𭟋ρ(ϱi+1)
2 + 2𭟋ρ(ϱi)𭟋ρ(ϱi+1)))

+ (𭟋ϖ(βj)
2(𭟋ρ(ϱj)

2 +𭟋ρ(ϱj+1)
2 + 2𭟋ρ(ϱj)𭟋ρ(ϱj+1))),
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since 0 ≤ 𭟋ϖ(β) ≤ 1 and 0 ≤ 𭟋ρ(ϱ) ≤ 1. Therefore,

FSOI(Pm̂) =
∑

α,β∈E(G)

√
12.12 + 12(12 + 12) + 2(1))(1).1 +

√
12.12 + 12.12 + 12.12 + 2(12).1.1

= (m̂− 3)
√
12.12 + 12.12 + 2(12).1.1 + 12.12 + 12.12 + 2(12).1.1

FSOI(Pm̂) = 2
√
2(m̂− 3) + 2

√
5

FSOI(Pm̂) = 2(
√
2(m̂− 3) +

√
5). (3.5)

Substitute (3.3), (3.4) and (3.5) in (3.2),

NSOI(Pm̂) = 2(
√
2(m̂− 3) +

√
5) + 2(

√
2(m̂− 3) +

√
5) + 2(

√
2(m̂− 3) +

√
5)

= 6(
√
2(m̂− 3) +

√
5).

Hance proof is compete.

Theorem 2. Let Cm̂ denote a neutrosophic cycle graph respectively, then
NSOI(Cm̂) ≤ 6

√
2m̂.

Proof. Let G = Cm̂ be a neutrosophic cycle with V(Cm̂) = {v1, v2, v3, ..., vm̂} and
E(Cm̂) = {ϱ1, ϱ2, ϱ3, ..., ϱm̂−1}. Let ϖ1, ϖ2, ϖ3, ..., ϖm̂ and ρ1, ρ2, ρ3, ..., ρm̂−1 be the
there of type of MVs of vertices and edges of Cm̂ respectively. Then, clearly dG(βi) =
ρ(ϱi) + ρ(ϱi+1). Therefore,

NSOI(Cm̂) = TSOI(Cm̂) + ISOI(Cm̂) + FSOI(Cm̂) (3.6)

TSOI(Cm̂) =
∑

α,β∈E(G)

√
(τϖ(α)τdG(α))2 + (τϖ(β)τdG(β))2

=
∑

βi,βj∈E(G)

√
(τϖ(βi)(τρ(ϱi) + τρ(ϱi+1)))2 +

√
(τϖ(βj)(τρ(ϱj) + τρ(ϱj+1)))2

+
∑

βi,βj∈E(G)

√√√√(τϖ(βi)
2(τρ(ϱi)

2 + τρ(ϱi+1)
2 + 2τρ(ϱi)τρ(ϱi+1)))

+ (τϖ(βj)
2(τρ(ϱj)

2 + τρ(ϱj+1)
2 + 2τρ(ϱj)τρ(ϱj+1))),

since 0 ≤ τϖ(β) ≤ 1 and 0 ≤ τρ(ϱ) ≤ 1. Therefore,

TSOI(Cm̂) ≤ n
√
12.12 + 12.12 + 2(12).1.1 + 12.12 + 12.12 + 2(12).1.1

TSOI(Cm̂) ≤ 2
√
2m̂ (3.7)

ISOI(Cm̂) =
∑

α,β∈E(G)

√
(ıϖ(α)ıdG(α))2 + (ıϖ(β)ıdG(β))2
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=
∑

βi,βj∈E(G)

√
(ıϖ(βi)(ıρ(ϱi) + ıρ(ϱi+1)))2 +

√
(ıϖ(βj)(ıρ(ϱj) + ıρ(ϱj+1)))2

+
∑

βi,βj∈E(G)

√√√√(ıϖ(βi)
2(ıρ(ϱi)

2 + ıρ(ϱi+1)
2 + 2ıρ(ϱi)ıρ(ϱi+1)))

+ (ıϖ(βj)
2(ıρ(ϱj)

2 + ıρ(ϱj+1)
2 + 2ıρ(ϱj)ıρ(ϱj+1))),

since 0 ≤ ıϖ(β) ≤ 1 and 0 ≤ ıρ(ϱ) ≤ 1. Therefore,

ISOI(Cm̂) ≤ n
√
12.12 + 12.12 + 2(12).1.1 + 12.12 + 12.12 + 2(12).1.1

ISOI(Cm̂) ≤ 2
√
2m̂. (3.8)

FSOI(Cm̂) =
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dG(α))2 + (𭟋ϖ(β)𭟋dG(β))2

=
∑

βi,βj∈E(G)

√
(𭟋ϖ(βi)(𭟋ρ(ϱi) +𭟋ρ(ϱi+1)))2 +

√
(𭟋ϖ(βj)(𭟋ρ(ϱj) +𭟋ρ(ϱj+1)))2

+
∑

βi,βj∈E(G)

√√√√(𭟋ϖ(βi)
2(𭟋ρ(ϱi)

2 +𭟋ρ(ϱi+1)
2 + 2𭟋ρ(ϱi)𭟋ρ(ϱi+1)))

+ (𭟋ϖ(βj)
2(𭟋ρ(ϱj)

2 +𭟋ρ(ϱj+1)
2 + 2𭟋ρ(ϱj)𭟋ρ(ϱj+1))),

since , 0 ≤ 𭟋ϖ(β) ≤ 1 and 0 ≤ 𭟋ρ(ϱ) ≤ 1. Therefore,

FSOI(Cm̂) ≤ n
√

12.12 + 12.12 + 2(12).1.1 + 12.12 + 12.12 + 2(12).1.1

FSOI(Cm̂) ≤ 2
√
2m. (3.9)

Substitute (3.7), (3.8) and (3.9) in (3.6).

NSOI(ρm̂) ≤ 2
√
2m+ 2

√
2m+ 2

√
2m

NSOI(ρm̂) ≤ 6
√
2m.

Hance proof is compete.

Theorem 3. Let Km̂ denotes neutrosophic complete graph respectively, then

NSOI(Km̂) ≤ 3( m̂(m̂−1)
2

√
2m̂− 2).

Proof. Let G = Km̂ be a neutrosophic complete graph with V(Km̂) = {β1, β2, β3, ..., βm̂}
and E(Km̂) = {ϱ1, ϱ2, ϱ3, .., ϱm̂−1}.
Let ϖ1, ϖ2, ϖ3, ..., ϖm̂ and ρ1, ρ2, ρ3, ..., ρm̂ be the there of type of MVs of vertices and
edges of Km̂ respectively. Then clearly, dG(βi) =

∑
βi∼ϱj

ρ(ϱj). Therefore,

NSOI(Km̂) = TSOI(Km̂) + ISOI(Km̂) + FSOI(Km̂) (3.10)
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TSOI(Km̂) =
∑

α,β∈E(G)

√
(τϖ(α)τdG(α))2 + (τϖ(β)τdG(β))2

=
∑

βi,βj∈E(G)

√
(τϖ(βi)2(

∑
βi∼ϱj

τρ(ϱj)2)) + (τϖ(βj)2(
∑
βj∼ϱi

τρ(ϱi)2))

≤
∑

βi,βj∈E(G)

√
τϖ(βi)2(m̂− 1)τρ(ϱj)2 + τϖ(βj)2(m̂− 1)τρ(ϱi)2,

since, 0 ≤ τϖ(β) ≤ 1 and 0 ≤ τρ(ϱ) ≤ 1. Therefore,

TSOI(Km̂) ≤
∑

βi,βj∈E(G)

√
(m̂− 1) + (m̂− 1)

TSOI(Km̂) =
m̂(m̂− 1)

2

√
2m̂− 2. (3.11)

ISOI(km̂) =
∑

α,β∈E(G)

√
(ıϖ(α)ıdG(α))2 + (ıϖ(β)ıdG(β))2

=
∑

βi,βj∈E(G)

√
(ıϖ(βi)2(

∑
βi∼ϱj

ıρ(ϱj)2)) + (ıϖ(βj)2(
∑
βj∼ϱi

ıρ(ϱi)2))

≤
∑

βi,βj∈E(G)

√
ıϖ(βi)2(m̂− 1)ıρ(ϱj)2 + ıϖ(βj)2(m̂− 1)ıρ(ϱi)2,

since, 0 ≤ ıϖ(β) ≤ 1 and 0 ≤ ıρ(ϱ) ≤ 1. Therefore,

ISOI(Km̂) ≤
∑

βi,βj∈E(G)

√
(m̂− 1) + (m̂− 1)

ISOI(Km̂) =
m̂(m̂− 1)

2

√
2m̂− 2 (3.12)

and

FSOI(Km̂) =
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dG(α))2 + (𭟋ϖ(β)𭟋dG(β))2

=
∑

βi,βj∈E(G)

√
(𭟋ϖ(βi)2(

∑
βi∼ϱj

𭟋ρ(ϱj)2)) + (𭟋ϖ(βj)2(
∑
βj∼ϱi

𭟋ρ(ϱi)2))

≤
∑

βi,βj∈E(G)

√
𭟋ϖ(βi)2(m̂− 1)𭟋ρ(ϱj)2 +𭟋ϖ(βj)2(m̂− 1)𭟋ρ(ϱi)2,
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since, 0 ≤ 𭟋ϖ(β) ≤ 1 and 0 ≤ 𭟋ρ(ϱ) ≤ 1. Therefore,

FSOI(Km̂) ≤
∑

βi,βj∈E(G)

√
(m̂− 1) + (m̂− 1)

FSOI(Km̂) =
m̂(m̂− 1)

2

√
2m̂− 2. (3.13)

Substitute (3.11), (3.12) and (3.13) in (3.10), we get

NSOI(Km̂) ≤ m̂(m̂− 1)

2

√
2m̂− 2 +

m̂(m̂− 1)

2

√
2m̂− 2 +

m̂(m̂− 1)

2

√
2m̂− 2

NSOI(Km̂) ≤ 3(
m̂(m̂− 1)

2
)
√
2m̂− 2.

Lemma 1. Let G = K1,m̂−1 be a neutrosophic star and statisties the condition τϖ(0) ≤
τϖ(β), ıϖ(0) ≤ ıϖ(β) and 𭟋ϖ(0) ≤ 𭟋ϖ(β) where 0 is the center of the neurotrophic star,
then, NSOI(K1, m̂− 1) ≤ 3(m̂− 1)

√
m̂2 − 2m̂+ 2.

Proof. Let G = K1,m̂−1 be a neutrosophic star graph with V(K1,m̂−1) = {β1, β2, β3, .....βm̂}
and E(K1,m̂−1) = {ϱ1, ϱ2, ϱ3, .....ϱm̂−1}. Let ϖ1, ϖ2, ϖ3, .....ϖm̂ and ρ1, ρ2, ρ3, .....ρm̂ be
the MVs of vertices and edges of Km̂.
Let β1 = 0 be the center of the star. It is given that ϖ(0) ≤ ϖ(β). Then, clearly
dG(βi) = ϖ(0) and dG(0) = (m̂− 1)ϖ(0). Therefor,

NSOI(K1, m̂− 1) = TSOI(K1, m̂− 1) + ISOI(K1, m̂− 1) + FSOI(K1, m̂− 1)
(3.14)

TSOI(K1, m̂− 1) =
∑

α,β∈E(G)

√
(τϖ(α)τdG(α))2 + (τϖ(β)τdG(β))2

=
∑

βi,βj∈E(G)

√
(τϖ(βi)2(τdG(0))2) + (τϖ(βj)2(τdG(βj))2)

=
∑

βi,βj∈E(G)

√
(τϖ(βi)2((m̂− 1)τϖ(0))2) + (τϖ(βj)2(τϖ(0)))2,

since , 0 ≤ τϖ(β) ≤ 1 and 0 ≤ τρ(ϱ) ≤ 1. Therefore,

TSOI(K1, m̂− 1) ≤ (m̂− 1)[
√
(12.((m̂− 1)2.12)) + (12.12)]

= (m̂− 1)
√
m̂2 − 2m̂+ 2 (3.15)
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ISOI(K1, m̂− 1) =
∑

α,β∈E(G)

√
(ıϖ(α)ıdG(α))2 + (ıϖ(β)ıdG(β))2

=
∑

βi,βj∈E(G)

√
(ıϖ(βi)2(ıdG(0))2) + (ıϖ(βj)2(ıdG(βj))2)

=
∑

βi,βj∈E(G)

√
(ıϖ(βi)2((m̂− 1)ıϖ(0))2) + (ıϖ(βj)2(ıϖ(0)))2,

since 0 ≤ ıϖ(β) ≤ 1 and 0 ≤ ıρ(ϱ) ≤ 1. Therefore,

ISOI(K1, m̂− 1) ≤ (m̂− 1)[
√
(12.((m̂− 1)2.12)) + (12.12)]

ISOI(K1, m̂− 1) = (m̂− 1)
√

m̂2 − 2m̂+ 2 (3.16)

FSOI(K1, m̂− 1) =
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dG(α))2 + (𭟋ϖ(β)𭟋dG(β))2

=
∑

βi,βj∈E(G)

√
(𭟋ϖ(βi)2(𭟋dG(0))2) + (𭟋ϖ(βj)2(𭟋dG(βj))2)

=
∑

βi,βj∈E(G)

√
(𭟋ϖ(βi)2((m̂− 1)𭟋ϖ(0))2) + (𭟋ϖ(βj)2(𭟋ϖ(0)))2,

since 0 ≤ 𭟋ϖ(β) ≤ 1 and 0 ≤ 𭟋ρ(ϱ) ≤ 1. Therefore,

FSOI(K1, m̂− 1) ≤ (m̂− 1)[
√

(12.((m̂− 1)2.12)) + (12.12)]

FSOI(K1, m̂− 1) = (m̂− 1)
√

m̂2 − 2m̂+ 2 (3.17)

Substitute (3.15), (3.16) and (3.17) in (3.14), we get

NSOI(K1, m̂− 1) = (m̂− 1)
√
m̂2 − 2m̂+ 2 + (m̂− 1)

√
m̂2 − 2m̂+ 2 + (m̂− 1)

√
m̂2 − 2m̂+ 2

NSOI(K1, m̂− 1) = 3((m̂− 1)
√
m̂2 − 2m̂+ 2).

Hence the proof.

Definition 9. Let G = (V, ϖ, ρ) be a NG then the first Zagreb Index of neutrosophic
graph is defined as follows:

NFZI(G) =
∑

α,β∈E(G)

[(τϖ(α)τdG(α)) + (τϖ(β)τdG(β))] + [(ıϖ(α)ıdG(α)) + (ıϖ(β)ıdG(β))]

(3.18)

+ [(𭟋ϖ(α)𭟋dG(α)) + (𭟋ϖ(β)𭟋dG(β))]
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Theorem 4. Let G = (V, ϖ, ρ) be a NFZI of graph denoted the first Zagreb Index for
neurotrophic graphs. Then NSOI(G) ≤ NFZI(G).

Proof. Let G = (V,W,P) be a NG. By the definition of SOI for NGs we have,

NSOI(G) = TSOI(G) + ISOI(G) + FSOI(G) (3.19)

TSOI(G) =
∑

α,β∈E(G)

√
(τϖ(α)τdG(α))2 + (τϖ(β)τdG(β))2

=
∑

α,β∈E(G)

√
(τϖ(α)τdG(α)) + (τϖ(β)τdG(β))2 − 2τϖ(α)τϖ(β)τdG(α)τdG(β)

≤
∑

α,β∈E(G)

√
(τϖ(α)τdG(α) + τϖ(β)τdG(β))2

TSOI(G) =
∑

α,β∈E(G)

(τϖ(α)τdG(α) + τϖ(β)τdG(β)) (3.20)

ISOI(G) =
∑

α,β∈E(G)

√
(ıϖ(α)ıdG(α))2 + (ıϖ(β)ıdG(β))2

=
∑

α,β∈E(G)

√
(ıϖ(α)ıdG(α)) + (ıϖ(β)ıdG(β))2 − 2ıϖ(α)ıϖ(β)ıdG(α)ıdG(β)

≤
∑

α,β∈E(G)

√
(ıϖ(α)ıdG(α) + ıϖ(β)ıdG(β))2

ISOI(G) =
∑

α,β∈E(G)

(ıϖ(α)ıdG(α) + ıϖ(β)ıdG(β)) (3.21)

FSOI(G) =
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dG(α))2 + (𭟋ϖ(β)𭟋dG(β))2

=
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dG(α)) + (𭟋ϖ(β)𭟋dG(β))2 − 2𭟋ϖ(α)𭟋ϖ(β)𭟋dG(α)𭟋dG(β)

≤
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dG(α) +𭟋ϖ(β)𭟋dG(β))2

FSOI(G) =
∑

α,β∈E(G)

(𭟋ϖ(α)𭟋dG(α) +𭟋ϖ(β)𭟋dG(β)) (3.22)
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Substitute (3.20), (3.21) and (3.22) in (3.19), we get

NSOI(G) =
∑

α,β∈E(G)

(τϖ(α)τdG(α) + τϖ(β)τdG(β)) +
∑

α,β∈E(G)

(ıϖ(α)ıdG(α) + ıϖ(β)ıdG(β))

+
∑

α,β∈E(G)

(𭟋ϖ(α)𭟋dG(α) +𭟋ϖ(β)𭟋dG(β))

NSOI(G) = NFZI(G).

Example 2. Let G be a NG with V(G) = {p, q, r, s, t} such that ϖ(p) = (0.7, 0.6, 0.4), ϖ(q) =
(0.6, 0.5, 0.4), ϖ(s) = (0.5, 0.4, 0.3), ϖ(r) = (0.5, 0.4, 0.3), ϖ(t) = (0.8, 0.7, 0.4) and ϖ(pq) =
(0.6, 0.4, 0.5), ϖ(qr) = (0.4, 0.4, 0.5), ϖ(rs) = (0.4, 0.3, 0.5), ϖ(st) = (0.5, 0.4, 0.5), ϖ(tq) =
(0.6, 0.5, 0.5). dG(p) = (0.6, 0.4, 0.5), dG(q) = (1, 0.9, 1), dG(r) = (0.8, 0.7, 1), dG(s) = (0.9, 0.7, 0.5),

Figure 2: Neutrosophic Graph

dG(t) = (1.1, 0.9, 1).

NSOI(G) = TSOI(G) + ISOI(G) + FSOI(G) (3.23)

TSOI(G) =
∑

α,β∈E(G)

√
(τϖ(α)τdG(α))2 + (τϖ(β)τdG(β))2

=
√
(τϖ(p)τdG(p))2 + (τϖ(q)τdG(q))2 +

√
(τϖ(q)τdG(q))2 + (τϖ(r)τdG(r))2

+
√
(τϖ(r)τdG(r))2 + (τϖ(s)τdG(s))2 +

√
(τϖ(s)τdG(s))2 + (τϖ(t)τdG(t))2

+
√
(τϖ(t)τdG(t))2 + (τϖ(q)τdG(q))2
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TSOI(G) =
√
((0.7)(0.6))2 + ((0.6)(1))2 +

√
((0.6)(1))2 + ((0.5)(0.8))2 +

√
((0.5)(0.8))2 + ((0.5)(0.9))2

+
√
((0.5)(0.9))2 + ((0.8)(1.1))2 +

√
((0.8)(1.1))2 + ((0.6)(1))2

TSOI(G) = 4.6069 (3.24)

ISOI(G) =
∑

α,β∈E(G)

√
(ıϖ(α)ıdG(α))2 + (ıϖ(β)ıdG(β))2

=
√
(ıϖ(p)ıdG(p))2 + (ıϖ(q)ıdG(q))2 +

√
(ıϖ(q)ıdG(q))2 + (ıϖ(r)ıdG(r))2

+
√
(ıϖ(r)ıdG(r))2 + (ıϖ(s)ıdG(s))2 +

√
(ıϖ(s)ıdG(s))2 + (ıϖ(t)ıdG(t))2

+
√
(ıϖ(t)ıdG(t))2 + (ıϖ(q)ıdG(q))2

ISOI(G) =
√

((0.6)(0.4))2 + ((0.5)(0.6))2 +
√
((0.5)(0.7))2 + ((0.4)(0.8))0.7 +

√
((0.4)(0.7))2 + ((0.4)(0.7))2

+
√
((0.4)(0.7))2 + ((0.7)(0.9))2 +

√
((0.7)(0.9))2 + ((0.5)(0.9))2

ISOI(G) = 2.7387 (3.25)

and

FSOI(G) =
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dG(α))2 + (𭟋ϖ(β)𭟋dG(β))2

=
√

(𭟋ϖ(p)𭟋dG(p))2 + (𭟋ϖ(q)𭟋dG(q))2 +
√

(𭟋ϖ(q)𭟋dG(q))2 + (𭟋ϖ(r)𭟋dG(r))2

+
√
(𭟋ϖ(r)𭟋dG(r))2 + (𭟋ϖ(s)𭟋dG(s))2 +

√
(𭟋ϖ(s)𭟋dG(s))2 + (𭟋ϖ(t)𭟋dG(t))2

+
√

(𭟋ϖ(t)𭟋dG(t))2 + (𭟋ϖ(q)𭟋dG(q))2

FSOI(G) =
√

((0.4)(0.5))2 + ((0.4)(1))2 +
√
((0.4)(1))2 + ((0.3)(1))0.7 +

√
((0.3)(1))2 + ((0.3)(0.5))2

+
√
((0.3)(0.5))2 + ((0.4)(0.1))2 +

√
((0.4)(1))2 + ((0.4)(1))2

FSOI(G) = 2.7387 (3.26)

Substitute (3.24), (3.25) and (3.26) in (3.23), we get

NSOI(G) = 4.6069 + 2.7387 + 2.7387

NSOI(G) = 9.2297.

Now consider the first Zagreb Index of neutrosophic graphs.

NFZI(G) = TFZI(G) + IFZI(G) + FFZI(G) (3.27)

TFZI(G) =
∑

α,β∈E(G)

[τϖ(α)τdG(α) + τϖ(β)τdG(β)]

= (τϖ(p)τdG(p) + τϖ(q)τdG(q)) + (τϖ(q)τdG(q) + τϖ(r)τdG(r)) + (τϖ(r)τdG(r)
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+ τϖ(s)τdG(s)) + (τϖ(s)τdG(s) + τϖ(t)τdG(t)) + (τϖ(t)τdG(t) + τϖ(q)τdG(q))

= ((0.7)(0.6) + (0.6)(1)) + ((0.6)(1) + (0.5)(0.8)) + ((0.5)(0.8) + (0.5)(0.9))

+ ((0.5)(0.9) + (0.8)(1.1)) + ((0.8)(1.1) + (0.6)(1))

TFZI(G) = 6.8 (3.28)

IFZI(G) =
∑

α,β∈E(G)

[ıϖ(α)ıdG(α) + ıϖ(β)ıdG(β)]

= (ıϖ(p)ıdG(p) + ıϖ(q)ıdG(q)) + (ıϖ(q)ıdG(q) + ıϖ(r)ıdG(r)) + (ıϖ(r)ıdG(r)

+ ıϖ(s)ıdG(s)) + (ıϖ(s)ıdG(s) + ıϖ(t)ıdG(t)) + (ıϖ(t)ıdG(t) + ıϖ(q)ıdG(q))

= ((0.6)(0.4) + (0.5)(0.6)) + ((0.5)(0.7) + (0.4)(0.8)) + ((0.4)(0.7) + (0.4)(0.7))

+ ((0.4)(0.7) + (0.7)(0.9)) + ((0.7)(0.9) + (0.5)(0.9))

IFZI(G) = 3.87 (3.29)

FFZI(G) =
∑

α,β∈E(G)

[𭟋ϖ(α)𭟋dG(α) +𭟋ϖ(β)𭟋dG(β)]

= (𭟋ϖ(p)𭟋dG(p) +𭟋ϖ(q)𭟋dG(q)) + (𭟋ϖ(q)𭟋dG(q) +𭟋ϖ(r)𭟋dG(r)) + (𭟋ϖ(r)𭟋dG(r)

+𭟋ϖ(s)𭟋dG(s)) + (𭟋ϖ(s)𭟋dG(s) +𭟋ϖ(t)𭟋dG(t)) + (𭟋ϖ(t)𭟋dG(t) +𭟋ϖ(q)𭟋dG(q))

FFZI(G) = ((0.4)(0.5) + (0.4)(1)) + ((0.4)(1) + (0.3)(1)) + ((0.3)(1) + (0.3)(0.5)) + ((0.3)(0.5)

+ (0.4)(0.1)) + ((0.4)(1) + (0.4)(1))

FFZI(G) = 3.04 (3.30)

Substitute (3.28), (3.29) and (3.30) in (3.27), we get

NFZI(G) = 6.8 + 3.87 + 3.04

NFZI(G) = 13.71.

Thus, cleary NSOI(G) < NFZI(G).

Theorem 5. let G = (V, ϖ, ρ) be a n-vertex NG with m-edges. Then NSOI(G) ≥
NSOI(G − e), where e ∈ E(G).

Proof. Let G = (V,W,P) be a NG and H = G − e is a graph obtained by removing
an edge e ∈ E(G). The MVs in G and H are given by the relationship.
τϖG(β) ≥ τϖH(β), ıϖG(β) ≥ ıϖH(β) and𭟋ϖG(β) ≥ 𭟋ϖH(β) and τρG(ϱ) ≥ τρH(ϱ), ıρG(ϱ) ≥
ıρH(ϱ) and 𭟋ρG(ϱ) ≥ 𭟋ρH(ϱ). This show that τdG(β) ≥ τdH(β), ıdG(β) ≥ ıdH(β) and
𭟋dG(β) ≥ 𭟋dH(β). Now,

NSOI(G) = TSOI(G) + ISOI(G) + FSOI(G) (3.31)

TSOI(G) =
∑

α,β∈E(G)

√
(τϖ(α)τdG(α))2 + (τϖ(β)τdG(β))2
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≥
∑

α,β∈E(G)

√
(τϖ(α)τdH(α))2 + (τϖ(β)τdH(β))2

= TSOI(H)

= TSOI(G − e) (3.32)

ISOI(G) =
∑

α,β∈E(G)

√
(ıϖ(α)ıdG(α))2 + (ıϖ(β)ıdG(β))2

≥
∑

α,β∈E(G)

√
(ıϖ(α)ıdH(α))2 + (ıϖ(β)ıdH(β))2

= ISOI(H)

ISOI(G) = ISOI(G − e) (3.33)

FSOI(G) =
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dG(α))2 + (𭟋ϖ(β)𭟋dG(β))2

≥
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dH(α))2 + (𭟋ϖ(β)𭟋dH(β))2

= FSOI(H)

FSOI(G) = FSOI(G − e) (3.34)

Substitute (3.32), (3.33) and (3.34) in (3.31), we get
NSOI(G) ≥ NSOI(G − ϱ).

Example 3. Form the Example 2, we can obtained, NSPI(G)= 9.2297.

Now, Let H = G − {bc} be a graph obtained by removing an edge bc ∈ E(G). The
MVs of the vertices of H will remain same as in G but there is a change in degree of the
b and c in H. Then dG(b) = (1.2, 0.9, 0.9) and then dG(c) = (0.4, 0.3, 0.5). Now,

NSOI(G) = TSOI(H) + ISOI(H) + FSOI(H) (3.35)

TSOI(G) =
∑

α,β∈E(H)

√
(τϖ(α)τdH(α))2 + (τϖ(β)τdH(β))2

=
√

(τϖ(a)τdH(a))2 + (τϖ(b)τdH(b))2 +
√

(τϖ(b)τdH(b))2 + (τϖ(e)τdH(e))2

+
√

(τϖ(ϱ)τdH(ϱ))2 + (τϖ(d)τdH(d))2 +
√
(τϖ(d)τdH(d))2 + (τϖ(c)τdH(c))2

TSOI(G) =
√
((0.7)(0.6))2 + ((0.6)(1.2))2 +

√
((0.6)(1.2))2 + ((0.8)(1.1))2
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Figure 3: NG on 5-vertices

+
√

((0.8)(1.1))2 + ((0.5)(0.9))2 +
√
((0.5)(0.9))2 + ((0.5)(0.4))2

= 0.833 + 1.137 + 0.988 + 0.4924

TSOI(G) = 3.4504 (3.36)

ISOI(G) =
∑

α,β∈E(H)

√
(ıϖ(α)τdH(α))2 + (ıϖ(β)ıdH(β))2

=
√

(ıϖ(a)ıdH(a))2 + (ıϖ(b)ıdH(b))2 +
√
(ıϖ(b)ıdH(b))2 + (ıϖ(e)ıdH(e))2

+
√
(ıϖ(e)ıdH(e))2 + (ıϖ(d)ıdH(d))2 +

√
(ıϖ(d)ıdH(d))2 + (ıϖ(c)ıdH(c))2

ISOI(G) =
√

((0.6)(0.4))2 + ((0.5)(0.9))2 +
√
((0.5)(0.9))2 + ((0.7)(0.9))2

+
√
((0.7)(0.9))2 + ((0.4)(0.7))2 +

√
((0.4)(0.7))2 + ((0.4)(0.3))2

= 0.51 + 0.774 + 0.689 + 0.3046

ISOI(G) = 2.2776 (3.37)

FSOI(G) =
∑

α,β∈E(H)

√
(𭟋ϖ(α)τdH(α))2 + (𭟋ϖ(β)𭟋dH(β))2

=
√

(𭟋ϖ(a)𭟋dH(a))2 + (𭟋ϖ(b)𭟋dH(b))2 +
√

(𭟋ϖ(b)𭟋dH(b))2 + (𭟋ϖ(e)𭟋dH(e))2

+
√

(𭟋ϖ(e)𭟋dH(e))2 + (𭟋ϖ(d)𭟋dH(d))2 +
√
(𭟋ϖ(d)𭟋dH(d))2 + (𭟋ϖ(c)𭟋dH(c))2
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FSOI(G) =
√

((0.4)(0.5))2 + ((0.4)(1.0))2 +
√
((0.4)(1.0))2 + ((0.4)(1))2

+
√
((0.4)(1))2 + ((0.3)(1))2 +

√
((0.3)(1))2 + ((0.3)(0.5))2

= 0.447 + 0.565 + 0.5 + 0.334

FSOI(G) = 1.846 (3.38)

Substitute (3.36), (3.37) and (3.38) in (3.35), we get

NZI(G) = 3.4504 + 2.2776 + 1.846

NZI(G) = 7.574.

Thus clearly NSOI(G) > NSOI(G)− e.

Figure 4: Neutrosophic Graph G − {bc}

Theorem 6. Let G = (V, ϖ, ρ) be a n-vertex neutrosophic graph. Then NSOI(G) ≥
NSOI(G − β), where β ∈ V(G).

Proof. Let G = (V, ϖ, ρ) be a NG and H = G − β is a graph obtained by removing
an edge β ∈ V(G). The MVs in G and H are given by the relationship.
τϖG(β) ≥ τϖH(β), ıϖG(β) ≥ ıϖH(β) and𭟋ϖG(β) ≥ 𭟋ϖH(β) and τρG(ϱ) ≥ τρH(ϱ), ıρG(ϱ) ≥
ıρH(ϱ) and 𭟋ρG(ϱ) ≥ 𭟋ρH(ϱ). Now, This show that dG(β) ≥ dH(β) and dG(ρ) ≥ dH(ρ)

NSOI(G) = TSOI(H) + ISOI(H) + FSOI(H) (3.39)

TSOI(G) =
∑

α,β∈E(G)

√
(τϖ(α)τdH(α))2 + (τϖ(β)τdH(β))2

≥
∑

α,β∈E(H)

√
(τϖ(α)τdH(α))2 + (τϖ(β)τdH(β))2

= TSOI(H)
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TSOI(G) = TSOI(G − β) (3.40)

ISOI(G) =
∑

α,β∈E(G)

√
(ıϖ(α)ıdH(α))2 + (ıϖ(β)ıdH(β))2

≥
∑

α,β∈E(H)

√
(ıϖ(α)ıdH(α))2 + (ıϖ(β)ıdH(β))2

= ISOI(H)

ISOI(G) = ISOI(G − β) (3.41)

FSOI(G) =
∑

α,β∈E(G)

√
(𭟋ϖ(α)𭟋dH(α))2 + (𭟋ϖ(β)𭟋dH(β))2

≥
∑

α,β∈E(H)

√
(𭟋ϖ(α)𭟋dH(α))2 + (𭟋ϖ(β)𭟋dH(β))2

= FSOI(H)

FSOI(G) = FSOI(G − β) (3.42)

Substitute (3.40), (3.41) and (3.42) in (3.39), we get

NSOI(G) = TSOI(G − β) + ISOI(G − β) + FSOI(G − β)

NSOI(G) > NSOI(G − β)

Thus clearly NSOI(G) > NSOI(G − β).

Example 4. Let H = G − {d} be a NG obtained by removing a vertex d from figure 4.
Clearly, the memberships values of H remains same for the vertices and there is a change
in degree of vertices e and c. Then dH(c) = (0.4, 0.4, 0.5) and dH(ϱ) = (0.6, 0.7, 0.4).

NSOI(G) = TSOI(H) + ISOI(H) + FSOI(H) (3.43)

TSOI(H) =
√
(τϖ(a)τdH(a))2 + (τϖ(b)τdH(b))2 +

√
(τϖ(b)τdH(b))2 + (τϖ(c)τdH(c))2

+
√
(τϖ(b)τdH(b))2 + (τϖ(e)TdH(e))2

=
√

((0.7)(0.6))2 + ((0.6)(1.6))2 +
√
((0.6)(1.6))2 + ((0.6)(1.6))2 +

√
((0.5)(0.4))2 + ((0.8)(0.6))2

= 1.047 + 0.9806 + 0.52

TSOI(H) = 2.5476 (3.44)
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ISOI(H) =
√
(ıϖ(a)ıdH(a))2 + (ıϖ(b)ıdH(b))2 +

√
(ıϖ(b)ıdH(b))2 + (ıϖ(c)ıdH(c))2

+
√

(ıϖ(b)ıdH(b))2 + (ıϖ(e)ıdH(e))2

=
√
((0.6)(0.4))2 + ((0.5)(1.3))2 +

√
((0.5)(1.3))2 + ((0.4)(0.4))2 +

√
((0.5)(1.3))2 + ((0.7)(0.5))2

= 0.6928 + 0.6694 + 0.7382

ISOI(H) = 2.1004 (3.45)

FSOI(H) =
√
(𭟋ϖ(a)𭟋dH(a))2 + (𭟋ϖ(b)𭟋dH(b))2 +

√
(𭟋ϖ(b)𭟋dH(b))2 + (𭟋ϖ(c)𭟋dH(c))2

+
√

(𭟋ϖ(b)𭟋dH(b))2 + (𭟋ϖ(e)𭟋dH(e))2

=
√
((0.4)(0.5))2 + ((0.4)(1.4))2 +

√
((0.4)(1.4))2 + ((0.3)(0.5))2 +

√
((0.4)(1.4))2 + ((0.4)(0.5))2

= 0.5946 + 0.5797 + 0.5946

FSOI(H) = 1.7689.............(44). (3.46)

Substitute (3.44), (3.45) and (3.46) in (3.43), we get

NSOI(G) = 2.5476 + 2.1004 + 1.7689

= 6.4169

NSOI(G) > NSOI(G − α)

Thus clearly NSOI(G) > NSOI(G − α).

Figure 5: Neutrosophic Graph G − {d}

4. Site Selection for Thermal Power Plant by using SOI in NGs

Now a day without power plants, people wouldn’t have reliable access to electricity, which
would make it difficult to live and work in the ways we’re accustomed to today. Power plants
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help distribute energy to large populations, making it possible for society to function smoothly
and efficiently.

Selecting an appropriate location for a thermal power plant is a crucial choice that affects the
facility’s overall performance, operational expenses, and efficiency over time. To make sure that
the chosen site satisfies all technical and financial needs while also taking social and environmental
aspects into account, a thorough examination of many different elements must be conducted.
Finding a site that fully satisfies every ideal criteria is difficult, but the objective is to choose a
location that gives the best possible balance of these characteristics, assuring the plant’s long-
term survival and financial rationale by using neutrosophic graph.

4.1. Essential Conditions for Building and Functioning:

Several essential requirements must be met for a thermal power plant to be built and oper-
ated. The soil stability at the location and the availability of water supplies are two of the most
crucial elements.

1. Fuel Supply(F): One of the most important considerations when choosing a location
is its closeness to a consistent fuel source. Fossil fuels including oil, gas, and coal are usually
used in thermal power plants. Long-distance fuel transportation can result in considerable cost
increases, which lower the plant’s overall productivity and profitability. Thus, it is best to locate
the facility near important fuel supplies or transit corridors like pipelines or railroads. This close
proximity guarantees a consistent supply of fuel to the plant while reducing the risk of supply
disruptions and transportation expenditures.

2. Soil type and geology(SG): The construction and stability of the power plant depend
heavily on the site’s geology and soil composition. For the plant’s safety and to prevent structural
problems, the foundation needs to be placed on solid ground. It is best to stay away from
areas with unstable soils, such as those that are vulnerable to landslides, erosion, or subsidence.
To reduce the danger of earthquakes, the location should also have little seismic risk or be
devoid of seismic activity. To determine if the soil and underlying rock formations are suitable
for sustaining large buildings like cooling towers, boilers and turbines, a thorough geotechnical
assessment is necessary.

3. Water Availability(WA): For thermal power plants, where it is mostly utilized for
steam generation and cooling, water is an essential resource. A steady and sufficient supply of
water is essential to the plant’s productivity and stability of operations. Thus, locations close to
big bodies of water, such lakes, rivers, or reservoirs, are frequently optimal. Water availability
must be weighed against environmental factors, such as the effect on aquatic ecosystems and
water rights, though. Alternative cooling techniques or water sources, including seawater or
treated wastewater, may be required in desert places where water is scarce.

4. Land Availability(LA): A thermal power plant needs land for auxiliary infrastructure,
such as fuel storage, water treatment facilities and waste disposal sites, in addition to the primary
facilities. The location should have enough room for upcoming improvements or expansions. For
equipment placement and to save building expenses, the terrain should also be level or moderately
sloping. The ownership and present usage of the property should also be taken into account, as
clearing and acquiring land may be expensive and time-consuming.

5. Facilities for Transportation(FT): Building and running a thermal power plant
requires an effective transportation infrastructure. Heavy equipment, building supplies, and
plant parts need to be carried to the construction site. Fuel and other required supplies must
be supplied on a regular basis once the plant is operating. Being close to ports, railroads and
highways may greatly lower logistical difficulties and transportation costs. Additionally, efficient
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transportation networks are essential for plant staff mobility and for enabling emergency services.
In the process we can identify the order of key components by using neutrosophic SOI of

thermal thermal power plant. The relationship among the key components like Fuel Supply, Soil
type and geology, Water Availability, Land Availability and Facilities for Transportation of the
thermal power plant is constructed as Neutrosophic Graphs and it is given below.

Figure 6: NG based on Fuel Supply(F)

d(𭟋1) = (1.0, 1.0, 0.9), d(𭟋2) = (0.9, 0.9, 1.2), d(𭟋3) = (1.2, 1, 1.5), d(F4) = (1.4, 1.2, 1.3),

d(F5) = (1.3, 1.1, 1.1).

NSOI(G) =
√

[((0.6)(1.0))2 + ((0.5)(0.9))2] + [((0.5)(1.0))2 + ((0.4)(0.9))2] + [((0.3)(0.9))2 + ((0.5)(1.2))2]

=
√
[((0.5)(0.9))2 + ((0.7)(1.2))2] + [((0.4)(0.9))2 + ((0.6)(1))2] + [((0.5)(1.2))2 + ((0.8)(1.5))2]

=
√
[((0.7)(1.2))2 + ((0.8)(1.4))2] + [((0.6)(1))2 + ((0.7)(1.2))2] + [((0.8)(1.5))2 + ((0.6)(1.3))2]

=
√
[((0.8)(1.4))2 + ((0.7)(1.3))2] + [((0.7)(1.2))2 + ((0.6)(1.1))2] + [((0.6)(1.3))2 + ((0.5)(1.1))2]

=
√
[((0.7)(1.3))2 + ((0.6)(1.0))2] + [((0.6)(1.1))2 + ((0.5)(1.0))2] + [((0.5)(1.1))2 + ((0.3)(0.9))2]

NSOI(G) = 8.747.

d(W1) = (1.5, 1.3, 1.2), d(W2) = (1.9, 1.6, 1.6), d(W3) = (1.2, 1, 0.9), d(W4) = (2.0, 1.8, 1.5),

d(W5) = (1.2, 1.1, 1.0).

NSOI(G) =
√

[((0.8)(1.5))2 + ((0.7)(1.9))2] + [((0.7)(1.3))2 + ((0.8)(1.6))2] + [((0.6)(1.2))2 + ((0.5)(1.6))2]

=
√
[((0.7)(1.9))2 + ((0.6)(1.9))2] + [((0.8)(1.6))2 + ((0.5)(1.6))2] + [((0.5)(1.6))2 + ((0.4)(1.6))2]

=
√
[((0.6)(1.9))2 + ((0.9)(2))2] + [((0.5)(1.6))2 + ((0.7)(1.8))2] + [((0.4)(1.6))2 + ((0.5)(1.5))2]

=
√
[((0.9)(2))2 + ((0.6)(1.2))2] + [((0.7)(1.8))2 + ((0.6)(1.1))2] + [((0.5)(1.5))2 + ((0.4)(1.0))2]

=
√
[((0.9)(2))2 + ((0.8)(1.5))2] + [((0.7)(1.8))2 + ((0.7)(1.3))2] + [((0.5)(1.5))2 + ((0.6)(1.2))2]
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Figure 7: NG basesd on Water Availability(WA)

=
√
[((0.6)(1.2))2 + ((0.7)(1.9))2] + [((0.7)(1.8))2 + ((0.8)(1.6))2] + [((0.4)(1))2 + ((0.5)(1.6))2]

NSOI(G) = 15.847

Figure 8: NG basesd on Soil type and geology(SG)

d(S1) = (1.2, 1.0, 0.9), d(S2) = (1.2, 1, 1.7), d(S3) = (1.1, 0.9, 0.7), d(S4) = (1.0, 0.8, 0.9),

d(S5) = (1.1, 0.9, 1.0).

NSOI(G) =
√

[((0.7)(1.2))2 + ((0.6)(1.2))2] + [((0.8)(1))2 + ((0.5)(1))2] + [((0.4)(0.9))2 + ((0.4)(0.7))2]

=
√
[((0.6)(1.2))2 + ((0.7)(1.1))2] + [((0.5)(1))2 + ((0.6)(0.9))2] + [((0.4)(0.7))2 + ((0.4)(0.7))2]

=
√
[((0.7)(1.1))2 + ((0.5)(1))2] + [((0.6)(0.9))2 + ((0.4)(0.8))2] + [((0.4)(0.7))2 + ((0.3)(0.9))2]

=
√
[((0.5)(1))2 + ((0.8)(1.1))2] + [((0.4)(0.8))2 + ((0.6)(0.9))2] + [((0.3)(0.9))2 + ((0.5)(1.0))2]

=
√
[((0.8)(1.1))2 + ((0.7)(1.2))2] + [((0.6)(0.9))2 + ((0.8)(1))2] + [((0.5)(1))2 + ((0.4)(0.9))2]

NSOI(G) = 7.0375
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Figure 9: NG basesd on Land Availability(LA)

d(L1) = (1.4, 1.2, 1.6), d(L2) = (1.4, 1.3, 1.4), d(L3) = (1.3, 1.2, 1.2), d(L4) = (1.2, 1, 1.2),

d(L5) = (1.3, 1.1, 1.4).

NSOI(G) =
√

[((0.7)(1.4))2 + ((0.8)(1.4))2] + [((0.6)(1.2))2 + ((0.7)(1.3))2] + [((0.8)(1.6))2 + ((0.5)(1.4))2]

=
√
[((0.8)(1.4))2 + ((0.7)(1.3))2] + [((0.7)(1.3))2 + ((0.8)(1.2))2] + [((0.5)(1.4))2 + ((0.6)(1.2))2]

=
√
[((0.7)(1.3))2 + ((0.6)(1.2))2] + [((0.8)(1.2))2 + ((0.5)(1.0))2] + [((0.6)(1.2))2 + ((0.4)(1.2))2]

=
√
[((0.6)(1.2))2 + ((0.8)(1.3))2] + [((0.5)(1.0))2 + ((0.7)(1.1))2] + [((0.4)(1.2))2 + ((0.6)(1.4))2]

=
√
[((0.8)(1.3))2 + ((0.7)(1.4))2] + [((0.7)(1.1))2 + ((0.7)(1.3))2] + [((0.6)(1.4))2 + ((0.8)(1.6))2]

NSOI(G) = 10.6409

Figure 10: NG basesd on Facilities for Transportation(FT)

d(FT1) = (1.3, 1.1, 1.1), d(FT2) = (1.1, 0.9, 0.9), d(FT3) = (1.0, 0.9, 0.7), d(FT4) = (1.3, 1.2, 1.2),

d(FT5) = (1.3, 1.2, 1.2).

NSOI(G) =
√

[((0.7)(1.3))2 + ((0.6)(1.1))2] + [((0.6)(1.1))2 + ((0.5)(0.9))2] + [((0.5)(1.1))2 + ((0.4)(0.9))2]

=
√
[((0.6)(1.1))2 + ((0.5)(1.0))2] + [((0.5)(0.9))2 + ((0.4)(0.9))2] + [((0.4)(0.9))2 + ((0.3)(0.7))2]

=
√
[((0.5)(1.0))2 + ((0.6)(1.3))2] + [((0.4)(0.9))2 + ((0.6)(1.2))2] + [((0.3)(0.7))2 + ((0.5)(1.2))2]
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=
√
[((0.6)(1.3))2 + ((0.8)(1.3))2] + [((0.6)(1.2))2 + ((0.7)(1.2))2] + [((0.5)(1.2))2 + ((0.6)(1.2))2]

=
√
[((0.8)(1.3))2 + ((0.7)(1.3))2] + [((0.7)(1.2))2 + ((0.6)(1.1))2] + [((0.6)(1.2))2 + ((0.5)(1.1))2]

NSOI(G) = 7.9165

4.2. Decision Making

Key Components NSOI Valus

Fuel Supply(F) 8.747

Water Availability(WA) 15.847

Soil type and geology(SG) 7.0375

Land Availability(LA) 10.6409

Facilities for Transportation(FT) 7.9165

Table 2: Neutrosophic SOI Values

Figure 11: Graphical Representation of SOI Values

The Neutrosophic SOI values presented in table 1 Water Availability(WA) plays a vital role
in selecting suitable place to establish thermal power plant. The various attributes taken into
considerations to calculate SOI are graphically represented in Fig 10.

Since the graphical networks are selected through defining the connection between elements
of the system for fuel supply, water and the kind of the soil. These factors are crucial because the
firm’s power plant operations depend on them as well as the structure’s stability. Experiences
indicate that geotechnical factors such as the type of Water Availability(WA) features are critical
in the design of foundations required to support the construction of the plant in the long run.

In practical use, unsound ground presents a variety of structural hazards which is why they
pose critical importance in large-scale power plant construction such as thermal power plants.
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The dependencies can be represented using neutrosophic graphs and particularly when dealing
with uncertainties.

4.3. Comparative Analysis

The SOIs for the fuzzy and IFGs have been defined, the usage is more limited, as compared
to the critical path, strong, complete, complementary, wheel and star graphs. Weight for MVs,
IMVs and NMVs assigned for vertices, can be from 0 to 1 as the domain of X is defined more
thoroughly over closed interval [0, 1]. This is similar to the Neutrosophic framework which has not
been designed in this manner but is based on capturing the value of the unknown component of
an expression as well as the truth value. Sombor topological Indices in NG theory are somewhat
less formalized than crisp graph theory since each vertex can be only one value, and yet they
are more versatile and can be applied wherever some decision has to be made, from fighting
cyber-crime to diagnosing diseases and planning for roads. We cannot do that in crisp graph
theory because vertices can have only one value assigned to them in this mathematical concept.
It is also more all-encompassing from this perspective, for our work is wider and more inclusive.

4.4. Sensitivity Analysis

The evaluation of NSOI values, through sensitivity analysis, determines the significance of
multiple factors involved in decision making for the selection of an ideal site for the establishment
of thermal power plant. From Table 2, Fuel Supply (F) has NSOI of 8.747, Water Availability
(WA)15.847, Soil Type and Geology (SG) 7.0375, Land Availability (LA) 10.6409 and Facilities
for Transportation (FT) 7.9165. Due to the rather high NSOI value with respect to the factors
of Soil Type and Geology (SG), it can be stated that these factors have a strong influence on
selecting a site for genset construction, pointing to the fact that these conditions are critical for
obtaining the required thermal power plant efficiency. The various attributes that have been
used to develop the NSOI model have been illustrated in Fig. 11 in order to create a more
informative visual context for decision makers. This analysis would put forward that SG has to
be considered side by side some other significant aspects like Land Availability or Fuel Supply
while screening potential locations for thermal power plant. Due to this, the decision-makers can
develop solutions that can improve the energy infrastructure’s robustness and endurance under
conditions of uncertainty and variability of environmental factors reducing the vulnerability as
noted in the research. Consequently, it enables comprehensive decision-making leading to the
development of thermal power plants.

4.5. Advantages and limitations

As a result of our examination, the following are the main benefits and Limitations:

• The NSOI is very effective in a real-life application since it allows the use of imprecise
and uncertain data.

• However, some practitioners might notice that NSOI is less friendly, especially in the
sense that the computations may require some understanding.

• The support of multiple parameters (MV, IMV and NMV) enables NSOI to provide a
more refined understanding of relations between characteristics.

• In contrast, numbers that may be objectively obtained may significantly influence the
results which in turn will significantly vary from one analysis to another.
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• However, its cross-disciplinary usefulness means that the NSOI is important; however,
the lack of substantial empirical research to support the validity of the technique means
that there may be worries over its reliability in terms of real-life implementation.

5. Conclusion

In this research, we proposed the SOI for neutrosophic graphs to measure the overall struc-
tural and communication resilience of networks under uncertainty. Apart from setting up con-
straints for specific neutrosophic graphs, the research posited the neutrosophic first and second
Zagreb Indices. Based on our main findings, SOI can serve as a helpful instrument to reveal
structural characteristics in conditions when their nature remains unclear. The numerical anal-
ysis revealed that the maximum value of the SOI corresponds to the critical components that
should be given more focus when choosing the right location of thermal power plants taking into
account the former’s operation efficiency with the later’s operational constraints. NGs could be
employed to achieve rational criteria in the decision-making processes, particularly in complex
ones. This research is important because it bridges the gap between works proposing such Indices
and their feasible realizations.

5.1. Future Work

Wiener Index, Zagreb Indices, Randic type Indices, Schult type Indices, Dominating Indice
of neutrosophic graph and its applications.
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