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Abstract. Graph theory provides many topological systems for modelling blood circulation. The
main object is determining the best topology for a successful correct diagnosis. This work illus-
trates the justification for using topology, rough sets, and graph analysis through neighborhoods.
Generalization for an approximation space and a model of the topological graph is presented. In-
vestigating core minimal neighborhoods is essential for categorizing subsets and computing, these
techniques perform better than current techniques while maintaining Pawlakl’s characteristics.
This work presents a method for generalizing rough sets utilizing core minimal neighborhoods us-
ing binary relations. Moreover, we will construct four types of dual approximations concerning
core minimal neighborhoods as lower and upper approximations. A comparison between different
types of dual approximations is discussed. Core minimal neighborhoods induce certain types of
topological structures. Finally, we compare different topologies that assist us in determining the
main parts of a human heart’s graph.
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1. Introduction

The use of powerful mathematical methods on medical models in recent years has
yielded priceless insights into intricate datasets. The paper provides a clear and succinct
explanation of the reasoning behind the use of neighborhood systems in conjunction with
topological visualization and rough sets. The importance of this work is underscored by
the abundance of medical models that are currently in use, each of which poses a different
set of difficulties in terms of interdependencies and data complexity. Topological visual-
ization provides a visually intuitive representation of complex data structures, surpassing
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the constraints of applied mathematics. Converting complex data into topological spaces
allows for the discovery of hidden patterns and correlations. The flexibility of the analysis
is increased through the incorporation of rough sets, and theoretical structure for handling
imprecision and uncertainty. By combining the best features of both methods, this syn-
ergy enables a more thorough comprehension of complex medical data. The granularity of
interactions between parts can be changed via the neighborhood systems lens to accom-
modate different levels of abstraction needed for medical applications. The importance of
this undertaking is further highlighted by the context of medical models. Medical data is
intrinsically complex, frequently involving complex relationships between factors.

In information systems, several math tools can be used to handle knowledge that is not
exact or certain. Some of these tools include rough sets [29] and fuzzy sets [45]. Rough set
theory (For short RST) was created by Pawlak [28] to help with incomplete and uncertain
information. Many researchers in various fields have shown interest in RST and its ap-
plications [8, 9]. Moreover, Pawlak investigated the relationship between topology and its
generalization. The indiscernibility relation is the basic idea of Pawlak, it was explained
using the concept of equivalence relation. However, the need for something called equiva-
lence relation like the rule of indiscernibility, makes things more difficult and puts limits
on what can be done in many situations. So, the equivalence relation is used for different
kinds of relations, like arbitrary relation [42], fuzzy relations [21], similarity relation [30],
tolerance relation [43], and covering of the universal sets [11]. One of the most crucial and
vital areas of mathematics is topology. In system analysis, topological structures and their
generalizations are regarded as fundamental definitions and theorems [16]. Many of these
structures have applications in analysis [34], chemistry [6], and physics [14]. Many aca-
demics have turned to topological methods in recent years to examine rough sets and their
applications. Topics including the relationship between RST and topological spaces and
the characteristics of topological rough sets are introduced [39]. Lin [18, 20] investigated
approximations using neighborhood systems and topological concepts. Binary relations
can also create neighborhood systems. The equivalence class of any element in the equiv-
alence relation can be thought of as this element’s neighborhood [27]. The minimal struc-
ture of RST and topology are investigated in [13] and various applications are presented
in [4]. The basic concept of RST is that there are dual approximations, which are created
utilizing right neighborhood, left neighborhood [41], minimal right neighborhood [2], and
minimal left neighborhood [3]. Some types of neighborhoods termed Ej-neighborhoods
are established [38]. Several types of neighborhoods are called Cj-neighborhoods which
were investigated in applications for medicine by Al-Shami [36]. Moreover, Al-Shami [37]
researched the features and applications of maximum neighborhoods in medicine. Shbair
et al [35] investigate minimal structure as well as minimal right, minimal left, minimal
intersection, and minimal union neighborhoods, and some application of the human heart
is studied. In 2008, Hung conducted research on core neighborhood systems [15]. The
notion of minimal neighborhoods by researching features of finite topological spaces [1].
Additionally, four types of neighborhoods, core neighborhood, minimal neighborhood, and
core minimal neighborhood are established and his medical application using human heart
data is discussed [31]. Today, the breadth of rough set applications is significantly broader
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than before, it can be used in various scientific and technical domains including com-
puter networks [17], missing attribute values solution [33], decision-making problems [10],
biology [26], economic fields [12], and decision-making for COVID-19 [22].

In this paper, the concept of the core minimal neighborhoods is used to provide a
new generalization for RST according to general relations. Four types of core minimal
neighborhoods are introduced. The attributes of the new RST are defined and compared
with the characteristics of different methods. We examine the relation between four ap-
proximations and made a comparison between neighborhood, core neighborhood, minimal
neighborhood, and core minimal neighborhood using four types of right, left, union, and
intersection neighborhoods and we found a relationship between them. We also provide
the relation between four types of dual approximation. The boundary region and accuracy
are discussed and the relationship between them is presented. Additionally, four types of
topologies were generated using core minimal neighborhood and compared them. Appli-
cation of human heart was introduced, and some topologies generated using core minimal
neighborhood were used in blood circulation. We suggest that our method is an extension
of traditional RST. We will use X to denote the universal set.

2. Preliminaries

In this study, we will review the definition of topology and RST by defining approx-
imation space and dual approximations as upper and lower approximations, accuracy,
four types of neighborhoods, four types of core neighborhoods, and four types of minimal
neighborhoods.

Definition 1. [16] Let τ be a family of subsets of X. τ is a topology on X if it satisfies:(i)
ϕ and X are in τ , (ii) Let Bi ∈ τ for i ∈ I. Then,

⋃
i∈I

Bi ∈ τ , and (iii) Let B1,B2 ∈ τ .

Then, B1 ∩B2 ∈ τ .

Pawlak [19, 29] defined the approximation space K = (X,ℵ), where ℵ is an equivalence
relation. This approximation space constitutes a clopen topological space that arose due
to the need to divide X as a partition. We shall define the equivalence class containing ξ
as [ξ]. In Definition 2, we will define upper and lower approximations.

Definition 2. [29] Let K = (X,ℵ) be an approximation space with B ⊆ X. The lower
approximation is defined by ℵ(B) = {ξ ∈ X : [ξ] ⊆ B}, and upper approximation is defined
by ℵ(B) = {ξ ∈ X : [ξ] ∩B ̸= ϕ}.

In Definition 2, X is partitioned into three disjoint regions in K = (X,ℵ), bound-
ary region Bℵ(B) = ℵ(B) − ℵ(B), positive region Pℵ(B) = ℵ(B), and negative region
Nℵ(B) = X− ℵ(B).

Definition 3. [28] Let K = (X,ℵ) be an approximation space with B ⊆ X. The accuracy

of B is defined by κ(B) = |ℵ(B)|
|ℵ(B)| , where |ℵ(B)| ≠ 0 and |.| denotes the cardinality.
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Theorem 1. [29] Let K = (X,ℵ) and A, B ⊆ X where Ac is the complement of A. Then,
(L1) ℵ(X) = X, (L1*) ℵ(X) = X,

(L2) ℵ(ϕ) = ϕ, (L2*) ℵ(ϕ) = ϕ,

(L3) ℵ(A) ⊆ A, (L3*) A ⊆ ℵ(A),
(L4) ℵ(A) ∩ ℵ(B) = ℵ(A ∩B), (L4*) ℵ(A ∪B) = ℵ(A) ∪ ℵ(B),

(L5) ℵ(Ac) = [ℵ(A)]c,
(L6) ℵ(ℵ(A)) = ℵ(A), (L6*) ℵ(ℵ(A)) = ℵ(A),
(L7) If A ⊆ B, then ℵ(A) ⊆ ℵ(B), (L7*) If A ⊆ B, then ℵ(A) ⊆ ℵ(B),

(L8) ℵ([ℵ(A)]c) = [ℵ(A)]c, (L8*) ℵ([ℵ(A)]c) = [ℵ(A)]c,
(L9) ℵ(A) ∪ ℵ(B) ⊆ ℵ(A ∪B), (L9*) ℵ(A ∩B) ⊆ ℵ(A) ∩ ℵ(B).

Definition 4. [7] The general relation ℵ is called

i) Reflexive: ∀ξ ∈ X , ξℵξ.

ii) Symmetric: ∀ξ, γ ∈ X , if ξℵγ, then γℵξ.

iii) If (i) and (ii) are hold, then the relation is called tolerance relation.

Definition 5. [40] Let ℵ be a general relation and ξ, γ ∈ X. The right neighborhood
of ξ is defined by Nr(ξ) = {γ ∈ X : ξℵγ}, and the left neighborhood of ξ is defined by
Nl(ξ) = {γ ∈ X : γℵξ}.

Definition 6. [1] Let ℵ be a general relation and ξ ∈ X. Then, minimal right neighborhood
of ξ is MNr(ξ) =

⋂
{Nr(γ) : γℵξ}.

Definition 7. Let ℵ be a general relation. The right [7], left [7], union [25], and inter-
section [25] neighborhoods are defined by
Nr(ξ) = {γ ∈ X : ξℵγ},
Nl(ξ) = {γ ∈ X : γℵξ},
Nu(ξ) = Nr(ξ) ∪Nl(ξ), and
Ni(ξ) = Nr(ξ) ∩Nl(ξ), respectively.

Definition 8. [24] Let ℵ be a general relation. Then, core right, core left, core union,
and core intersection neighborhoods are defined by
CNr(ξ) = {γ ∈ X : Nr(ξ) = Nr(γ)},
CNl(ξ) = {γ ∈ X : Nl(ξ) = Nl(γ)},
CNu(ξ) = CNr(ξ) ∪ CNl(ξ), and
CNi(ξ) = CNr(ξ) ∩ CNl(ξ), respectively.

Definition 9. [35] Let ℵ be a general relation. The minimal right, minimal left, minimal
union, and minimal intersection neighborhoods are defined by
MNr(ξ) =

⋂
{Nr(γ) : γℵξ},

MNl(ξ) =
⋂
{Nl(γ) : ξℵγ},

MNu(ξ) = MNr(ξ) ∪MNl(ξ), and
MNi(ξ) = MNr(ξ) ∩MNl(ξ), respectively.
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3. Generalization for rough sets via core minimal neighborhoods

The present section views a generalization of RST using core minimal neighborhood
systems with four types of upper and lower approximations. Relationships between neigh-
borhood, core neighborhood, minimal neighborhood, and core minimal neighborhood using
four types of right, left, union, and intersection neighborhoods are studied. Furthermore,
a comparison between the current study and other studies is investigated.

Definition 10. Let ℵ be a general relation. The core minimal right, core minimal left,
core minimal union, and core minimal intersection neighborhoods are defined by
CMr(ξ) = {γ ∈ X : MNr(ξ) = MNr(γ)},
CMl(ξ) = {γ ∈ X : MNl(ξ) = MNl(γ)},
CMu(ξ) = CMr(ξ) ∪ CMl(ξ), and
CMi(ξ) = CMr(ξ) ∩ CMl(ξ), respectively.

Definition 11. Let ℵ be a general relation on X and CMj : X −→ P (X) be a map-
ping which assigns for each ξ in X its core minimal neighborhoods in the power set of X
(P (X)). The triple (X,ℵ, CMj) is called the core minimal approximation space (briefly,
CMj−approximation space) where j ∈ J = {r, l, u, i}.

Corollary 1. Let CMj−approximation space with ξ, γ ∈ X. Then,

i) ξ ∈ CMj(ξ), where j ∈ J.

ii) ξ ∈ CMj(γ) ⇐⇒ γ ∈ CMj(ξ), where j ∈ J.

iii) Let γ ∈ CMj(ξ). Then, CMj(γ) = CMj(ξ), where j ∈ {r, l, i}.

Part (iii) is not true for j = u, in general.

Example 1. If X = {ξ, γ, ζ, η} with ℵ = {(ξ, η), (γ, ζ), (γ, η),(ζ, η), (η, ξ), (η, γ)}, then
Nr(X,ℵ) = {{η}, {ζ, η}, {ξ, γ}}, Nl(X,ℵ) = {{η}, {γ}, {ξ, γ, ζ}}, MNr(ξ) = MNr(γ) =
{ξ, γ}, MNr(ζ) = {ζ, η}, MNr(η) = {η}, MNl(ξ) = MNl(ζ) = {ξ, γ, ζ}, MNl(γ) = {γ},
MNl(η) = {η}. Then, CMr(ξ) = CMr(γ) = {ξ, γ}, CMr(ζ) = {ζ}, CMr(η) = {η},
CMl(ξ) = CMl(ζ) = {ξ, ζ}, CMl(γ) = {γ}, CMl(η) = {η}, CMi(ξ) = {ξ}, CMi(γ) =
{γ}, CMi(ζ) = {ζ}, CMi(η) = {η}, CMu(ξ) = {ξ, γ, ζ}, CMu(γ) = {ξ, γ}, CMu(ζ) =
{ξ, ζ}, and CMu(η) = {η}. Clearly, ξ ∈ CMu(γ) but CMu(ξ) ̸= CMu(γ).

Corollary 2. Let ℵ be a reflexive relation with ξ, γ ∈ X and γ ∈ CMj(ξ). Then,
CMj(γ) = CMj(ξ), ∀j ∈ J.

Lemma 1. Let ℵ be a reflexive relation with ξ ∈ X. Then, CMj(ξ) ⊆ MNj(ξ), ∀j ∈ J.

Proof. Let ℵ be a reflexive relation. Then, ξ ∈ MNj(ξ), ∀ξ ∈ X. If γ ∈ CMj(ξ),
then MNj(ξ) = MNj(γ) and since γ ∈ MNj(γ), then γ ∈ MNj(ξ). Therefore, CMj(ξ) ⊆
MNj(ξ).

The equality in Lemma 1 is not true, in general.
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Example 2. Let X = {ξ, γ, ζ, η} with ℵ = {(ξ, ξ), (γ, γ), (ζ, ζ), (η, η), (ξ, ζ), (γ, ζ), (γ, η), (ζ, ξ),
(η, γ)}. Then, Nr(X,ℵ) = {{ξ, ζ}, {γ, ζ, η}, {γ, η}}, Nl(X,ℵ) = {{ξ, ζ}, {γ, η}, {ξ, γ,
ζ}}, MNr(ξ) = {ξ, ζ}, MNr(γ) = MNr(η) = {γ, η}, MNr(ζ) = {ζ}, MNl(ξ) =
MNl(ζ) = {ξ, ζ}, MNl(γ) = {γ}, MNl(η) = {γ, η}, MNi(ξ) = {ξ, ζ}, MNi(γ) = {γ},
MNi(ζ) = {ζ} MNi(η) = {γ, η}, MNu(ξ) = {ξ, ζ}, MNu(γ) = {γ, η}, MNu(ζ) =
{ξ, ζ}, and MNu(η) = {γ, η}. Then, CMr(ξ) = {ξ}, CMr(γ) = CMr(η) = {γ, η},
CMr(ζ) = {ζ}, CMl(ξ) = CMl(ζ) = {ξ, ζ}, CMl(γ) = {γ}, CMl(η) = {η}, CMi(ξ) =
{ξ}, CMi(γ) = {γ}, CMi(ζ) = {ζ}, CMi(η) = {η}, CMu(ξ) = CMu(ζ) = {ξ, ζ},
and CMu(γ) = CMu(η) = {γ, η}. But, CMr(ξ) ̸= MNr(ξ), CMl(η) ̸= MNl(η), and
CMi(ξ) ̸= MNi(ξ).

Lemma 2. Let ℵ be a reflexive relation. Then, CNj(ξ) ⊆ Nj(ξ), ∀ξ ∈ X and ∀j ∈ J.

Proof. Let ℵ be a reflexive relation. Then, ξ ∈ Nj(ξ), ∀ξ ∈ X. Now, let γ ∈ CNj(ξ).
Then, Nj(ξ) = Nj(γ). Hence, γ ∈ Nj(ξ). Therefore, CNj(ξ) ⊆ Nj(ξ).

The equality in Lemma 2 is not true, in general.

Example 3. In Example 2, CNr(η) = {η}, Nr(η) = {γ, η}, CNl(ζ) = {ζ}, Nl(ζ) =
{ξ, γ, ζ}, CNi(ζ) = {ζ}, Ni(ζ) = {ξ, ζ}, CNu(ζ) = {ξ, ζ}, and Nu(ζ) = {ξ, γ, ζ}. But,
CNr(η) ̸= Nr(η), CNl(ζ) ̸= Nl(ζ), CNu(ζ) ̸= Nu(ζ), and CNi(ζ) ̸= Ni(ζ).

The CMj(ξ) and CNj(ξ) are independent with general relation for j ∈ J, in general.

Example 4. In Example 2, CMr(γ) ̸= CNr(γ) and CNl(ξ) ̸= CMl(ξ).

Lemma 3. Let ℵ be a tolerance relation. Then, CMj(ξ) ⊆ CNj(ξ), ∀ξ ∈ X.

Lemma 4. [35] Let ℵ be a tolerance relation. Then, MNj(ξ) ⊆ Nj(ξ), ∀ξ ∈ X.

The equality in Lemma 4 is not true, in general.

Example 5. In Example 2, MNr(ζ) ̸= Nr(ζ), MNr(γ) ̸= Nr(γ), MNu(γ) ̸= Nu(γ), and
MNi(γ) ̸= Ni(γ).

In Remark 1, a relationship between neighborhood, core neighborhood, minimal neigh-
borhood, and core minimal neighborhood using the four types of right, left, union, and
intersection neighborhoods is demonstrated when the relation is tolerance.

Remark 1. Let ℵ be a tolerance relation. Then, for each ξ ∈ X:

MNj(ξ)
↗ ↘

CMj(ξ) Nj(ξ)
↘ ↗

CNj(ξ)

The equality of these implications is not true in general. This can be shown in Examples
2, 3, 4, and 5.

In the following, we study RST by studying ℵj(B) and ℵj(B), we give results that
compare with Pawlak.



I. Shbair et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 3567-3584 3573

Definition 12. Let (X,ℵ, CMj) be an approximation space with B ⊆ X. Then, CMj−lower
and CMj−upper approximations of B are defined by ℵj(B) =

⋃
{CMj(ξ) : CMj(ξ) ⊆ B},

and ℵj(B) =
⋃
{CMj(ξ) : CMj(ξ) ∩B ̸= ϕ}, respectively.

Definition 13. In Definition 12, B is called CMj−exact if ℵj(B) = ℵj(B), ∀j ∈ J.
Otherwise, B is CMj−rough.

Definition 14. For each j ∈ J, CMj−boundary, CMj−positive, and CMj−negative sets
are Bj(B) = ℵj(B)− ℵj(B), Pj(B) = ℵj(B), and Nj(B) = X− ℵj(B), respectively.

Definition 15. If ℵ is a general relation with B ⊆ X and j ∈ J, the CMj−accuracy of

approximation of the subset B is κj(B) =
|ℵj(B)|
|ℵj(B)| . Where, |ℵj(B)| ≠ 0 and |.| denotes the

cardinality.

Remark 2. From Definition 15, we deduce that with a relation ℵ:

i) 0 ≤ κj(B) ≤ 1.

ii) Let κj(B) = 1. Then, B is CMj−exact . Otherwise, B is CMj−rough.

Theorem 2. Let ℵ be a general relation and A,B ⊆ X. Then, the following are the
properties of a generalization of RST, with Ac representing the complement.

(L1) ℵj(X) = X, (L1*) ℵj(X) = X,

(L2) ℵj(ϕ) = ϕ, (L2*) ℵj(ϕ) = ϕ,

(L3) ℵj(A) ⊆ A, (L3*) A ⊆ ℵj(A),

(L4) ℵj(A) ∩ ℵj(B) = ℵj(A ∩B), (L4*) ℵj(A ∪B) = ℵj(A) ∪ ℵj(B),

(L5) ℵj(A
c) = [ℵj(A)]

c,

(L6) ℵj(ℵj(A)) = ℵj(A), (L6*) ℵj(ℵj(A)) = ℵj(A),

(L7) If A ⊆ B, then ℵj(A) ⊆ ℵj(B), (L7*) If A ⊆ B, then ℵj(A) ⊆ ℵj(B),

(L8) ℵj([ℵj(A)]
c) = [ℵj(A)]

c, (L8*) ℵj([ℵj(A)]
c) = [ℵj(A)]

c,

(L9) ℵj(A) ∪ ℵj(B) ⊆ ℵj(A ∪B), (L9*) ℵj(A ∩B) ⊆ ℵj(A) ∩ ℵj(B).

Proof. Properties (L1), (L1*), (L2), (L2*), (L3), (L3*), (L6), and (L6*) are obvious.
Hence, the remainder of the properties can be proven as follows:

(L4) ℵj(A ∩ B) =
⋃
{CMj(ξ) : CMj(ξ) ⊆ A ∩ B} = [

⋃
{CMj(ξ) : CMj(ξ) ⊆ A}] ∩

[
⋃
{CMj(ξ) : CMj(ξ) ⊆ B}] = ℵj(A) ∩ ℵj(B).
(L4*) Similar to the proof of (L4).
(L5) ℵj(A

c) =
⋃
{CMj(ξ) : CMj(ξ) ⊆ Ac}=

⋃
{CMj(ξ) : CMj(ξ) ∩ A = ϕ}. Since

ξ ∈ CM(ξ), for all ξ ∈ X, then ℵj(A
c) =

⋃
{ξ ∈ X : CMj(ξ) ∩ A ̸= ϕ}c=[ℵj(A)]

c.
(L7) Let A ⊆ B. Then, ℵj(A) =

⋃
{CMj(ξ) : CMj(ξ)) ⊆ A} ⊆

⋃
{CMj(ξ) : CMj(ξ) ⊆

B} = ℵj(B).
(L7*) Similar to the proof of (L7).
(L8) By using (L7), we have ℵj([ℵj(A)]

c) ⊆ [ℵj(A)]
c. Conversely, let γ ∈ [ℵj(A)]

c.
Then, γ ∈ [

⋃
{CMj(ξ) : CMj(ξ)) ⊆ A}]c =

⋃
{CMj(ξ) : CMj(ξ)) ∩ A = ϕ}. So, γ ∈⋃

{CMj(ξ) : CMj(ξ)) ∩ ℵj(A) = ϕ}. Then, γ ∈
⋃
{CMj(ξ) : CMj(ξ)) ⊆ [ℵj(A)]

c}. This
implies that, γ ∈ ℵj([ℵj(A)]

c). Therefore, [ℵj(A)]
c ⊆ ℵj([ℵj(A)]

c).
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(L8*) Similar to the proof of (L8).
(L9) Since A ⊆ A∪B andB ⊆ A∪B. Then, ℵj(A) ⊆ ℵj(A∪B) and ℵj(B) ⊆ ℵj(A∪B).

Therefore, ℵj(A) ∪ ℵj(B) ⊆ ℵj(A ∪B).
(L9*) Similar to the proof of (L9).

The equality of L8 and L9 in Theorem 2 is not true, in general.

Example 6. If X = {ξ, γ, ζ, η} with ℵ = {(ξ, ξ), (γ, γ), (ζ, ζ),(ξ, ζ), (γ, η), (ζ, ξ), (η, ζ)},
then Nr(X,ℵ) = {{ξ, ζ}, {γ, η}, {ζ}}, Nl(X,ℵ) = {{ξ, ζ}, {γ}, {ξ, ζ, η}}, MNr(ξ) = {ξ, ζ},
MNr(γ) = MNr(η) = {γ, η}, MNr(ζ) = {ζ}, MNl(ξ) = MNl(ζ) = {ξ, ζ}, MNl(γ) =
{γ}, MNl(η) = {ξ, ζ, η}. Then, CMr(ξ) = {ξ}, CMr(γ) = CMr(η) = {γ, η}, CMr(ζ) =
{ζ}, CMl(ξ) = CMl(ζ) = {ξ, ζ}, CMl(γ) = {γ}, CMl(η) = {η}, CMi(ξ) = {ξ},
CMi(γ) = {γ}, CMi(ζ) = {ζ}, CMi(η) = {η}, CMu(ξ) = CMu(ζ) = {ξ, ζ}, and
CMu(γ) = CMu(η) = {γ, η}. Let A = {γ}, B = {η}, C = {ξ}, and D = {ζ}.
Then, ℵr(A) = ℵr(B) = ℵl(C) = ℵl(D) = ℵu(C) = ℵu(D) = ϕ, ℵr(A ∪ B) = {γ, η},
ℵl(C ∪ D) = ℵu(C ∪ D) = {ξ, ζ}, ℵr(A) = ℵr(B) = ℵu(A) = ℵu(B) = {γ, η},ℵl(C) =
ℵl(D) = {ξ, ζ}, ℵr(C∩D) = ℵl(A∩B) = ℵu(A∩B) = ϕ. But, ℵr(C∩D) ̸= ℵr(C)∩ℵr(D),
ℵl(A ∩ B) ̸= ℵl(A) ∩ ℵl(B), ℵu(C ∩ D) ̸= ℵu(C) ∩ ℵu(D), ℵr(A) ∪ ℵr(B) ̸= ℵr(A ∪ B),
ℵl(C) ∪ ℵl(D) ̸= ℵl(C ∪D), and ℵu(C) ∪ ℵu(D) ̸= ℵu(C ∪D).

Remark 3. Theorem 2 shows that our method has the same characteristics as Pawlak’s
method. In our method, ℵ is an arbitrary relation. As a result, we believe that our method
is a generalization for RST. Table 1 shows a comparison between our method and others.

Pawlak’s properties Yao’s [40] Yun et al [44] Shbair et al [35] Our method

(L1)
√ √ √

(L2)
√ √

(L3)
√ √

(L4)
√ √ √

(L5)
√ √ √

(L6)
√ √

(L7)
√ √ √ √

(L8)
√

(L9)
√ √ √ √

(L1*)
√ √ √

(L2*)
√ √

(L3*)
√ √ √

(L4*)
√ √ √ √

(L6*)
√

(L7*)
√ √ √ √

(L8*)
√

(L9*)
√ √ √ √

Table 1: A comparison between different methods of rough set with our method.
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4. Relationship between several types of CMj−approximations
operators

This section aims to compare several types of CMj−approximations. Also, the bound-
ary and accuracy of CMj−approximations are discussed.

In Table 2, 3 by using Example 6, we compare different types of CMj−approximations,
CMj−boundary, and CMj−accuracy.

B ℵr(B) ℵr(B) Br(B) κr(B) ℵl(B) ℵl(B) Bl(B) κl(B)

{ξ} {ξ} {ξ} ϕ 1 ϕ {ξ, ζ} {ξ, ζ} 0
{γ} ϕ {γ, η} {γ, η} 0 {γ} {γ} ϕ 1
{ζ} {ζ} {ζ} ϕ 1 ϕ {ξ, ζ} {ξ, ζ} 0
{η} ϕ {γ, η} {γ, η} 0 {η} {η} ϕ 1
{ξ, γ} {ξ} {ξ, γ, η} {γ, η} 1/3 {γ} {ξ, γ, ζ} {ξ, ζ} 1/3
{ξ, ζ} {ξ, ζ} {ξ, ζ} ϕ 1 {ξ, ζ} {ξ, ζ} ϕ 1
{ξ, η} {ξ} {ξ, γ, η} {γ, η} 1/3 {η} {ξ, ζ, η} {ξ, ζ} 1/3
{γ, ζ} {ζ} {γ, ζ, η} {γ, η} 1/3 {γ} {ξ, γ, ζ} {ξ, ζ} 1/3
{γ, η} {γ, η} {γ, η} ϕ 1 {γ, η} {γ, η} ϕ 1
{ζ, η} {ζ} {γ, ζ, η} {γ, η} 1/3 {η} {ξ, ζ, η} {ξ, ζ} 1/3
{ξ, γ, ζ} {ξ, ζ} X {γ, η} 1/2 {ξ, γ, ζ} {ξ, γ, ζ} ϕ 1
{ξ, γ, η} {ξ, γ, η} {ξ, γ, η} ϕ 1 {γ, η} X {ξ, ζ} 1/2
{ξ, ζ, η} {ξ, ζ} X {γ, η} 1/2 {ξ, ζ, η} {ξ, ζ, η} ϕ 1
{γ, ζ, η} {γ, ζ, η} {γ, ζ, η} ϕ 1 {γ, η} X {ξ, ζ} 1/2

X X X ϕ 1 X X ϕ 1

Table 2: A comparison between several types of CMj− approximations.
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B ℵu(B) ℵu(B) Bu(B) κu(B) ℵi(B) ℵi(B) Bi(B) κi(B)

{ξ} ϕ {ξ, ζ} {ξ, ζ} 0 {ξ} {ξ} ϕ 1
{γ} ϕ {γ, η} {γ, η} 0 {γ} {γ} ϕ 1
{ζ} ϕ {ξ, ζ} {ξ, ζ} 0 {ζ} {ζ} ϕ 1
{η} ϕ {γ, η} {γ, η} 0 {η} {η} ϕ 1
{ξ, γ} ϕ X X 0 {ξ, γ} {ξ, γ} ϕ 1
{ξ, ζ} {ξ, ζ} {ξ, ζ} ϕ 1 {ξ, ζ} {ξ, ζ} ϕ 1
{ξ, η} ϕ X X 0 {ξ, η} {ξ, η} ϕ 1
{γ, ζ} ϕ X X 0 {γ, ζ} {γ, ζ} ϕ 1
{γ, η} {γ, η} {γ, η} ϕ 1 {γ, η} {γ, η} ϕ 1
{ζ, η} ϕ X X 0 {ζ, η} {ζ, η} ϕ 1
{ξ, γ, ζ} {ξ, ζ} X {γ, η} 1/2 {ξ, γ, ζ} {ξ, γ, ζ} ϕ 1
{ξ, γ, η} {γ, η} X {ξ, ζ} 1/2 {ξ, γ, η} {ξ, γ, η} ϕ 1
{ξ, ζ, η} {ξ, ζ} X {γ, η} 1/2 {ξ, ζ, η} {ξ, ζ, η} ϕ 1
{γ, ζ, η} {γ, η} X {ξ, ζ} 1/2 {γ, ζ, η} {γ, ζ, η} ϕ 1

X X X ϕ 1 X X ϕ 1

Table 3: A comparison between several types of CMj− approximations.

Theorem 3. Let ℵ be a general relation and B ⊆ X. Then,

i) ℵu(B) ⊆ ℵr(B) ⊆ ℵi(B) ⊆ B ⊆ ℵi(B) ⊆ ℵr(B) ⊆ ℵu(B).

ii) ℵu(B) ⊆ ℵl(B) ⊆ ℵi(B) ⊆ B ⊆ ℵi(B) ⊆ ℵl(B) ⊆ ℵu(B).

Proof. Let ξ ∈ ℵu(B) =
⋃
{CMu(ξ) : CMu(ξ) ⊆ B}. But, CMu(ξ) = [CMr(ξ) ∪

CMl(ξ)] ⊆ B. Thus, either ξ ∈
⋃
{CMr(ξ) : CMr(ξ) ⊆ B} or ξ ∈

⋃
{CMl(ξ) : CMl(ξ) ⊆

B}. Hence, ξ ∈ ℵr(B) or ξ ∈ ℵl(B). Therefore, ℵu(B) ⊆ ℵr(B) or ℵu(B) ⊆ ℵl(B). Now,
let ξ ∈ ℵr(B) =

⋃
{CMr(ξ) : CMr(ξ) ⊆ B}. But, CMi(ξ) = [CMr(ξ) ∩ CMl(ξ)] ⊆ B,

Thus, ξ ∈
⋃
{CMi(ξ) : CMi(ξ) ⊆ B}. Hence, ξ ∈ ℵi(B). Therefore, ℵr(B) ⊆ ℵi(B).

Similarly, ℵl(B) ⊆ ℵi(B). By Theorem 2, we have ℵi(B) ⊆ B ⊆ ℵi(B). Now, let
ξ ∈ ℵi(B) =

⋃
{CMi(ξ) : CMi(ξ) ∩B ̸= ϕ}. But, CMi(ξ) = CMr(ξ) ∩ CMl(ξ). Hence,

ξ ∈
⋃
{CMr(ξ) : CMr(ξ) ∩ B ̸= ϕ} and ξ ∈

⋃
{CMl(ξ) : CMl(ξ) ∩ B ̸= ϕ}. Therefore,

ℵi(B) ⊆ ℵr(B) and ℵi(B) ⊆ ℵl(B). Now, let ξ ∈ ℵr(B) =
⋃
{CMr(ξ) : CMr(ξ)∩B ̸= ϕ}.

But, CMu(ξ) = CMr(ξ)∪CMl(ξ). Hence, ξ ∈
⋃
{CMu(ξ) : CMu(ξ)∩B ̸= ϕ}. Therefore,

ℵr(B) ⊆ ℵu(B). Similarly, ℵl(B) ⊆ ℵu(B).

The equality of parts (i) and (ii) in Theorem 3 is not true, in general.

Example 7. In Example 6 by using Table 2, 3, ℵu({ξ, η}) ̸= ℵr({ξ, η}) ̸= ℵl({ξ, η}) ̸=
ℵi({ξ, η}) and ℵi({ξ, γ}) ̸= ℵr({ξ, γ}) ̸= ℵl({ξ, γ}) ̸= ℵu({ξ, γ}).

Remark 4. In Figure 1, we compare between several types of CMj− approximations
operators with general relation ℵ and B ⊆ X.
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ℵr(B) ℵr(B)
↗ ↘ ↗ ↘

ℵu(B) ℵi(B) −→ B −→ ℵi(B) ℵu(B)
↘ ↗ ↘ ↗

ℵl(B) ℵl(B)

Figure 1: Relationship between CMj−approximations operators.

Theorem 4. Let ℵ be a general relation and B ⊆ X. Then,

i) Bi(B) ⊆ Br(B) ⊆ Bu(B).

ii) Bi(B) ⊆ Bl(B) ⊆ Bu(B).

Proof. (i) If γ ∈ Bi(B), then γ ∈ ℵi(B) and γ /∈ ℵi(B). By Theorem 3, γ ∈ ℵr(B)
and γ /∈ ℵr(B). Hence, γ ∈ Br(B). Therefore, Bi(B) ⊆ Br(B). Now, if γ ∈ Br(B), then
γ ∈ ℵr(B) and γ /∈ ℵr(B). By Theorem 3, γ ∈ ℵu(B) and γ /∈ ℵu(B). Hence, γ ∈ Bu(B).
Therefore, Br(B) ⊆ Bu(B). Part (ii) is similar to the proof of part (i).

Theorem 5. Let ℵ be a general relation and B ⊆ X. Then,

i) κu(B) ⩽ κr(B) ⩽ κi(B).

ii) κu(B) ⩽ κl(B) ⩽ κi(B).

Proof. Obvious.

The equality in Theorem 4 and Theorem 5 are not true, in general.

Example 8. In Example 6 and Table 2, 3, Bi({ξ, η}) ̸= Br({ξ, η}) ̸= Bl({ξ, η}) ̸=
Bu({ξ, η}) and κu({ξ, η}) ̸= κr({ξ, η}) ̸= κl({ξ, η} ≠ κi({ξ, η}.

Theorem 6. Let ℵ be a general relation and B ⊆ X. Then,

i) B is CMu−exact =⇒ B is CMr−exact =⇒ B is CMi−exact.

ii) B is CMu−exact =⇒ B is CMl−exact =⇒ B is CMi−exact.

Proof. Obvious.

The converse of Theorem 6 is not true, in general.

Example 9. In Example 6 and Table 2, 3, {ζ, η} is CMi−exact, but {ζ, η} is not
CMr−exact or CMl−exact or CMu−exact. {ξ} is CMr−exact, but {ξ} is not CMu−exact.
{γ} is CMl−exact, but {γ} is not CMu−exact.
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5. Topological spaces generated by core minimal neighborhoods

This part uses the fundamental concept of core minimal neighborhoods to generate
topologies by using general relations. A comparison of different kinds of topologies is
explored.

Theorem 7. Let (X,ℵ, CMj) be core minimal approximation space and ℵ be a general
relation. Then, the families τj = {B ⊆ X : CMj(ξ) ⊆ B, ξ ∈ B} are topologies on X, for
all j ∈ J.

Proof. (i) Clearly, X, ϕ ∈ τj .
(ii) Let Ai ∈ τj where i ∈ I and ξ ∈

⋃
i∈I

Ai. Then, there exists Ai0 ∈ τj such that

ξ ∈ Ai0 ∈
⋃
i∈I

Ai. This implies that CMj(ξ) ⊆ Ai0 . Hence, CMj(ξ) ⊆
⋃
ξ∈I

Ai. Therefore,⋃
i∈I

Ai ∈ τj .

(iii) If A1,A2 ∈ τj and ξ ∈ A1 ∩ A2, then ξ ∈ A1 and ξ ∈ A2. Hence, CMj(ξ) ⊆ A1 and
CMj(ξ) ⊆ A2. So, CMj(ξ) ⊆ A1 ∩ A2. Therefore, A1 ∩ A2 ∈ τj .

Example 10. In Example 2, we have:
τr = {X, ϕ, {ξ}, {ζ}, {ξ, ζ}, {γ, η}, {ξ, γ, η}, {γ, ζ, η}},
τl = {X, ϕ, {γ}, {η}, {ξ, ζ}, {γ, η}, {ξ, γ, ζ}, {ξ, ζ, η}},
τu = {X, ϕ, {ξ, ζ}, {γ, η}}, and
τi = τdiscrete.

Theorem 8. If τj are topologies, then

i) τu ⊆ τr ⊆ τi.

ii) τu ⊆ τl ⊆ τi.

Proof. Let B ∈ τu. Then, ∀ξ ∈ B, CMu(ξ) ⊆ B . But, CMu(ξ) = CMr(ξ) ∪ CMl(ξ),
then CMr(ξ) ⊆ B for all ξ ∈ B. Hence, B ∈ τr. Therefore, τu ⊆ τr. Now, let B ∈ τr.
Then, CMr(ξ) ⊆ B, ∀ξ ∈ B. But, CMi(ξ) = CMr(ξ)∩CMl(ξ), then CMi(ξ) ⊆ B for all
ξ ∈ B. Hence, B ∈ τi. Therefore, τr ⊆ τi. similarly, the proof of part (ii).

The equality of parts (i) and (ii) in Theorem 8 is not true, in general.

Example 11. In Example 10, τr ̸= τl ̸= τu ̸= τi.

Theorem 9. Let ℵ be a symmetric relation and τj are topologies. Then, τr = τl = τu = τi.

Proof. Let ℵ be a symmetric relation and B ⊆ X. Then, Nr(B) = Nl(B) = Nu(B) =
Ni(B), MNr(B) = MNl(B) = MNu(B) = MNi(B), and CMr(B) = CMl(B) =
CMu(B) = CMi(B). Therefore, τr = τl = τu = τi.
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6. Medical applications: human blood circulation

Humans depend on blood circulation to deliver nutrients and oxygen to all cells of the
body. The pulmonary circulation is part of the circulatory system, which includes the
cardiovascular system, which consists of blood vessels that carry deoxygenated blood from
the heart to the lungs, and then return oxygenated blood to the heart through the right
ventricle again. This is contrary to what happens in the greater blood circulation. Deoxy-
genated blood leaves the right part (right ventricle) of the heart through the pulmonary
arteries, which take blood to the lungs, where red blood cells release carbon dioxide and
combine with oxygen during breathing. The oxygenated blood leaves the lungs through
the pulmonary veins, which drain into the left part, or what is called the left atrium of
the heart, thus completing the pulmonary circulation. The blood is then distributed to
all parts of the body through the greater blood circulation before returning again to the
pulmonary circulation. This effective circulation system makes sure every cell receives the
nutrients and oxygen they require while also eliminating waste, promoting general health
and organ function.

Graph operators were used to investigate the topology of the human heart [5, 23].
Nada et al. [32] advanced their study by separating the heart into vertices and edges, look
at the shown Figure 2. Using this graph, they created a topological structure.

Figure 2: A digraph representation of the heart in humans.

We are exploring additional cardiac taxa using core minimal right, core minimal left,
core minimal union, and core minimal intersection neighborhoods. These four types can
be used to generate topologies that can provide a decision. The graph G = (V,E) has
vertices representing regions of blood flow and edges representing paths throughout the
heart. Specifically, vertices ζ1 = Superior vena cavae, ζ2 = Inferior vena cavae, ζ3 = Right
atrium, ζ4 = Right ventricle, ζ5 = Pulmonary trunk, ζ6 = Right lung, ζ7 = Left lung,
ζ8 = Left atrium, ζ9 =Left ventricle, and ζ10 =Aorta.

Now, take a set X = {ζi : 1 ⩽ i ⩽ 10} and find core minimal right, core minimal
left, core minimal union, and core minimal intersection neighborhoods for each vertex
in Figure 2. These neighborhoods are presented in Tables 4, 5. Choose a subgraph



I. Shbair et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 3567-3584 3580

B = {ζ2, ζ3, ζ7 ζ8, ζ9} of a graph say G a human heart.

ξ Nr(ξ) Nl(ξ) MNr(ξ) MNl(ξ) CMr(ξ) CMl(ξ) CMu(ξ) CMi(ξ)

ζ1 {ζ3} ϕ ϕ {ζ1, ζ2} {ζ1, ζ2} {ζ1, ζ2} {ζ1, ζ2} {ζ1, ζ2}
ζ2 {ζ3} ϕ ϕ {ζ1, ζ2} {ζ1, ζ2} {ζ1, ζ2} {ζ1, ζ2} {ζ1, ζ2}
ζ3 {ζ4} {ζ1, ζ2} {ζ3} {ζ3} {ζ3} {ζ3} {ζ3} {ζ3}
ζ4 {ζ5} {ζ3} {ζ4} {ζ4} {ζ4} {ζ4} {ζ4} {ζ4}
ζ5 {ζ6, ζ7} {ζ4} {ζ5} {ζ5} {ζ5} {ζ5} {ζ5} {ζ5}
ζ6 {ζ8} {ζ5} {ζ6, ζ7} {ζ6, ζ7} {ζ6, ζ7} {ζ6, ζ7} {ζ6, ζ7} {ζ6, ζ7}
ζ7 {ζ8} {ζ5} {ζ6, ζ7} {ζ6, ζ7} {ζ6, ζ7} {ζ6, ζ7} {ζ6, ζ7} {ζ6, ζ7}
ζ8 {ζ9} {ζ6, ζ7} {ζ8} {ζ8} {ζ8} {ζ8} {ζ8} {ζ8}
ζ9 {ζ10} {ζ8} {ζ9} {ζ9} {ζ9} {ζ9} {ζ9} {ζ9}
ζ10 ϕ {ζ9} {ζ10} ϕ {ζ10} {ζ10} {ζ10} {ζ10}

Table 4: CMj for ζi ∈ X and j ∈ J.

ξ Nr(ξ) Nl(ξ) MNr(ξ) MNl(ξ) CMr(ξ) CMl(ξ) CMu(ξ) CMi(ξ)

ζ2 {ζ3} ϕ ϕ {ζ2} {ζ2, ζ7} {ζ2} {ζ2, ζ7} {ζ2}
ζ3 ϕ {ζ2} {ζ3} ϕ {ζ3} {ζ3, ζ9} {ζ3, ζ9} {ζ3}
ζ7 {ζ8} ϕ ϕ {ζ7} {ζ2, ζ7} {ζ7} {ζ2, ζ7} {ζ7}
ζ8 {ζ9} {ζ7} {ζ8} {ζ8} {ζ8} {ζ8} {ζ8} {ζ8}
ζ9 ϕ {ζ8} {ζ9} ϕ {ζ9} {ζ3, ζ9} {ζ3, ζ9} {ζ9}

Table 5: CMj for ζi ∈ B and j ∈ J.

We examine the topologies on a subgraph B as follows:

i) τr = {B, ϕ, {ζ3}, {ζ8}, {ζ9}, {ζ2, ζ7}, {ζ3, ζ8}, {ζ3, ζ9}, {ζ8, ζ9}, {ζ2, ζ3, ζ7}, {ζ2, ζ7, ζ8}, {ζ2, ζ7, ζ9},
{ζ3, ζ8, ζ9}, {ζ2, ζ3, ζ7, ζ8}, {ζ2, ζ3, ζ7, ζ9}, {ζ2, ζ7, ζ8, ζ9}}.

ii) τl = {B, ϕ, {ζ2}, {ζ7}, {ζ8}, {ζ2, ζ7}, {ζ2, ζ8}, {ζ3, ζ9}, {ζ7, ζ8}, {ζ2, ζ3, ζ9}, {ζ2, ζ7, ζ8}, {ζ3, ζ7, ζ9},
{ζ3, ζ8, ζ9}, {ζ2, ζ3, ζ7, ζ9}, {ζ2, ζ3, ζ8, ζ9}, {ζ3, ζ7, ζ8, ζ9}}.

iii) τu = {B, ϕ, {ζ8}, {ζ2, ζ7}, {ζ3, ζ9}, {ζ2, ζ7, ζ8}, {ζ3, ζ8, ζ9}, {ζ2, ζ3, ζ7, ζ9}}.

iv) τi = τdiscrete, which has a best accuracy in Table 3.

The results of these topologies on G can be investigated as follows:

i) The topologies τr are τl are independent.

ii) τu ⊆ τr and τu ⊆ τl.

iii) τi is finer than any topology which reduce from any subgraph of G.

iv) Core minimal intersection topology τi is the best topology because it represents all
parts of the heart that can be used for the best diagnosis. It is considered the ideal
choice from a topological point of view, as topological scientists use it in their studies.
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In the application that was presented, we have suggested many different topologies that
help experts in diagnosing the heart. Many topological tools can be used, such as separa-
tion axioms, connectivity, compactness, and continuity. These tools have a fundamental
impact in the medical field.

7. Conclusion and Future Work

In the current paper, we define core minimal neighborhood which is a generalization
of rough set theory, and we have studied its properties and reached some results. Also, a
comparison between neighborhood, core neighborhood, minimal neighborhood, and core
minimal neighborhood are introduced. We investigate four various types of generalizations
for RST, which contain four types of dual approximations constructed by core minimal
neighborhoods. The characteristics of these approximations are examined. There are
several comparisons between our generalizations and others. Further topological develop-
ments in RST and its applications are made possible by the approximations operators.
Our research established four topologies and studied a comparison between them. The ex-
ample shows medical applications that are utilized to make decisions in the human heart.
Furthermore, this discovery will be beneficial and offer new prospects in the research of
topological spaces that approach RST via minimal neighborhoods, and the examination of
core minimal neighborhoods as applications of these novel ideas. In future work, there are
many studies to combine rough sets with many topological concepts such as neighborhoods
and ideals that preserve the diagnosis and cure of dengue. Moreover, we study several rela-
tionships between dual approximations, accuracies, and boundaries of neighborhood, core
neighborhood, minimal neighborhood, and core minimal neighborhood.
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