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Abstract. In this paper, we introduce a new class of multivalued contractions and prove the
existence of a fixed point for such contractions. Some consequences are presented in b-metric
spaces endowed with partial order or with graph. To illustrate the applicability of our results, we
offer an example and an application to the existence of solutions of an integral inclusions.
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1. Introduction and preliminaries

One of the key generalizations for metric spaces is the idea of a b-metric space. Bakhtin
[4] first proposed the idea of building such spaces, and Czerwik[6] refined it. Several fixed-
point results were provided in this way for single or set valued mappings, for instance,
see[7, 13, 23, 24, 26]. One of the key generalizations for metric spaces is the idea of a
b-metric space. Bakhtin [4] first proposed the idea of building such spaces, and Czerwik
citesc1 refined it. Several fixed-point results were provided in this way for single or set
valued mappings, for instance, see [7, 13, 23, 24, 26]. However, Samet et al. [27] presented
the idea of α-admissible, and they established some results. Some results were reached by
using this notion in conjunction with non-linear contractions; see [11, 12, 18, 23]. This
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idea was later extended to αs-admissible in the setting of b-metric spaces by Ali et al. [14].
Jleli and Samet [10] established a novel idea known as the ϑ-contraction and proved the
existence of fixed points. Here, it is important to note that a contraction in in the sense of
Banach, is a particular case of ϑ-contraction, while there are some ϑ-contractions which do
not satisfy Banach contractive condition. Subsequently, several authors studied different
variations of ϑ-contractions and other different contractions in single and set valued cases,
for example, see [2, 3, 15–17, 19–22, 25, 28] In this work, we prove the existence of a fixed
point for such a novel contraction type in complete b-metric spaces spaces by combining the
notion of αs-admissible mapping with ϑ-contraction in the case of multivalued mappings.
In this work, we prove the existence of a fixed point for such a novel contraction type
in complete b-metric spaces by combining the notion of αs-admissible mapping with ϑ-
contraction in the case of multivalued mappings. Using our major findings, we also infer
the existence of fixed points in partially ordered metric spaces. Lastly, to demonstrate
the applicability of our results, we offer an example and an application pertaining to an
existence problem of solutions for a Volterra integral inclusion and for applications in
factional equtions, see [1, 8]

Definition 1. [14] Let X be a non-empty set and s be a real number with s ≥ 1. A
function d : X × X → [0,∞) is a b-metric on X if for all ν, µ, η ∈ X, it satisfies the
following conditions:

(b1) d(ν, µ) = 0 iff ν = µ,
(b2) d(ν, µ) = d(µ, ν),
(b3) d(ν, η) ≤ s[d(ν, µ) + d(µ, η)].
A triplet (X, d, s) is called a b-metric space.

Every metric space is a b-metric space with s = 1.
Denote the family of non-empty, closed and bounded subsets of X by CB(X). For

A,B ∈ CB(X), define H : CB(X)× CB(X) → [0,+∞) by

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)

}
where d(a,B) = inf {d(b, ν) : ν ∈ B}. Such a function H is called the Pompeiu-Hausdorff
metric induced by d, for more details, see [5]. Also, denote the family of non-empty and
closed subsets of X by CL(X).

Lemma 1. [14] Let (X, d, s) be a b-metric space. The following properties are satisfied:
1) d(ν,B) ≤ d(ν, b) for all ν ∈ X, b ∈ B and B ∈ CB(X).
2) d(ν,B) ≤ H(A,B) for all ν ∈ X and A,B ∈ CB(X).
3) d(ν,A) ≤ s(d(ν, µ) + d(µ,B)) for all ν, µ ∈ X and A,B ∈ CB(X).

Lemma 2. [6] Let (X, d, s) be a b-metric space and A,B ∈ CL(X) with H(A,B) > 0.
Then, for each b ∈ B, there exists a = a(b) ∈ A such that

d(a, b) ≤ sH(A,B).
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Definition 2. [26] Consider a non-empty set X and two mappings T : X → X and
α : X ×X → [0,+∞). For a given real number s ≥ 1, T is weak α-admissible of type S
if for ν ∈ X and α(ν, T ν) ≥ s, we have α(T ν, T T ν) ≥ s.

Definition 3. [14] Let (X, d, s) be a b-metric space. For a given function α : X ×X →
[0,+∞), a multivalued mapping T : X → CL(X) is
(1) αs-admissible, if for each ν ∈ X and µ ∈ T ν with α(ν, µ) ≥ s2, we have α(µ, η) ≥ s2

for each η ∈ T µ.
(2) α∗

s -admissible, if for ν, µ ∈ X with α(ν, µ) ≥ s2 we have α∗(T ν, T µ) ≥ s2, where
α∗(T ν, T µ) = inf {α(a, b) : a ∈ T ν, b ∈ T µ} .

Definition 4. [9, 18] Let (X, d) be a metric space, and T : X → CL(X) and α : X×X →
[0,+∞) be given maps. Then T is called an αs-lower semi-continuous if for ν ∈ X and a
sequence {νn} in X with limn→∞ d(νn, ν) = 0 and α(νn, νn+1) ≥ s2 for all n ∈ N, implies

lim inf
n→∞

d(νn, T νn) ≥ d(ν, T ν).

Definition 5. [10] Let Θs be the set of all functions ϑ : (0,+∞) → (1,+∞) such that

(ϑ1) ϑ is a strictly increasing function;

(ϑ2) for each sequence {ωn} of positive real numbers limn→∞ ϑ(ωn) = 1 iff limn→∞ ωn =
0;

(ϑ3) there exist ρ ∈ (0, 1) and χ ∈ (0,+∞] such that limω→0+
ϑ(ω)−1

ωρ = χ;

(ϑ4) for each sequence {ωn} in R+ such that ϑ(sωn) ≤
[
ϑ(ωn−1)

]ρ
, where ρ ∈ (0, 1), then

ϑ(snωn) ≤
[
ϑ(sn−1ωn)

]ρ
.

Example 1. The following functions ϑi : (0,+∞) → (1,+∞) for i ∈ {1, 2, 3, 4} , are the
elements of Θs.

(i) ϑ1(ω) = eω;

(ii) ϑ2(ω) = eωe
ω
;

(iii) ϑ3(ω) = e
√
ω;

(iv) ϑ4(ω) = e
√
ωeω .

2. Main results

We begin this section with the following definition.
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Definition 6. Let (X, d, s) be a b-metric space and α : X×X → [0,+∞) be given. A map
T : X → CL(X) is called multivalued almost (αs, ϑ, κ)-contraction of Hardy-Rogers type if
there exist ϑ ∈ Θs, L ≥ 0 and κ : (0,+∞) → [0, 1) satisfies limω→z+ supκ(ω) < 1 for all
z ∈ (0,+∞) and non-negative real numbers a1, a2, a3, a4, a5 with a1 + a2 + a3 + 2sa4 = 1,
and a3 ̸= 1 such that

ϑ(s3H(T ν, T µ)) ≤
[
ϑ(Ns(ν, µ))

]κ(d(ν,µ)
+ Lmin{d(ν, T µ), d(µ, T ν)}, (2.1)

for all ν, µ ∈ X with α(ν, µ) ≥ s2 and H(T ν, T µ) > 0 where

Ns(ν, µ) = a1d(ν, µ) + a2d(ν, T ν) + a3d(µ, T µ) + a4d(ν, T µ) + a5d(µ, T ν).

If α(ν, µ) = s2, T is said to be an almost (ϑ, κ)-contraction of Hardy-Rogers type.

Theorem 1. Let (X, d, s) be a complete b-metric space and T : X → CB(X) be a mul-
tivalued almost (αs, ϑ, κ)-contraction of Hardy-Rogers type. Assume that the following
conditions are satisfied:

(i) T is αs-admissible;

(ii) there exist ν0 ∈ X and ν1 ∈ T ν0 such that α(ν0, ν1) ≥ s2;

(iii) T is αs-lower semi-continuous, or X is αs-regular, that is, for every sequence {νn}
in X such that νn → ν∗ ∈ X and α (νn, νn+1) ≥ s2 for all n ∈ N, then α (νn, ν

∗) ≥ s2,
for all n ∈ N.

Then T has a fixed point.

Proof. From the hypothesis (2), there exist ν0 ∈ X and ν1 ∈ T ν0 such that α(ν0, ν1) ≥
s2. If ν0 = ν1 or ν1 ∈ T ν1, then ν1 is a fixed point of T and the proof is completed.
Assume that ν0 ̸= ν1 and ν1 /∈ T ν1, then H(T ν0, T ν1) ≥ d(ν1, T ν1) > 0. From Lemma 2,
there exists ν2 ∈ T ν1 such that

d(ν1, ν2) ≤ sH(T ν0, T ν1) ≤ s2H(T ν0, T ν1),

which implies
sd(ν1, ν2) ≤ s3H(T ν0, T ν1).

Since ϑ is strictly increasing, we get

ϑ(sd(ν1, ν2)) ≤ ϑ(s3H(T ν0, T ν1)).

Then by using (2.1) we get

ϑ(sd(ν1, ν2)) ≤ ϑ(s3H(T ν0, T ν1))

≤
[
ϑ(Ns(ν0, ν1))

]κ(d(ν0,ν1))
+ Lmin{d(ν0, T ν1), d(ν1, T ν0)}
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< [ϑ(Ns(ν0, ν1))]
κ(d(ν0,ν1))

< ϑ(Ns(ν0, ν1)),

which gives
ϑ(sd(ν1, ν2)) < ϑ(Ns(ν0, ν1)).

Since ϑ is increasing, we get
sd(ν1, ν2) < Ns(ν0, ν1),

where

Ns(ν0, ν1) = a1d(ν0, ν1) + a2d(ν0, T ν0) + a3d(ν1, T ν1) + a4d(ν0, T ν1) + a5d(ν1, T ν0)
≤ a1d(ν0, ν1) + a2d(ν0, ν1) + a3d(ν1, ν2) + a4d(ν0, ν2)

≤ a1d(ν0, ν1) + a2d(ν0, ν1) + a3d(ν1, ν2) + sa4(d(ν0, ν1) + d(ν1, ν2))

≤ (a1 + a2 + sa4)d(ν0, ν1) + (a3 + sa4)d(ν1, ν2),

which implies that

d(ν1, ν2) ≤ sd(ν1, ν2) ≤ (a1 + a2 + sa4)d(ν0, ν1) + (a3 + sa4)d(ν1, ν2).

Then,

d(ν1, ν2) ≤
a1 + a2 + sa4
1− a3 − sa4

d(ν0, ν1).

Since a1 + a2 + a3 + 2sa4 = 1, we get

d(ν1, ν2) < d(ν0, ν1).

Thus,
sd(ν1, ν2) < (a1 + a2 + sa4)d(ν0, ν1) + (a3 + sa4)d(ν0, ν1) = d(ν0, ν1),

and so

ϑ(sd(ν1, ν2)) ≤
[
ϑ(d(ν0, ν1))

]κ(d(ν0,ν1))
.

Assume that ν1 ̸= ν2, then ν2 /∈ T ν2 and d(ν2, T ν2) > 0 so H(T ν1, T ν2) > 0. From
Lemma 2, there exists ν3 ∈ T ν2 such that

ϑ(sd(ν2, ν3)) ≤ ϑ(s3H(T ν1, T ν2))

≤
[
ϑ(Ns(ν1, ν2))

]κ(d(ν1,ν2))
+ Lmin{d(ν1, T ν2), d(ν2, T ν1)}

< [ϑ(Ns(ν1, ν2))]
κ(d(ν1,ν2))

< ϑ(Ns(ν1, ν2)).

Then,
ϑ(sd(ν2, ν3)) ≤ ϑ(Ns(ν1, ν2)),
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which gives
sd(ν2, ν3) < Ns(ν1, ν2),

where

Ns(ν1, ν2) = a1d(ν1, ν2) + a2d(ν1, T ν1) + a3d(ν2, T ν2) + a4d(ν1, T ν2) + a5d(ν2, T ν1).
≤ a1d(ν1, ν2) + a2d(ν1, ν2) + a3d(ν2, ν3) + sa4(d(ν1, ν2) + d(ν2, ν3))

≤ (a1 + a2 + sa4)d(ν1, ν2) + (a3 + sa4)d(ν2, ν3).

Hence,

d(ν2, ν3) ≤ sd(ν2, ν3) ≤ (a1 + a2 + sa4)d(ν1, ν2) + (a3 + sa4)d(ν2, ν3),

and so

d(ν2, ν3) ≤
a1 + a2 + sa4
1− a3 − sa4

d(ν1, ν2).

Since a1 + a2 + a3 + 2sa4 = 1, we get

d(ν2, ν3) < d(ν1, ν2).

Then, we infer that

ϑ(sd(ν2, ν3) ≤
[
ϑ(d(ν1, ν2))

]κ(d(ν1,ν2))
.

By continuing in this manner, we construct a sequence {νn} in X, if there exists n0
such that νn0 = νn0+1, or νn0+1 ∈ T νn0+1 then νn0+1 is fixed point. If νn ̸= νn+1 and
νn+1 /∈ T νn+1, then H(T νn, T νn+1) > 0. From Lemma 2, there exists νn+1 ∈ T νn such
that

θ(sd(νn, νn+1)) ≤
[
θ(d(νn−1, νn))

]κ(d(νn−1,νn))
, for all n ∈ N. (2.2)

It follows by (2.2) and (ϑ4) that

θ(snd(νn, νn+1)) ≤
[
θ(sn−1d(νn−1, νn))

]κ(d(νn−1,νn))
, for all n ∈ N. (2.3)

Since ϑ is increasing, then the sequence {d(νn, νn+1)} is decreasing and so convergent. By
the property of κ, there exist δ ∈ (0, 1) and n0 ∈ N such that κ(d(νn, νn+1)) < δ, for all
n ≥ n0. Thus, from (2.3), we deduce

1 < ϑ(snd(νn, νn+1))

≤
[
ϑ(sn−1d(νn−1, νn))

]κ(d(νn−1,νn)

≤
[
ϑ(sn−2d(νn−2, νn−1))

]κ(d(νn−2,νn−1)κ(d(νn−1,νn)

...

≤
[
ϑ(d(ν0, ν1))

]δn−n0

, (2.4)
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for all n ≥ n0. On taking the limit as n→ ∞, we get

lim
n→∞

ϑ(snd(νn, νn+1)) = 1,

and from (ϑ2),
lim
n→∞

snd(νn, νn+1) = 0.

Now, we prove {νn} is a Cauchy sequence, by (ϑ3) there exist ρ ∈ (0, 1) and χ ∈ (0,+∞]
such that

lim
n→∞

ϑ(snd(νn, νn+1))− 1

(snd(νn, νn+1))ρ
= χ.

Take δ ∈ (0, χ). By the definition of limit, there exists n1 ∈ N such that

(snd(νn, νn+1))
ρ ≤ δ−1[θ(snd(νn, νn+1))− 1], for all n ≥ n1.

Using (2.4) and the above inequality, we deduce

n(snd(νn, νn+1))
ρ ≤ δ−1n([ϑ(d(ν0, ν1))]

δn−n0 − 1), for all n ≥ n1.

This implies that
lim
n→∞

n(snd(νn, νn+1))
ρ = 0.

Thence, there exists n2 ∈ N such that

snd(νn, νn+1) ≤
1

n
1
ρ

, for all n ≥ n2. (2.5)

Let m > n ≥ max{n0, n1, n2}. Then, using the triangular inequality and (2.5), we have

d(νn, νm) ≤
m−1∑
j=n

d(νj , νj+1) ≤
m−1∑
j=n

snd(νj , νj+1) ≤
m−1∑
j=n

1

j
1
p

≤
∞∑
j=n

1

j
1
p

<∞,

and so {νn} is a Cauchy sequence. Since (X, d, s) is complete, so {νn} converges to some
ν∗ ∈ X.
If T is αs-lower semi-continuous, then for all n ∈ N, we have

d(νn, T νn) ≤ d(νn, νn+1).

Passing to the limit, we get
lim
n→∞

d(νn, T νn) = 0.

Then taken in the account T is αs-lower semi-continuous, we obtain

0 < d(ν∗, T ν∗) ≤ lim inf
n→∞

d(νn, T νn) = 0,
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which gives d(ν∗, T ν∗) = 0. Hence, ν∗ is a fixed point of T .
If X is αs-regular, so for every sequence {νn} converges to ν∗ with α(νn, νn+1) ≥ s2, then
α(νn, ν

∗) ≥ s2 so d(νn+1, T ν∗) > 0, which implies H(T νn, T ν∗) > 0, then by (2.1), we get

1 < ϑ(sd(νn+1, T ν∗)) ≤ ϑ(s3H(T νn, T ν∗)

≤ [ϑ(Ns(d(ν0, ν1)))]
δn−n0

< [ϑ(d(ν0, ν1))]
δn−n0

.

Passing to the limit, we have

lim
n→∞

ϑ(d(νn+1, T ν∗)) = 1,

then (ϑ2) gives
lim
n→∞

d(νn+1, T ν∗) = 0,

which implies d(ν∗, T ν∗) = 0. Hence ν∗ is a fixed point of T .

Since each α∗
s-admissible mapping is also αs-admissible, we obtain the following result.

Corollary 1. Let (X, d, s) be a complete b-metric space and T : X → CB(X) be a mul-
tivalued almost (αs, ϑ, κ)-contraction of Hardy-Rogers type. Assume that the following
conditions are satisfied:

(i) T is an α∗
s-admissible;

(ii) there exist ν0 ∈ X and ν1 ∈ T ν0 such that α(ν0, ν1) ≥ s2;

(iii) T is αs-lower semi-continuous, or for every sequence {νn} ⊂ X converges to some
ν∗ in X and α∗(νn, νn+1) ≥ s2, for all n ∈ N. Then α∗(νn, ν

∗) ≥ s2, for all n ∈ N.

Then T has a fixed point.

Corollary 2. Let (X, d, s) be a complete b-metric space, α : X×X → [0,+∞) be a function
and T : X → CB(X) be a multivalued mapping. Assume that the following conditions are
satisfied:

(i) T is an αs-admissible;

(ii) there exist ν0 ∈ X and ν1 ∈ T ν0 such that α (ν0, ν1) ≥ s2;

(iii) T is αs-lower semi-continuous, or X is αs-regular;

(iv) there exist ϑ ∈ Θs, L ≥ 0 and κ : (0,+∞) → [0, 1) satisfies limω→z+ supκ(ω) < 1 for
all z ∈ (0,+∞) and nonnegative real numbers a1, a2, a3, a4, a5 with a1 + a2 + a3 + 2sa4 =
1, and a3 ̸= 1 such that

ϑ(s3α(ν, µ)H(T ν, T µ)) ≤
[
ϑ(Ns(ν, µ))))]

κ(d(ν,µ) + Lmin{d(ν, T µ), d(µ, T ν)},

for all ν, µ ∈ X with H(T ν, T µ) > 0, where

Ns(ν, µ) = a1d(ν, µ) + a2d(ν, T ν) + a3d(µ, T µ) + a4d(ν, T µ) + a5d(µ, T ν).
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Then T has a fixed point.

Proof. For all ν, µ ∈ X, we have

H(T ν, T µ) ≤ α(ν, µ)H(T ν, T µ),

since ϑ is increasing function, we get

ϑ(s3H(T ν, T µ)) ≤ ϑ(s3α(ν, µ)H(T ν, T µ))
≤

[
ϑ(Ns(ν, µ))))]

κ(d(ν,µ) + Lmin{d(ν, T µ), d(µ, T ν)}.

So this result is a consequence of Theorem 1.

Corollary 3. Let (X, d, s) be a complete b-metric space, α : X×X → [0,+∞) be a function
and T : X → CB(X) be a multivalued mapping. Assume that the following conditions hold:

(i) T is almost (ϑ, κ)-contraction of Hardy Rogers type.

(i) T is lower semi continuous.

Then T has a fixed point.

Proof. It suffices to take α(ν, µ) = s2 for all ν, µ ∈ X in Theorem1.

Example 2. Let X = [0, 2] be a set endowed with a b-metric d(ν1, ν2) = |ν1−ν2|2. Define
T : X → CB(X) and α : X×X → [0,∞) by

T ν =

{
[0, ν4 ], ν ∈ [0, 2)
{2}, ν = 2

and

α(ν, µ) =

{
4, (ν, µ) ∈ [0, 2)
0, otherwise.

Taking ϑ(ω) = eω, κ = 3/4, s = 2, a1 =
4
5 , a2 = a4 = a5 = 0 and a3 = 1/8.

For all ν, µ ∈ (0, 2), we have α(ν, µ) = 4, H(T ν, T µ) > |ν−µ
4 |2 > 0 and d(ν, µ) = |ν − µ|2.

Then

8H(T ν, T µ) = 1

2
|ν − µ|2 ≤ 3

4
|ν − µ|2 ≤ 3

4
Ns(ν, µ),

which implies that

e8H(T ν,T µ) ≤ e
9
16

d(ν,µ) ≤ e
9
16

Ns(ν,µ).

T is α-continuous, since if (νn) is a sequence in X converges to ν∗ with α(νn, νn+1) ≥ 4,

then (νn) ⊂ [0, 2) which implies Tνn = [0, νn4 ] and lim
n→∞

T νn = [0,
ν

4
] = T ν∗.

Consequently, all conditions of Theorem 1 are satisfied. Then T has a fixed point which
is 2.
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Now, we give some consequences concerning, two existence theorems of fixed point in
metric space endowed with a graph and other in partially order metric spaces.

Theorem 2. Let (X,⪯, d) be a complete ordered b-metric space and T : X → CB(X) be
a multivalued mapping. Assume that the following assertions hold.

(i) For each ν ∈ X and µ ∈ T ν with ν ⪯ µ, we have µ ⪯ η for all ν3 ∈ T µ.

(ii) There exist ν0 ∈ X and ν0 ∈ T ν0 such that ν0 ⪯ ν1;

(iii) For ν∗ ∈ X and a sequence {νn} in X with
limn→∞ d(νn, ν

∗) = 0 and νn ⪯ νn+1 for all n ∈ N, implies

lim inf
n→∞

d(νn, T νn) ≥ d(ν∗, T ν∗)

or, for every sequence {νn} in X such that νn → ν∗ ∈ X and νn ⪯ νn+1 for all
n ∈ N, we have νn ⪯ ν∗ for all n ∈ N.

(iv) There exist ϑ ∈ Θs, L ≥ 0 and κ : (0,∞) → [0, 1) satisfies lim
ω→z+

supκ(ω) < 1 for all

z ∈ (0,∞) such that

ϑ(s3H(T ν, T µ)) ≤
[
ϑ(Ns(ν, µ))

]κ(d(ν,µ))
+ Lmin{d(ν, T µ), d(µ, T ν)},

where

Ns(ν, µ) = a1d(ν, µ) + a2d(ν, T ν) + a3⌈(µ, T µ) + a4d(ν, T µ) + a5d(µ, T ν).

Then T has a fixed point.

Proof.
Define

α : X×X → [0,+∞), α (ν, µ) =

{
s2, if ν ⪯ µ,

0, otherwise.

The rest of proof is like the proof of Theorem 1.

Nextly, we present an existence theorem of a fixed point for multivalued ϑ-contractions
in a b-metric space X, endowed with a graph, into the space of nonempty closed and

bounded subsets of the metric space. Consider a graph G̃ such that the set V
(
G̃
)

of

its vertices coincides with X and the set E
(
G̃
)

of its edges contains all loops; that is,

E
(
G̃
)
⊇ ∆, where ∆̃ = {(ν, ν) , ν ∈ X}. We assume G̃ has no parallel edges, so we can

identify G̃ with the pair
(
V
(
G̃
)
, E

(
G̃
))

.

We define the function

α : X×X → [0,+∞), α (ν, µ) =

{
s2, if (ν, µ) ∈ E

(
G̃
)
,

0, otherwise.
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Theorem 3. Let (X, d, s) be a complete b-metric space endowed with a graph G̃ and
T : X → CB(X) be a multivalued mapping. Assume that the following conditions hold:

(i) For each ν ∈ X and µ ∈ T ν with (ν, µ) ∈ E(G̃), we have (µ, η) ∈ E(G̃) for all
η ∈ Tµ;

(ii) There exist ν0 ∈ X and ν1 ∈ T ν0 such that (ν0, ν1) ∈ E(G̃);

(iii) For every sequence {νn} in X such that νn → ν∗ ∈ X and (xn, xn+1) ∈ E(G̃) for all
n ∈ N, we have (νn, ν

∗) ∈ E(G̃) for all n ∈ N;

(iv) There exist ϑ ∈ Θs and κ : (0,∞) → [0, 1) satisfies lim
ω→z+

supκ(ω) < 1 such that

ϑ(s3H(T ν, T µ)) ≤
[
ϑ(Ns(ν, µ))

]κ(d(ν,µ))
+ Lmin{d(ν, T µ), d(µ, T ν)}, (2.6)

where

Ns(ν, µ) = a1d(ν, µ) + a2d(ν, Tµ) + a3d(µ, T µ) + a4d(ν, T µ) + a5d(µ, T ν).

Then T has a fixed point.

Proof. It suffices to consider

α : X×X → [0,+∞), α (ν, µ) =

{
s2, if (ν, µ) ∈ E

(
G̃
)
,

0, otherwise.

.

3. Application

In this section, we apply our obtained results to prove existence theorem of solution
for an integral inclusion of Volterra-type. For this purpose, let X := C([a, b],R) be the
space of all continuous real valued functions on [a, b]. Note that X is b-complete b-metric
space by considering d(ν, µ) = sup

ω∈[a,b]
|ν(ω)−µ(ω)|2 with s = 2 and define α : X×X → R+

by α(ν, µ) = 4, for all ν, µ ∈ X.
Consider now the following problem

ν(t) ∈ p(ω) +

∫ ω

a
F(ω, τ, ν(τ))dτ, ω ∈ J = [a, b]. (3.1)

where p ∈ X and F : J × J × R → K(R).
Consider the set-valued operator T : X → CL(X) as follows

T ν(ω) =
{
µ ∈ X : µ ∈ p(ω) +

∫ ω

a
F(ω, τ, ν(τ))dτ, ω ∈ J

}
.

We consider the following hypotheses:
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(A1) : For each ν ∈ X, the multivalued operator Fν : (ω, τ) 7→ F(ω, τ, ν(τ)), is lower semi
continuous.

(A2) : There exists a continuous function ξ : J × J → [0,+∞) such that

|qν(ω, τ)− qµ(ω, τ)| ≤ ξ(ω, τ)|ν(τ)− µ(τ)|.

For all ν, µ ∈ X, all qν ∈ Fν , qµ ∈ Fµ and for each (ω, τ) ∈ J × J .

(A3) : There exists γ > 0 such that

sup
ω∈J

∫ ω

a
|ξ(ω, τ)|dτ ≤ (

e−γ

8
)
1
2 .

Theorem 4. The integral inclusion (3.1) has a solution in X provided the assumptions
(A1)− (A3) hold.

Proof. The set-valued operator Fν(ω, τ) : J × J → K(R) is lower semi continuous,
then from Michael’s selection theorem, for ν ∈ X there exists a continuous function qν :
J × J → R such that qν(ω, τ) ∈ Fν(ω, τ) for all ω, τ ∈ J . It follows that p(ω) +∫ ω
a qν(ω, τ)ds ∈ T ν, so T ν is non-empty for all ν ∈ X̃. Since p and qν are continuous
on J , resp. J 2, their ranges are bounded and closed and hence T ν is bounded, i.e.,
T : X → K(X).
Let ν, µ ∈ X and let ϑ ∈ T ν. Then

ϑ(ω) ∈ p(ω) +

∫ ω

a
F(ω, τ, ν(τ))dτ, ω ∈ J .

It follows that there exists qν ∈ F(ω, τ) such that

ϑ(ω) = p(ω) +

∫ ω

a
qν(ω, τ)dτ, (ω, τ) ∈ J × J ,

From (A2), there exists ς(ω, τ) ∈ Fµ(ω, τ) such that

|qν(ω, τ)− ς(ω, τ)| ≤ ξ(ω, τ) · |ν(τ)− µ(τ)|2,

for all (ω, τ) ∈ J × J . Let P be a multi valued operator defined by

P(ω, τ) = Fµ(ω, τ) ∩ {z ∈ R : |qν(ω, τ)− z| ≤ ξ(ω, τ) · |ν(τ)− µ(τ)|},

for all (ω, τ) ∈ J × J . Since, by (A1), P is lower semi-continuous, there exists a continuous
function qµ(ω, τ) ∈ P(ω, τ). Then we have

ζ(ω) = p(ω) +

∫ ω

a
qµ(ω, τ)dτ ∈ p(ω) +

∫ ω

a
F(ω, τ, µ(τ))dτ, ω ∈ J
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and

d(ϑ, T µ) ≤ |ϑ(ω, τ)− ζ(ω, τ)|2 ≤
(∫ ω

a
|qν(ω, τ)− qµ(ω, τ)|dτ

)2

≤
(∫ ω

a
ξ(ω, τ)|ν(τ)− µ(τ)|dτ

)2

≤ sup
τ∈[a,b]

|ν(τ)− µ(τ)|2
(∫ ω

a
ξ(ω, τ)dτ

)2

= d(ν, µ)(

∫ ω

a
ξ(ω, τ)dτ)2

≤ e−γ

8
d(ν, µ).

Consequently, we have
8d(ϑ, T µ) ≤ e−γd(ν, µ),

interchanging the role of ν and µ, we get

8H(T ν, T µ) ≤ e−τd(ν, µ).

Taking exponents we get

e(8H(T ν,T µ) ≤
[
ed(ν,µ)

]e−γ

Then, the mapping T satisfies all the conditions of Corollary 3 with ϑ(ω) = eω, a1 = 1,
ai = L = 0, i = 2, 3, 4, 5 and κ = e−γ . So, T has a fixed point, which implies that the
integral inclusion (3.1) has a solution in X.

4. Conclusion

In presented paper we have introduced a new class of multivalued contractions, by com-
bining some concepts, as generalized Berinde type contractive conditions and αs-admissible
mappings due to [14] with JS- contractions type due to [10] also we have proved the exis-
tence of a fixed point for such novel contractions under some conditions. An example is
given to support the validity of our results and an application to the existence of solutions
for integral inclusions.
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[12] H Kaddouri; H Işık and S Beloul. On new extensions of f-contraction with an appli-
cation to integral inclusions. U.P.B. Sci. Bull., Series A, 38(3):31–42, 2019.

[13] H Kaddouri and S Beloul. Fixed point theorems for multivalued wordowski type
contractions in b-metric spaces with an application to integral inclusions. TWMS J.
App. and Eng. Math., 11(4):1061–1071, 2021.



REFERENCES 3107

[14] M U Ali; T Kamran and M Postolache. Solution of volterra integral inclusion in b-
metric spaces via new fixed point theorem. Nonlinear Anal. Model. Control, 22(1):17–
30, 2017.

[15] A Ali; S Mahideb and S Beloul. fixed point theorem for multi-valued θδ-contractions
via subsequential continuity. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat.,
69(2):1473–1483, 2020.

[16] A Ali; S Mahideb and S Beloul. On multivalued fixed point for (α∗, η∗, θ) contractions
with an application. J. Appl. Pure Math, 3(3-5):215–229, 2021.

[17] M Meneceur and S Beloul. On multivalued theta-contractions of berinde type with
an application to fractional differential inclusions. Facta Univ. Ser. Math. Inform.,
36(5):1047–1063, 2021.

[18] M Nazam; A Muhammad and M Postolache. Coincidence and common fixed point
theorems for four mappings satisfying (αs, f)-contraction. Nonlinear Anal. Model.
Control, 23(4):664–690, 2018.

[19] H Qawagneh; M S M Noorani and W Shatanawi. Fixed point theorems for (α, k, θ)-
contractive multi-valued mapping in b-metric space and applications. International
Journal of Mathematics and Computer Science, 14(1):263–283, 2019.

[20] H Qawaqneh. New contraction embedded with simulation function and cyclic
(α, β)−admissible in metric-like spaces. International Journal of Mathematics and
Computer Science, 15(1):1029–1044, 2020.

[21] H Qawaqneh. Fractional analytic solutions and fixed point results with some appli-
cations. Adv. Fixed Point Theory, 14(1), 2024.

[22] H Alsamir; H Aydi; M S M Noorani; W Shatanawi; H Akhadkulov; H Qawaqneh
and K Alanazi. Fixed point results in metric-like spaces via σ-simulation functions.
European Journal of Pure and Applied Mathematics, 12(1):88–100, 2019.

[23] H Asl; J Rezapour and S Shahzad. On fixed points of α−ψ-contractive multifunctions.
Fixed Point Theory Appl., (ID 212), 2012.

[24] M Cosentino; M Jleli; B Samet and C Vetro. Solvability of integrodifferential problem
via fixed point theory in b-metric spaces. Fixed Point Theory Appl., 2015(70), 2015.

[25] H Qawagneh; M S M Noorani; W Shatanawi and h alSamir. Fixed points for trian-
gular α− admissible geraghty contractiontype mappings in partial b- metric spaces.
International Journal of Analysis and Applications, 17(2):208–225, 2019.

[26] W Sintunavarat. Nonlinear integral equations with new admissibility types in b-metric
spaces. J. Fixed Point Theory Appl., 18:397–416, 2016.



REFERENCES 3108

[27] B Samet; C Vetro and P Vetro. Fixed point theorems for α − ψ -contractive type
mappings. Nonlinear Analysis, 7(4):2154–2165, 2012.

[28] H Qawaqneh; M S M Noorani; H Aydi; A Zraiqat and A H Ansari. On fixed pointre-
sults in partial b-metric spaces. Journal of Function Spaces, 2021, 2021.


