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Nomenclature

Symbol Description Symbol Description

a, b Positive constants B0 Magnetic field strength
C Fluid concentration Cr Reference concentration
Cfx Drag force coefficient d Positive constant
D Brownian diffusion coefficient E Activation energy parameter
Ea Coefficient of activation energy Ec Eckert number
h(t) Film thickness k Porous medium permeability
K1 Chemical reaction coefficient K2 Chemical reaction parameter
M Magnetic field parameter Nux Nusselt number
Pr Prandtl number qc Mass flux coefficient
qt Heat flux coefficient Q Heat generation coefficient
S Unsteadiness parameter Sc Schmidt number
T Temperature Tr Reference temperature
us Sheet velocity x, y Cartesian coordinates
ρ Fluid density β Casson parameter
µ Fluid viscosity σ Electrical conductivity coefficient
κ Thermal conductivity coefficient η Similarity variable
ν0 Kinematic viscosity at the slit δ Heat generation parameter
θ Non-dimensional temperature λ Porous parameter
ψ The dimensional stream function α Viscosity parameter
ϵ Slip velocity coefficient ϕ Non-dimensional concentration
ε1 Thermal conductivity parameter ε2 Diffusivity parameter
ε3 Temperature difference parameter ε4 Slip velocity parameter
γ Dimensionless film thickness

1. Introduction

The phenomenon of flow obtained through a stretching surface has been a subject
of great interest and complexity, captivating the attention of engineers and researchers
for many years. This phenomenon finds applications in various industrial sectors, en-
compassing processes such as coating, painting, melt-spinning, and metal production. In
these operations, a continuous stretching of a thin sheet or film of material occurs, in-
ducing flow in the initially stationary fluid. This flow behavior is intricate and relies on
the characteristics of both the material being stretched and the fluid itself. Gaining a
thorough understanding of this phenomenon is crucial for optimizing and enhancing the
efficiency of these processes [10]. Further, enhancing efficiency and performance further
requires a grasp of heat transfer mechanisms and their applications in various engineering
systems. As such, prior research [22] provides a full explanation of this phenomenon and
its important applications.

Film flow refers to the movement of a slender liquid layer over a surface, driven by
external forces such as gravity or shear stress. It is characterized by the presence of at
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least one free boundary. Thin films are employed in the field of coating. Coating plays
a crucial role in numerous manufacturing processes for microelectronic devices, including
hard discs, and microelectronic chips. The model took into account various factors, in-
cluding inertial forces, disjoining friction, surface tension, and curvature, that influence
the system dynamics. The significance of studying thin film flow (TFF) over an unsta-
ble stretching sheet (SS) has motivated numerous researchers ([5], [8]) to conduct studies
addressing various practical problems within this field.

The analysis of varying heat flux and its effects on Casson thin film flow and HT
generated by an unsteady SS is highly significant. This inquiry gives a pivotal role in
overseeing the complexities of heat mass transfer, particularly in contexts associated with
cooling processes. Megahed’s research [18], which underscores the detailed examination
of the influence of variable heat flux, offers valuable insights into the intricacies of Casson
TFF and the dynamics of HT associated with it. Moreover, the significance of fluid
properties exhibiting variability and their influence on Casson thin film behavior can be
elucidated through the research conducted by Mahmoud and Megahed [16]. Their study
delves into the intricate aspects of how fluid properties, subject to variations, play a crucial
role in shaping the characteristics of Casson thin films. This research contributes to the
broader comprehension of fluid dynamics, shedding light on the interplay of various factors
influencing the motion and thermal properties of Casson liquid films.

It is important to highlight that analytical solutions for most ODEs can not be ob-
tained. As a result, many researchers strive to obtain approximate solutions for ODEs.
Here, we specifically concentrate on numerically solving the proposed model. With this
goal in mind, a hybrid spectral collocation method (SCM) is applied, employing the SCP6s.
It is important to emphasize that SCM has been effectively utilized to computationally
handle various mathematical models. In our proposed technique, the utilization of these
basis functions results in a system of nonlinear algebraic equations. The solution of these
equations is used to expand the functions in a polynomial form. The primary merit of this
methods, as opposed to previously developed SCMs in references ([7], [11], [12], [14]), is
its distinctive feature. Another benefit lies in the convergence order, which indicates the
method’s higher accuracy compared to others. Additionally, we will give an error analysis
of the Chebyshev approximations used in this technique.

From the literature mentioned earlier, it has been observed that the combined influence
of heat generation, viscous dissipation, magnetohydrodynamic mass HT chemical reaction,
and variable fluid properties in a porous medium has not been explored in the context
of a Casson TLF flow across an unsteady stretching surface. Hence, the motivation and
novel aspect of this study lies in utilizing the SCM, specifically depending on SCP6s to
investigate the problem under study.

2. Flow analysis

This work inspects the behavior of a liquid film flowing over a stretched sheet immersed
in a porous medium, taking into consideration the endurance of a magnetic field. The flow
in the thin film, with a thickness denoted h(t), is induced by the stretching of the sheet
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along the x-axis at a velocity of us(x, t). The precise definition of this phenomenon can
be found in the reference cited as [15].

us(x, t) = b x(1− at)−1, a, b > 0.

It must seen that for the current analysis, only quantities of t that satisfy t < 1
a are

considered acceptable. In addition, we consider the incompressible flow within a TLF that
is situated within a porous medium with permeability k (see Figure 1 for more detail).

Figure 1. Geometry of flow problem

Moreover, in our investigation, we assume that the sheet is related to variable heat flux
qt(x, t) and variable mass flux qc(x, t). Both of these fluxes depend on x & t and are
related according to the equation provided in reference [15]:

qt(x, t) = −κ
(
∂T

∂y

)
= x2 d Tr (1− at)

−5
2 , (1)

qc(x, t) = −D
(
∂C

∂y

)
= x2 dCr (1− at)

−5
2 . (2)

In the previous equations, the construction of equations (1) and (2) recognizes that both
the heat flux and the mass flux between the SS and the LF increase proportionally with
x2. Furthermore, these fluxes exhibit a time-dependent growth pattern, indicating that
both the heat flux and mass flux intensify over time. In our analysis, we deem the re-
spectable interrelationship between both µ(T ) and κ(T ) of the Casson fluid and the fluid
temperature. This connection is captured by the formula presented in reference [19]:

µ(T ) = µ0 Exp

[
−α

(
T − T0

Tr
d x2

(1−at)2
1
κ0

√
ν0
b

)]
,

κ(T ) = κ0

[
1 + ε1

(
T − T0

Tr
d x2

(1−at)2
1
κ0

√
ν0
b

)]
,

D(C) = D0

[
1 + ε2

(
C − C0

Cr
d x2

(1−at)2
1
D0

√
ν0
b

)]
.
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The parameters in these equations play a decisive role in characterizing the attitude of
the model. In this work, our focus is to maintain a similarity solution. To achieve this
objective, the transverse applied magnetic fieldB(t) is expressed by the approach presented
by Abel et al. [3]:

B(t) = B0 [1− at]
−1
2 ,

where B0 is a constant. Considering the previously stated assumptions, the temperature,
concentration, and velocity, fields in the thin liquid layer are believed by the momentum,
concentration, and thermal energy equations in 2Dim., which will be formulated as follows
([1], [19]):

∂u

∂x
+
∂v

∂y
= 0, (3)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

ρ

(
1 +

1

β

)
∂

∂y

(
µ(T )

∂u

∂y

)
− µ(T )

ρk

(
1 +

1

β

)
u− σB2

0

ρ
u, (4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

ρcp

∂

∂y

(
κ(T )

∂T

∂y

)
+

Q

ρcp
+
µ(T )

ρcp

(
1 +

1

β

)(
∂u

∂y

)2

, (5)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
=

∂

∂y

(
D(C)

∂C

∂y

)
−K1(C − C0). (6)

Here, we must note that in Thumma and Mishra’s previously published study [24], the last
term of the energy equation indicates viscous dissipation, which explains the conversion
of kinetic energy into thermal energy due to viscous forces inside the fluid. Also, the
expression for the term Q is derived from the work of Gomathy and Kumar [9]:

Q =
κus
xν0

δ(T − T0).

In the fluid model, the term λ is > 0 when heat is generated and < 0 when heat is
absorbed. The boundary conditions (B.Cs) suitable for the current system are defined as
follows [19]:

v = 0, u = us(x, t), −κ∂T
∂y

= qt(x, t), −D∂C
∂y

= qc(x, t), at y = 0, (7)

v =
dh

dt
,

∂C

∂y
= 0,

∂u

∂y
= 0,

∂T

∂y
= 0, at y = h(t). (8)

We will define the newly introduced dimensionless variables f , ϕ, and θ, along with the
similarity parameter η, in the following manner [19]:

ψ =
√
ν0b (1− at)

−1
2 xf(η), η =

√
b

ν0
(1− at)

−1
2 y, (9)

ϕ(η) =
C − C0

Cr
d x2

(1−at)2
1
D0

√
ν0
b

, θ(η) =
T − T0

Tr
d x2

(1−at)2
1
κ0

√
ν0
b

.
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In this context, the variable ψ represents the physical stream function, which inherently
satisfies the mass conservation equation (3). Moreover, u & v are dependent on ψ, as
illustrated by the subsequent equations:

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

The mathematical problem presented in the system (4)-(6) along with B.Cs (7)-(8) can
now be simplified to a set of ODEs and their corresponding B.Cs, which are given below:(
1 +

1

β

)(
f ′′′ − α θ′f ′′

)
e−α θ + ff ′′− f ′2−Mf ′−S

(η
2
f ′′ + f ′

)
−λ

(
1 +

1

β

)
f ′ e−α θ = 0,

(10)
1

Pr

(
(1 + ε1 θ)θ

′′ + ε1 θ
′2)+ fθ

′ − 2f
′
θ − S

(
2θ +

η

2
θ
′
)
+

δ

Pr
(1 + ε1θ) θ

+ Ec

(
1 +

1

β

)
f ′′ 2e−α θ = 0,

(11)

(1 + ε2 ϕ)ϕ
′′ + ε2 ϕ

′2 + Sc
[
fϕ

′ − 2f ′ϕ− S
(
2ϕ+

η

2
ϕ′
)
−K2ϕ

]
= 0, (12)

f(0) = 0, f ′(0) = 1, θ′(0) =
−1

1 + ε1θ(0)
, ϕ′(0) =

−1

1 + ε2ϕ(0)
, (13)

f(γ) =
γ

2
S, f ′′(γ) = 0, θ′(γ) = 0, ϕ′(γ) = 0. (14)

The explanations for each parameter that impacts the momentum, concentration, and
energy fields are outlined in the following form:

S =
a

b
, M =

σB2
0

ρ b2
, λ =

ν0(1− at)

kb
, Ec =

κ0 b
5
2

cp d Tr
√
ν0
,

Pr =
µ0 cp
κ0

, Sc =
ν0
D0

, K2 =
K1(1− at)

b
.

Furthermore, equation (9) provides a means to compute the parameter γ, given by the
following expression:

γ =

(
bρ

µ0(1− at)

) 1
2

h(t).

In the complete system of equations (10)-(12), it is evident that γ (unknown parameter)
needs to be determined.

3. Industrial quantities

There are three considerable physical measures that play a crucial role in practical
applications. These quantities must be acknowledged and discussed individually. They
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include Nux, Cfx, and Shx. The definitions and expressions for these quantities are
provided below:

CfxRe
1
2 = −

(
1 +

1

β

)
e−α θ(0)f ′′(0), NuxRe

−1
2 =

1

θ(0)
, ShxRe

−1
2 = −ϕ′(0),

where Re = us(x,t)x
ν0

is the local Reynolds number.

4. Approximation functions and their implementation

4.1. Some properties of the SCP6s and its approximations

We introduce some of the basic definitions and properties of the shifted Chebyshev
polynomials of the sixth kind (SCP6s) ([6], [13], [23]) to suit their use in solving the
proposed model in the interval [0, ℏ].

The shifted CP6s on [0, ℏ], may be constructed by using the linear transformation
z = (2/ℏ)η − 1 as Tk(η) = Tk((2/ℏ)η − 1) [17]. We can get the polynomials {Tk(η)}∞k=0

with the help of the following recurrence relation [2]:

Tk(η) = ((2/ℏ)η − 1)Tk−1(η)−
(
(−1)k(2k + 1) + k(k + 1) + 1

4k(k + 1)

)
Tk−2(η), k = 2, 3, ... ,

where T0(η) = 1, T1(η) = (2/ℏ)η − 1.
The analytic form of Tk(η) is defined by:

Tk(η) =

k∑
i=0

ci,k η
i, (15)

where

ci,k =
22i−k

ℏi(2i+ 1)!


∑⌊ k

2
⌋

r=⌊ i+1
2

⌋
(−1)0.5k+r+i(2r+i+1)!

(2r−i)! , if k even,∑⌊ k−1
2

⌋
r=⌊ i

2
⌋
2(−1)0.5(k+1)+r+i(r+1)(2r+i+2)!

(k+1)(2r−i+1)! , if k odd.

The function ψ(η) ∈ L2[0, ℏ] will be approximated as a finite series sum with the first
(m+ 1)-terms in the following form:

ψm(η) =
m∑
ℓ=0

ζℓ Tℓ (η). (16)

Theorem 1. [4]

The achieved error εm = |ψ(η)−ψm(η)| in approximating the function ψ(η) by ψm(η)
which is defined in (16) will be estimated with the criterion:

εm ≤ 2−m.
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Theorem 2.

Let ψ(η) be estimated by CP6s as (16), then:

ψ(n)
m (η) ≃

m∑
i=n

i∑
k=n

ζi χi, k,n η
k−n, n > 0, (17)

where χi, k,n = (k!/(k − n)!) ci,k, but ci,k is defined in (15).

4.2. Implementation the SCM-SCP6s

We use the SCP6s to estimate the solution of the given problem (10)-(12), a set of
basis functions with the SCM.

We implement SCM to solve numerically the model (10)-(12). We estimate f(η), θ(η),
and ϕ(η) by fm(η), θm(η), and ϕm(η), respectively as follows:

fm(η) =
m∑
i=0

ai Ti(η), θm(η) =
m∑
i=0

bi Ti(η), ϕm(η) =
m∑
i=0

ci Ti(η). (18)

By collecting the Eqs.(10)-(12), with the formulae (17)-(18), we find:(
1 + β−1

) (
f (3)m (η)− α θ(1)m (η) f (2)m (η)

)
e−α θm(η) + fm(η) f (2)m (η)−

(
f (1)m (η)

)2
−M

(
f (1)m (η)

)
− S

(
0.5 η f (2)m (η) + f (1)m (η)

)
− λ

(
1 + β−1

) (
f (1)m (η)

)
e−α θm(η) = 0,

(19)

1

Pr

(
(1 + ε1 θm(η)) θ(2)m (η) + ε1

(
θ(1)m (η)

)2 )
+ fm(η) θ(1)m (η)− 2f (1)m (η) θm(η)

− S
(
2θm(η) + 0.5η θ(1)m (η)

)
+

δ

Pr
(1 + ε1θm(η)) θm(η)

+ Ec
(
1 + β−1

) (
f (2)m (η)

)
e−α θm(η) = 0,

(20)

(1 + ε2 ϕm(η))ϕ(2)m (η) + ε2

(
ϕ(1)m (η)

)2
+ Sc

[
fm(η)ϕ(1)m (η)− 2 f (1)m (η)ϕm(η)

− S
(
2ϕm(η) + 0.5 η ϕ(1)m (η)

)
−K2 ϕm(η)

]
= 0.

(21)

These equations (19)-(21) can be collocated with m−2 of points ηp (the roots of Tm−2(η))
as follows:(
1 + β−1

) (
f (3)m (ηp)− α θ(1)m (ηp) f

(2)
m (ηp)

)
e−α θm(ηp) + fm(ηp) f

(2)
m (ηp)−

(
f (1)m (ηp)

)2
−M

(
f (1)m (ηp)

)
− S

(
0.5 η f (2)m (ηp) + f (1)m (ηp)

)
− λ

(
1 + β−1

) (
f (1)m (ηp)

)
e−α θm(ηp) = 0,

(22)
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1

Pr

(
(1 + ε1 θm(ηp)) θ

(2)
m (ηp) + ε1

(
θ(1)m (ηp)

)2 )
+ fm(ηp) θ

(1)
m (ηp)− 2f (1)m (ηp) θm(ηp)

− S
(
2θm(ηp) + 0.5η θ(1)m (ηp)

)
+

δ

Pr
(1 + ε1θm(ηp)) θm(ηp)

+ Ec
(
1 + β−1

) (
f (2)m (ηp)

)
e−α θm(ηp) = 0,

(23)

(1 + ε2 ϕm(ηp))ϕ
(2)
m (ηp) + ε2

(
ϕ(1)m (ηp)

)2
+ Sc

[
fm(ηp)ϕ

(1)
m (ηp)− 2 f (1)m (ηp)ϕm(ηp)

− S
(
2ϕm(ηp) + 0.5 η ϕ(1)m (ηp)

)
−K2 ϕm(ηp)

]
= 0.

(24)

Also, the B.Cs (13)-(14) may be expressed by substituting from Eq.(18) in (13)-(14) to
get the following equations:

m∑
i=0

ai = 0,

(
m∑
i=0

bi θ
(1)
m (0)

)(
1 + ε1

m∑
i=0

(−1)i bi

)
= −1,

m∑
i=0

ai T
(1)
i (0) = 1,

(
m∑
i=0

ci T
(1)
i (0)

)(
1 + ε2

m∑
i=0

(−1)i ci

)
= −1,

(25)

m∑
i=0

ai Ti(γ) = 0.5γ S,

m∑
i=0

ai T
(2)
i (γ) = 0,

m∑
i=0

bi T
(1)
i (γ) = 0,

m∑
i=0

ci T
(1)
i (γ) = 0.

(26)
Eqs.(22)-(26), assign a system of 3(m+1) algebraic equations. We use the Newton iteration
technique to solve these equations for the unknowns ai, bi, ci, i = 0, 1, ...,m.

Hence we compute the residual error function (REF) for the approximation formulas
(17) and (18) in the following forms [21]:

REF[f(η)] =
(
1 + β−1

) (
f (3)m (η)− α θ(1)m (η) f (2)m (η)

)
e−α θm(η) + fm(η) f (2)m (η)−

(
f (1)m (η)

)2
−M

(
f (1)m (η)

)
− S

(
0.5 η f (2)m (η) + f (1)m (η)

)
− λ

(
1 + β−1

) (
f (1)m (η)

)
e−α θm(η),

REF[θ(η)] =
1

Pr

(
(1 + ε1 θm(η)) θ(2)m (η) + ε1

(
θ(1)m (η)

)2 )
+ fm(η) θ(1)m (η)− 2f (1)m (η) θm(η)

− S
(
2θm(η) + 0.5η θ(1)m (η)

)
+

δ

Pr
(1 + ε1θm(η)) θm(η)

+ Ec
(
1 + β−1

) (
f (2)m (η)

)
e−α θm(η),

REF[ϕ(η)] = (1 + ε2 ϕm(η))ϕ(2)m (η) + ε2

(
ϕ(1)m (η)

)2
+ Sc

[
fm(η)ϕ(1)m (η)− 2 f (1)m (η)ϕm(η)

− S
(
2ϕm(η) + 0.5 η ϕ(1)m (η)

)
−K2 ϕm(η)

]
.
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5. Validation of the numerical solution

To test the precision of the numerical results obtained through the SCM-SCP6s method,
we present a table of data that offers a comparative evaluation between our current find-
ings and the previously published results by Pal and Saha [20]. This tabular data (Table
1) allows for a detailed analysis and comparison of the accuracy between the two sets of
results solutions. The acquired solutions show a strong degree of consistency with the
formerly published data. It is clear that the latest results closely match the former data
published, demonstrating a strong correlation and validating our methodology’s accuracy.
We used the Mathematica 11 to write and remedy all the codes on Dell Inspiron 15 (3593)
Workstation, Processor: 11th Gen Intel(R) Core(TM) i7-1165G7 and 2.80GHz 1.69 GHz,
1 TB storage, and 32 GB Ram DDR3.

Table 1. Comparison of −f ′′
(0) and γ for various values of S using SCM-SCP6s

method when M = λ = α = 0 and β → ∞

SSSpt¡
-

Spt¿ Pal and Saha [20] Current work

γ −f ′′
(0) γ −f ′′

(0)

1.2
1.4
1.6
1.8

1.1277820
0.8210349
0.5761762
0.3563941

1.442627
1.012785
0.642402
0.309146

1.12778195
0.82103481
0.57617616
0.35639402

1.44262680
1.01278475
0.64240092
0.30914589

6. Interpretation of numerical results

In this work, we investigated the dynamic behavior of a TLF flowing over a solid sur-
face that could be stretched in two dimensions, using the Casson model. A porous medium
was used to contain this surface, and as a result, the fluid’s characteristics were variable.
Furthermore, we studied the effect of the heat generation, magnetic field, chemical reac-
tion, and viscous dissipation on the system. We analyzed how these factors influenced the
velocity, heat distribution, and mass transfer rate. To visualize the variations in the calcu-
lated results, we employed the SCM-SCP6s method and utilized Mathematica software to
generate graphical representations. Figure 2 presents f ′(η), θ(η), and ϕ(η) corresponding
to different unsteadiness parameters S. The figure demonstrates a consistent pattern: as
S increase, there is a consistent upward trend observed in the free stream concentration
ϕ(γ), free stream velocity f ′(γ), and fluid velocity f ′(η). However, there is a contrasting
trend observed in θ(η), sheet temperature θ(0), and film thickness γ, which decrease as the
unsteadiness parameters increase. Physically, a reduction in the unsteadiness parameter
suggests that the flow becomes more stable and less erratic over time. This diminished
unsteadiness can contribute to a slower and more prolonged spreading of the nanofluid on
the surface, resulting in an augmentation of the thin film thickness.
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Figure 2. (a) f ′(η) for various S (b) ϕ(η) and θ(η) for various S

The significance of λ on θ(η), ϕ(η), and f ′(η) is clearly depicted in Figure 3. Through-
out the entire range of η values, the presence of λ leads a noticeable reduction in both the
film thickness γ, and f ′(η). This reduction occurs because the porous medium hinders the
flow. The ϕ(η) and θ(η) fields exhibit an opposite trend compared to the film thickness
and fluid velocity when considering the same porous parameter λ. This behavior leads to
an enhancement in both the free surface concentration ϕ(γ) and the free surface tempera-
ture θ(γ). Physically, a decrease in λ signifies a diminished porous quality of the medium,
indicating a more permissive environment for fluid flow. Consequently, the nanofluid en-
counters reduced resistance while moving through the porous medium. This decreased
hindrance promotes a more effective dispersion of the nanofluid on the surface, resulting
in an augmentation of the thin film thickness.
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Figure 3. (a) f ′(η) for various λ (b) ϕ(η) and θ(η) for various λ

Figure 4 presents the profiles of f ′(η), ϕ(η), and θ(η) for various quantities of M . It
is important to note that the involvement of M gives rise to the Lorentz force. This force
acts as a resistance to the flow, leading to a decrease in both f ′(η), and γ. Physically, a
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reduction in the magnetic parameter points a weaker magnetic field affect on the nanofluid
flow. Consequently, the magnetic forces restraining the flow become less influential. This
diminished magnetic effect results in decreased resistance, leading to a thicker thin film.
Simultaneously, the diminishing magnetic parameter relaxes the magnetic forces, causing
an increase in the nanofluid velocity. The weakened magnetic field allows for freer fluid
flow, enhancing the overall velocity of the thin film.
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Figure 4. (a) f ′(η) for various M (b) ϕ(η) and θ(η) for various M

Figure 5 gives the influence of the Casson parameter β on f ′(η), ϕ(η), and θ(η) dis-
tributions. The graph illustrates that as β increases, both ϕ(γ) and ϕ(0) show a rise,
while a reverse trend occurs for both θ(0) and θ(η). This indicates an enhancement in
the distribution of ϕ(η) throughout the film layer. Additionally, it is seen that both f ′(η)
and γ grow as β gets closer to zero. Physically, β represents the yield stress in the Casson
fluid model. A decrease in the Casson parameter implies a lower yield stress, indicating
reduced resistance to flow initiation. This allows the nanofluid to spread more easily over
the surface, leading to a thicker thin film. Simultaneously, the decrease in the Casson pa-
rameter signifies a shift to a more fluid-like behavior, reducing resistance within the thin
film and resulting in an increased velocity of the nanofluid as it encounters less opposition
to its motion.
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Figure 5. (a) f ′(η) for various β (b) ϕ(η) and θ(η) for various β
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Figure 6 shows how ε1 and δ parameters affect the modes of HT. A material’s capacity
to conduct heat is measured by its thermal conductivity. It measures how quickly heat
may move through a material. Heat will be absorbed and conducted more efficiently by a
fluid with a high thermal conductivity. This implies that when heat is generated inside or
transferred to a fluid, the fluid will swiftly disperse the heat throughout its volume. The
fluid temperature will consequently rise quickly as obvious from the figure for high thermal
conductivity values. Also, the heat generation parameter δ describes how much heat is
generated inside the fluid per unit volume or unit time. Increases in the heat generation
parameter indicate that the fluid is producing more heat. The fluid’s temperature rises
as a result of the heat produced as indicated in Figure 6(b), which increases the fluid’s
overall energy content. The temperature elevation is rooted in the fact that the extra heat
produced within the nanofluid enhances the thermal environment, intensifying the overall
thermal conditions. This increased thermal effect causes the temperature distribution to
expand throughout the thin film, resulting in elevated temperatures across the surface.
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Figure 6. (a) θ(η) for various ε1 (b) θ(η) for various δ

Figure 7 illustrates the variations in temperature profiles θ(η) with respect to changes
in Ec and Pr. Clearly, θ(η), θ(0), and θ(γ) decrease as Pr grows because Pr represents
the ratio of the fluid’s momentum diffusivity to its thermal conductivity. Additionally,
the graph demonstrates that as Ec increases, θ(η), θ(0), and θ(γ) increase, while the di-
mensionless thickness of the thin film remains unchanged. Physically, the rationale for the
augmented temperature distribution can be traced to the heightened efficiency in convert-
ing kinetic energy into heat associated with the elevated Eckert number. This increased
efficiency in converting energy results in a more pronounced thermal effect within the
Casson nanofluid. Consequently, this intensified thermal impact prompts the expansion
of θ(η) throughout the thin film, leading to elevated temperatures across the surface.
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Figure 7. (a) θ(η) for various Ec (b) θ(η) for various Pr

Figure 8 depicts the concentration profile ϕ(η) as it varies with changes in both the
chemical reaction parameter K2 and the diffusion parameter ε2. According to observa-
tions, the concentration field shrinks as the diffusion parameter rises close to the sheet,
but the opposite tendency is seen farther away from the sheet, and the film thickness stays
the same. In the presence of K2, the dominant trend in ϕ(η), ϕ(γ), and ϕ(0) is a diminish-
ing behavior. Physically, the underlying physical cause for the diminishing concentration
distribution can be attributed to the increased chemical reaction parameter, which encour-
ages more substantial chemical reactions. This heightened reactivity leads to a depletion
of the nanofluid concentration, observed uniformly across the thin film. Consequently, the
concentration distribution experiences a decrease as a result of this reduction in nanofluid
concentration.

0.2 0.4 0.6 0.8 1.0 1.2
Η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ΦHΗL

∆=0.2, Pr=3.0
¶1=0.2, K2=0.1

M=0.5, S=1.2
Λ=0.5, Α=0.1

Β=0.5, Ec=0.2

¶2=0.0, 0.5, 1.0

0.2 0.4 0.6 0.8 1.0 1.2
Η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ΦHΗL

∆=0.2, Ec=0.2

¶1=0.2, Pr=3.0

M=0.5, S=1.2

Λ=0.5, Α=0.1

Β=0.5, ¶2=0.2

K2=0.0, 0.2, 0.4

Figure 8. (a) ϕ(η) for various ε2 (b) ϕ(η) for various K2
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Table 2. Values of Re
1
2
xCfx, Re

−1
2

x Nux and Re
−1
2

x Shx for assorted values of S, λ,M, β, ε1,
ε2, δ, Ec, Pr and K2 with α = 0.1 and Sc = 0.5

S λ M β ε1 δ Ec Pr ε2 K2 Re
1
2
xCfx Re

−1
2

x Nux Re
−1
2

x Shx
0.8 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.1 3.18835 2.35897 1.31384
1.2 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.1 3.09541 2.75015 1.40679
1.5 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.1 2.76277 3.16960 1.47903

1.2 0.0 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.1 2.45820 2.99581 1.47490
1.2 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.1 3.09541 2.75015 1.40679
1.2 1.0 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.1 3.61594 2.56201 1.33933

1.2 0.5 0.0 0.5 0.2 0.2 0.2 3.0 0.2 0.1 2.89612 2.82487 1.42999
1.2 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.1 3.09541 2.75015 1.40679
1.2 0.5 1.0 0.5 0.2 0.2 0.2 3.0 0.2 0.1 3.28230 2.68161 1.38368

1.2 0.5 0.5 0.3 0.2 0.2 0.2 3.0 0.2 0.1 4.01456 2.61875 1.43951
1.2 0.5 0.5 1.0 0.2 0.2 0.2 3.0 0.2 0.1 2.36545 2.85957 1.35455
1.2 0.5 0.5 2.0 0.2 0.2 0.2 3.0 0.2 0.1 1.97450 2.91741 1.30505

1.2 0.5 0.5 0.5 0.0 0.2 0.2 3.0 0.2 0.1 3.09521 2.69494 1.40676
1.2 0.5 0.5 0.5 0.5 0.2 0.2 3.0 0.2 0.1 3.09573 2.82625 1.40683
1.2 0.5 0.5 0.5 1.0 0.2 0.2 3.0 0.2 0.1 3.09619 2.93935 1.40689

1.2 0.5 0.5 0.5 0.2 0.0 0.2 3.0 0.2 0.1 3.09588 2.77670 1.40680
1.2 0.5 0.5 0.5 0.2 0.5 0.2 3.0 0.2 0.1 3.09451 2.70993 1.40673
1.2 0.5 0.5 0.5 0.2 1.0 0.2 3.0 0.2 0.1 3.09279 2.64161 1.40660

1.2 0.5 0.5 0.5 0.2 0.2 0.0 3.0 0.2 0.1 3.10994 3.61736 1.40781
1.2 0.5 0.5 0.5 0.2 0.2 0.5 3.0 0.2 0.1 3.07391 2.02823 1.40527
1.2 0.5 0.5 0.5 0.2 0.2 1.0 3.0 0.2 0.1 3.03892 1.41776 1.40276

1.2 0.5 0.5 0.5 0.2 0.2 0.2 1.0 0.2 0.1 3.05675 1.75811 1.40443
1.2 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.1 3.09541 2.75015 1.40161
1.2 0.5 0.5 0.5 0.2 0.2 0.2 6.2 0.2 0.1 3.10717 3.44181 1.40061

1.2 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.0 0.1 3.09541 2.75015 1.35394
1.2 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.5 0.1 3.09541 2.75015 1.47372
1.2 0.5 0.5 0.5 0.2 0.2 0.2 3.0 1.0 0.1 3.09541 2.75015 1.56344

1.2 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.0 3.09541 2.75015 1.40202
1.2 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.2 3.09541 2.75015 1.42802
1.2 0.5 0.5 0.5 0.2 0.2 0.2 3.0 0.2 0.4 3.09541 2.75015 1.46936

In Table 2, the drag force, HT coefficient, and mass transfer coefficient are expressed

in non-dimensional form as CfxRe
1
2
x , NuxRe

−1
2

x , and ShxRe
−1
2

x , respectively. These pa-
rameters are calculated against different quantities of the controlling parameters. It can
be easily observed that the non-uniformity of the heat flux has a notable impact on the
quantities of the Nusselt number. Specifically, increasing the porous parameter, magnetic
number, heat generation parameter, and Ec tends to decrease the Nusselt number. Con-
versely, the reverse tendency is shown for all other parameters, with the exception of the
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diffusion and chemical reaction parameters, leading to a boost in SFC. Furthermore, the
observed decrease in the Sherwood number values for increasing magnetic number, Casson
parameter, thermal conductivity parameter, heat generation parameter, and Eckert num-
ber, is accompanied by an increasing trend for the Sherwood number with the unsteadiness
parameter, diffusion parameter, and chemical reaction parameter. These trends can be
attributed to the non-uniformity of the mass flux applied in this study.

To further confirm the efficiency, accuracy and effectiveness of the proposed method,
the REF values were calculated across different values of the order of approximation m
under the same boundary conditions and the same parameter values mentioned above and
are listed in Table 3. Also, we can improve the accuracy by increasing m.

Table 3. The REF of the solution via various m.

η m REF − f(η) REF − θ(η) REF − ϕ(η)
4 5.6512E− 05 3.0591E− 05 5.8593E− 05

0.0 7 3.0256E− 08 5.2553E− 07 3.5873E− 08
4 1.1082E− 05 9.5244E− 05 1.2564E− 05

0.2 7 0.0831E− 08 0.2953E− 08 2.9208E− 07
4 3.1197E− 05 3.1167E− 04 4.5573E− 05

0.4 7 8.3404E− 08 6.2091E− 07 6.2205E− 08
4 2.0063E− 05 3.5503E− 05 8.0764E− 05

0.6 7 1.0412E− 08 8.5497E− 07 7.2183E− 08
4 0.0907E− 05 1.5569E− 05 4.5273E− 05

0.8 7 6.1523E− 07 4.5708E− 08 1.2894E− 08
4 9.2297E− 05 8.2130E− 05 0.1046E− 05

1.0 7 1.9923E− 08 3.5708E− 08 5.0076E− 07

7. Conclusions

This study is focused on the analysis of the proposed important problem. The SCM-
SCP6s technique is utilized to solve a system of ODEs that govern the proposed model.
Different physical parameters’ effects on the computed findings for velocity, heat, and mass
transfer rate are examined and represented through tables and figures. The velocity profile
explains a diminishing bearing with increasing magnetic number and Casson number.
While the free surface quantities show an increase, the film thickness falls as the Casson
parameter, magnetic number, and unsteadiness increase. As the Eckert parameter and
heat generation parameter are increased, the sheet temperature and temperature profiles
rise, which raises the free surface temperature. On the other hand, Pr exhibits the opposite
pattern, where an increase causes the sheet temperature, temperature profiles, and free
surface temperature to decrease. The rates of heat and mass transport are accelerated by
the unsteadiness and thermal conductivity parameters. Future research in this field could
explore hybrid non-Newtonian nanofluid thin film flow under varying density, mass and
heat fluxes, and Ohmic heating.
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