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Abstract. Understanding the survival of cancer patients is essential for determining optimal treat-
ment strategies. This research introduces a robust distribution for analyzing survival data known as
the Exponential Fréchet-Gompertz distribution (EFG). The EFG combines the unique characteris-
tics of the Exponential Fréchet and Gompertz distributions, enhancing its efficiency and providing
greater flexibility in representing complex datasets. The study specifically investigates the EFG
distribution’s effectiveness in modeling cancer patients’ survival times. A comprehensive analysis
of the distribution’s properties is presented, including the quantile and quartile functions, shape
indices, moments, moment-generating function, characteristic function, mean residual life, mean
waiting time, Rényi entropy, and order statistics. The parameters of the distribution are derived
using five distinct methods: Maximum Likelihood Estimation (MLE), Ordinary Least Squares
(OLS), Weighted Least Squares (WLS), Cramér-von Mises (CVM), and Maximum Product of
Spacings (MPS). A Monte Carlo simulation technique is employed to evaluate the performance of
these estimation methods. The simulation results indicate that as sample size increases, the mean
square error (MSE) values for all estimators decrease. Notably, the MLE exhibits the lowest MSE,
while the MPS has the highest MSE, particularly for smaller sample sizes. Furthermore, the study
presents a comprehensive comparison of the effectiveness of these estimation methods in analyzing
survival times for various cancer types, including bladder, bone, blood and brain cancer. The
results indicate that the EFG distribution is an optimal model for representing the survival times
of patients across these different cancers data. Furthermore, the W.LS method yielded superior
estimations for most datasets concerning cancer patient survival. Overall, the EFG distribution
demonstrates exceptional capability in accurately fitting survival times for cancer patients com-
pared to other competing distributions.
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1. Introduction

Estimating the survival time for cancer patients is a crucial aspect of cancer treatment.
It helps doctors and patients make informed decisions about the treatment plan and
manage expectations regarding the outcome. Researchers are working diligently to develop
accurate models and statistical estimation techniques that can be used to predict the
lifetime of cancer patients. [28] analyzed the lifetime of patients suffering from leukemia
using a generalized linear exponential distribution. [34] employed McDonald log-logistic
distribution with maximum likelihood technique to estimate the lifetime for breast cancer
patients. [9] proposed the Alpha Power Weibull–Exponential model and used it to estimate
the survival time for head and neck cancer patients. [24] conducted a survival analysis
of cancer patients using Alpha power Kumaraswamy Weibull distribution with maximum
likelihood estimation technique.

Researchers have put significant effort into developing various methods for creating
new distributions that can adapt to represent different types of data, particularly survival
data effectively. Techniques such as compounding, adding parameters, composing, and
transforming have been advanced to broaden the scope of distributions. In 2013, [3] pro-
posed a general approach known as the T-X transformation, that enables the use of any
baseline distribution to generate a new distribution. The Lomax-G family by [14], the
Weibull-G family by [10], the Lindley-G family by [11], the power Lindley-G family by
[19], the Gompertz-G family by [2] are some generated families of distributions by T-X
transformation technique. [21] introduced the new lifetime exponential-X family which
used to generate a variety of distributions, such as the exponential Fréchet distribution
[4], the exponentiated Weibull [5], the exponential inverted Topp-Leone distribution [30].
Furthermore, [8] provided the Exponentiated Fréchet generator of distribution. This fam-
ily seems to be a great fit for modeling complex data and is particularly useful in reliability
analysis. The cumulative function (CDF) and the probability density (PDF) of this family
is given as

F (x) = 1 −
[
1 − exp

{
−
(

λ

−log[1 − G(x; Θ)])

)β
}]α

, x > 0; λ, γ, θ, β, α > 0. (1)

f(x) = αβλβ g(x; Θ)
1 − G(x; Θ) {−log[1 − G(x; Θ)]}−(β+1) exp

{
−
(

λ

−log[1 − G(x; Θ)]

)β
}

(2)

where Θ represents the parameter vector of the baseline distribution G.

The Gompertz distribution is a statistical distribution utilized in survival analysis to
model lifetime data. This traditional distribution is employed to model the survival func-
tion based on mortality laws and is crucial in estimating various life-related events, such as
human mortality rates and financial outcomes. This makes it a suitable choice for repre-
senting survival time for cancer patients. The Gompertz distribution was first introduced
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by [18]. The CDF of Gompertz is

F (x) = 1 − e
− λ

β (eβx−1), x > 0; λ, β > 0. (3)

and its PDF is
f(x) = λeβxe

− λ
β (eβx−1) (4)

While this distribution effectively models the survival function, its capacity to represent
various lifetime data is restricted due to its tendency to display an exponentially increasing
failure rate over lifetime data. This characteristic makes it unsuitable for certain appli-
cations. As a result, scientists developed the Gompertz distribution and explored various
generalizations and combinations with other distributions to enhance its performance.
Beyond the development of the Gompertz distribution, [2] introduced the Gompertz gen-
eralized family utilizing the T − X transformation technique. This approach led to the
creation of several derived distributions, including the Gompertz Normal, Gompertz Beta,
Gompertz Gamma, Gompertz Log-Logistic, Gompertz Exponentiated Weibull, and Gom-
pertz Lomax [32]. [23] implemented the same transformation to create a new model called
the generalized Gompertz-G family. [16] introduced a generalized Gompertz distribution
with three parameters utilizing the exponentiated method. Building on this foundation,
[15] enhanced [16] model by incorporating two additional shape parameters through the
exponentiated generalized technique proposed by [13]. Furthermore, [1] combined the ex-
ponentiated approach in [16] with a Gompertz exponential derived from [2], resulting in a
new generalized Gompertz distribution. This model offers greater flexibility for analyzing
survival data. Another significant advancement is the Kumaraswamy-G generalized Gom-
pertz distribution, proposed by [17]. Recently, [7] introduced a new family of distributions
by combining the odd Weibull family with the inverse Gompertz distribution, merging
features from both.

This research aims to develop the exponential Frechet-Gompertz (EFG) distribution
by amalgamating the distinctive characteristics of both the exponential Frechet and Gom-
pertz distributions into a single model. The research entails an exhaustive examination
of the distribution’s characteristics, including the estimation of distribution parameters
through the utilization of five distinct estimation methods. Moreover, the study includes
a meticulous comparison of the efficacy of these estimation methods in analyzing the sur-
vival time for several types of cancer.

This article is classified as follows: Section 2 describes the EFG using graphical rep-
resentations. Section 3 gives useful expansion for the EFG’s CDF and PDF. Section 4
derived statistical properties for EFG. In section 5, five estimation methods are employed
to estimate the EFG parameters: maximum likelihood (MLH), ordinary least squares
(O.LS), weighted least squares (W.LS), Cramér-von Mises (CRM) and maximum product
of spacing (MPS). Section 6 presents assessing the performance of the estimation methods
using Monte Carlo simulation studies . Section 7 investigates different datasets of cancer
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patient data are analyzed to assess the EFG’s modeling effectiveness and compare its per-
formance against competing distributions. Section 8 concludes with some final remarks.

2. Exponentiated Fréchet Gompertz distribution

The EFG’s CDF and PDF are found by replacing the G(x) and g(x) in (1) and (2) by
(3) and (4) as follows:

F (x) = 1 −
[
1 − exp

{
−
(

λ

γ(exθ − 1)

)β
}]α

, x > 0; λ, γ, θ, β, α > 0. (5)

f(x) = αβθλβexθ

γβ

exp

{
−
(

λ
γ(exθ−1)

)β
}

[(exθ − 1)](β+1)

[
1 − exp

{
−
(

λ

γ(exθ − 1)

)β
}]α−1

(6)

The survival and the hazard rate functions of EFG are given respectively as follows

S(x) =
[
1 − exp

{
−
(

λ

γ(exθ − 1)

)β
}]α

(7)

H(x) = αβθλβexθ

γβ

exp

{
−
(

λ
γ(exθ−1)

)β
}

[(exθ − 1)](β+1)

[
1 − exp

{
−
(

λ

γ(exθ − 1)

)β
}]−1

(8)

(a) f(x) (b) H(x)

Figure 1: The density and hazard function plots
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Figure 1a shows a variety of shapes of EFG distribution, symmetric and asymmetric
with different degrees of skewness. Additionally, Figure 1b represents the hazard function
of EFG which exhibits a range of behaviors that demonstrate its capacity to adapt to
different data types, indicating a high level of flexibility.

3. Useful Expansion for the EFG’s CDF and PDF

This subsection provides the expansion for the EFG’s Cumulative and Probability
Functions. The binomial series (9), (10) and the exponential function (11) given below
are applied to expand the EFG’s CDF and PDF in (5) and (6), respectively.

(1 − r)n =
∞∑

l=0
(−1)l

(
n

l

)
rl, |r| < 1, n is any real number (9)

(1 − u)−n =
∞∑

w=0

(
n + w − 1

w

)
uw. (10)

e−z =
∞∑

v=0

(−1)v(z)v

v! , (11)

3.1. CDF Expansion

First, the binomial series (9) is applied to expand (5). The EFG’s CDF might then be
written as

F (x) =
1∑

l1=0

∞∑
l2=0

(−1)l1+l2

(
1
l1

)(
αl1
l2

)
exp

{
−
(

λ

γ (eθx − 1)

)βl2
}

Then, the exponential function (11)is utilized resulting the following form for F (x):

F (x) =
1∑

l1=0

∞∑
l2=0

∞∑
v1=0

(−1)l1+l2+v1−l2v1β

v1!

(
1
l1

)(
αl1
l2

)(
λ

γ

)l2v1β (
1 − eθx

)−l2v1β

By applying the series in (10), the EFG’s CDF can be reduced to

F (x) = η1eθxw1 (12)

where
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η1 =
1∑

l1=0

∞∑
l2=0

∞∑
v1=0

∞∑
w1=0

(−1)l1+l2+v1−l2v1β

v1!

(
1
l1

)(
αl1
l2

)(
l2v1β + w1 − 1

v1

)(
λ

γ

)l2v1β

(13)

3.2. PDF Expansion

To find the expansion for the EFG’S PDF, first, the series (9) and (11) are employed
to expand (6). Then the f(x) might be written as below.

f(x) =
∞∑

l3=0

∞∑
v2=0

∞∑
v3=0

(−1)l3+v2+v3−β(l3v2+v3+1)−1

v2!v3!

(
α − 1

l2

)(
λ

γ

)β(l3v2+v3+1) αβθeθx

(1 − eθx)β(l3v2+v3+1)+1

Follow that, the series (10) is applied to reduce the EFG’s PDF to the following form.

f(x) = η2 α β θ eθ(1+w2)x, (14)

where

η2 =
∞∑

l3=0

∞∑
v2=0

∞∑
v3=0

∞∑
w2=0

(−1)l3+v2+v3−β(l3v2+v3+1)−1

v2!v3!

(
α − 1

l2

)(
β(l3v2 + v3 + 1) − 1

w3

)
(15)

4. Statistical Properties of the EFG

This section derives several statistical properties of the EFG distribution, including the
quantile function, moments, moment-generating function, characteristic function, Rényi
entropy, and order statistics. Statistical properties are vital for comprehensively describing
and analyzing data from diverse perspectives.

4.1. Quantile Function and Quartiles

The quantile function of EFG is written as

Qp = ln

1 − βλ

γ

1
ln
[
1 − (1 − p) 1

α

]
 /β, 0 < p < 1. (16)

The median of the EFG distribution can be obtained as

Q(0.5) = ln

1 − βλ

γ

1
ln
[
1 − (1 − 0.5) 1

α

]
 /β,
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Hence, the 25th percentile and the 75th percentile of the EFG distribution are given as

Q(0.25) = ln

1 − βλ

γ

1
ln
[
1 − (1 − 0.75) 1

α

]
 /β,

Q(0.75) = ln

1 − βλ

γ

1
ln
[
1 − (1 − 0.25) 1

α

]
 /β,

4.2. Shape Indices

The shape of the EFG can be assessed using Galton’s skewness and Moors’ kurtosis
[31], which can be calculated by utilizing the quantile function (16) and respectively given
as follows:

Skewness = Q0.75 − 2Q0.5 + Q0.25
Q0.75 − Q0.25

,

and
Kurtosis = Q0.875 − Q0.625 + Q0.375 − Q0.125

Q0.75 − Q0.25
.

4.3. Moments

The moment of of X for f(x) is written as

E (xr) =
∫ ∞

0
xrf(x)dx

If X follows the EFG (λ, γ, θ, β, α), then the rth moment of X is written as

E (xr) = η2 α β θ

∫ ∞

0
xreθ(1+w2)xdx,

where η2 is given by (15).

By using Laplace transformation, Lt [f(t)] (s) =
∫∞

0 f(t)e−stdt where f(t) is defined
for t ≥ 0 [25], with taking f(t) = tr then

∫∞
0 f(t)e−stdt = r!

sr+1 .

Therefore, f(x) = xr then
∫∞

0 f(x)e−sxdx = r!
sr+1 , where s = −θ(1 + w2). Then the

rth moment is expressed as

µr = E(xr) = η2 α β θ

( −1
θ(1 + w2)

)r+1
Γ(r + 1), r ≥ 0 (17)

Then, the EFG’s mean is written as

µ = E (x) = η2 α β

θ

( 1
1 + w2

)2
(18)



I. A. Alsaggaf / Eur. J. Pure Appl. Math, 17 (4) (2024), 3856-3898 3863

The EFG’s variance is determined by

σ2 =E(x2) − µ2 = 2 η2 α β

θ2

( −1
1 + w2

)3
− µ2,

where η2 is given by (15).

4.4. Moment Generating Function

The moment generating function (MGF) of X for f(x) is written as

Mx(t) = E(etx) =
∫ ∞

0
etxf(x)dx

If X follows the EFG (λ, γ, θ, β, α), then the EFG’s MGF is written as

Mx(t) = E(etx) = η2 α β θ

∫ ∞

0
etx eθ(1+w2)xdx,

By using Laplace transformation, with taking f(t) = 1 then
∫∞

0 f(t)e−stdt = 1
s .

Therefore, f(x) = 1 then
∫∞

0 f(x)e−sxdx = 1
s , where s = −(t + θ(1 + w2)). Then the

then MGF will be given as

Mx(t) = E(etx) = η2 α β θ

( −1
t + θ(1 + w2)

)
, (19)

where η2 is given by (15).

4.5. Characteristic Function

The characteristic function of EFG is simply constructed as :

ϕx (t) =E(eitx) = η2 α β θ

( −1
it + θ(1 + w2)

)
, (20)

where η2 is given by (15).

4.6. Mean residual life and mean waiting time

If X ∼ EFG(λ, γ, θ, β, α) with S(t) provided in (7) , then the mean residual life, µ(t),
is expressed as

µ(t) = 1
S(t)

(
E(t) −

∫ t

0
xf(x)dx

)
− t. (21)
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If the incomplete moment, Iinc =
∫ t

0 xf(x)dx, then

Iinc = η2 α β θ

∫ t

0
xeθ(1+w2)xdx.

Setting y = θ(1 + x2)x, then simplifying will be obtained,

Iinc =
(

η2αβ

θ(1 + w2)2

)∫ θ(1+w2)t

0
yeydy,

Using integration by part by taking u = y and dv = eydy, the incomplete moment will be
obtained as

Iinc =
(

η2αβ

θ(1 + w2)2

) [
θ(1 + w2)teθ(1+w2)t − eθ(1+w2)t + 1

]
, (22)

Substituting (18), and (22) in (21), µ(t) might be rewritten as

µ(t) = 1
S(t)

η2αβ

θ(1 + w2)2

[
eθ(1+w2)t − θ(1 + w2)teθ(1+w2)t

]
− t,

In a similar manner, the mean waiting time, µ̄(t), might be defined as

µ̄(t) = t − 1
F (t)

∫ t

0
xf(x)dx, (23)

where F (t) is provided in (12). Then, µ̄(t) of the EFG can be found by substituting (12)
and (22) in (23) as follows

µ̄(t) = t −
(

η2αβ

η1θ(1 + w2)2eθxw1

) [
θ(1 + w2)teθ(1+w2)t − eθ(1+w2)t + 1

]
Mean residual life and mean waiting time are important concepts in reliability the-

ory and queuing theory, respectively, as they provide insights into the expected remain-
ing lifespan of a system or the time until an event occurs. Incomplete moments, which
summarize essential features of distributions without requiring full data (censored data),
complement these concepts by offering partial insights into uncertainty and variability.
They are particularly useful in situations where data is limited or when focusing on es-
sential features is necessary, such as in risk assessment and model simplification. Derived
results from incomplete moments offer partial insights that can inform decision-making
and enable comparative analyses, despite acknowledging the inherent uncertainty in not
having a full distribution. Together, Mean residual life and mean waiting time can guide
decision-making in fields like finance and operations, while the interpretations of their de-
rived results enable comparisons and assumptions about system performance, even when
data is limited.
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4.7. Rényi entropy

REX(ζ) is the Rényi entropy function which given as

REX(ζ) = 1
1 − ζ

log
(∫ ∞

0
f(x)ζdx

)
; ζ > 0, ζ ̸= 1.

Then, applying the EFG’s PDF in (6)

f(x)ζ =
(

αβθλβ

γβ

)ζ

eθxζ
exp

{
−
(

λ
γ(exθ−1)

)βζ
}

[(exθ − 1)](β+1)ζ

[
1 − exp

{
−
(

λ

γ(exθ − 1)

)β
}](α−1)ζ

Applying the same approach in Subsection 3 and using (9), (10) and (11), then

f(x)ζ = η∗
2 αζ βζ θζ eθ(ζ+w3)x,

where

η∗
2 =

∞∑
l4=0

∞∑
v4=0

∞∑
v5=0

∞∑
w3=0

(−1)l4+v4+v5−β(l4v4+v5ζ+ζ)−ζ

v4!v5!

(
(α − 1)ζ

l4

)(
β(l4v4 + v5ζ + ζ) − ζ + w3 − 1

w3

)

Using Laplace transformation, since f(t) = 1 then Lt [f(t)] (s) = 1
s , where s =

−(ζ + w3)β , then the Rényi entropy of the EFG, is then will be reduced to

REx(ζ) = 1
1 − ζ

log
[

−η∗
2 αζ βζ θζ−1

(ζ + w3)

]
.

4.8. Order statistics

The density function, fj:n(x), of the jth order statistics is given as

fj:n(x) = 1
B(j, n − j + 1)f(x) [F (x)]j−1 [1 − F (x)]n−j .

By employing the series formula , fj:n(x) can be expressed as

fj:n(x) = 1
B(j, n − j + 1)

n−j∑
l5=0

(−1)l5

(
n − j

l5

)
f(x) [F (x)]l5+j−1 . (24)

By substituting the CDF (12) and PDF of EFG (14) into (24), the PDF of Xj:n is

fj:n(x) = 1
B(j, n − j + 1)

n−j∑
l5=0

(−1)l5

(
n − j

l5

)[
η2 α β θ eθ(1+w2)x

] [
η1eθxw1

]l5+j−1
(25)

where η1 and η2 are given by (13) and (15), respectively.
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5. Estimation methods

5.1. Maximam Likelihood Method (MLH)

For a random sample x1, x2, ..., xn from EFG, the log-likelihood function (ℓ), for Θ =
(λ, γ, θ, β, α), is written as

L(Θ) = n ln α + n ln β + n ln θ + n β ln λ − n β ln γ

+ β
n∑

i=1
xi −

(
λ

γ

)β n∑
i=1

(eθxi − 1)−β − (β + 1)
n∑

i=1
ln (eθxi − 1)

+ (α − 1)
n∑

i=1
ln

[
1 − exp

{
−
(

λ

γ(eθxi − 1)

)β
}]

(26)

The following equations from (27) to (31) represent the partial derivation from ℓ func-
tion, (26), regards to the parameters (λ, γ, θ, β, α). The ML estimates, λ̂MLH , γ̂MLH , θ̂MLH , β̂MLH

and α̂MLH can be obtained by maximizing the equation (26) or by solving the equations
from (27) to (31) using numerical iterative technique.

∂ℓ

∂λ
= (α − 1) β ·

n∑
i=1



(
λ

(eθxi −1)γ

)β

e
−
(

λ

(eθxi −1)γ

)β

λ ·

1 − e
−
(

λ

(eθx−1)γ

)β



− β

λ
·
(

λ

γ

)β n∑
i=1

(
eθxi − 1

)−β
+ βn

λ

(27)

∂ℓ

∂γ
= −(α − 1) β

γ
·

n∑
i=1



(
λ

(eθxi −1)γ

)β

e
−
(

λ

(eθxi −1)γ

)β

1 − e
−
(

λ

(eθxi −1)γ

)β



+βγ·

(
λ

γ

)β n∑
i=1

(
eθxi − 1

)−β
−βn

γ

(28)

∂ℓ

∂θ
= n

θ
+ − (β + 1) ·

n∑
i=1

{
xiexiθ

exiθ − 1

}
+ β ·

(
λ

γ

)β n∑
i=1

xieθxi
(
eθxi − 1

)−β−1
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−
(

(α − 1) · β · λβ

γβ

)
·

n∑
i=1



xi ·
(
eθxi − 1

)−(β+1)
e

θxi−
(

λ

γ·(eθxi −1)

)β

1 − e
−
(

λ

γ·(eθxi −1)

)β



(29)

∂ℓ

∂β
= n

β
+n ln λ−n lnγ+

n∑
i=1

xi−
n∑

i=1
ln(eθxi−1)−

n∑
i=1

{(
λ

γ · (eθxi − 1)

)β

· ln

(
λ

γ (eθxi − 1)

)}

+ (α − 1) ·
n∑

i=1


(

λ

(eθxi −1)γ

)β

ln
(

λ

(eθxi −1)γ

)

e

(
λ

(eθxi −1)γ

)β

− 1

 (30)

∂ℓ

∂α
= n

α
+

n∑
i=1

ln

1 − e
−
(

λ

(eθx−1)γ

)β
 (31)

5.2. Ordinary Least Square Method (O.LS)

O.LS method is proposed by [33], which is based on the difference between the empirical
and theoretical cdf. Suppose a random sample from EFG distribution with size n and
X(1), X(2), ..., X(n) are its order statistics. The sum of squares for the difference between
the empirical and theoretical cdf of EFG distribution is formulated in equation (32).

U1(Θ) =
n∑

i=1

1 −

1 − exp

−
(

λ

γ(eθx(i) − 1)

)β

α

−
(

i

n + 1

)2

(32)

where
(

i
n+1

)
is the empirical cdf and i = 1, 2, ..., n.

The partial derivation from the equation (32) in regard to Θ = (λ, γ, θ, β, α) can be written
as follows:

∂ℓ

∂λ
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γβ
·
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 1(
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)
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·
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·
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(33)

∂ℓ
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∂ℓ
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∂ℓ
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(37)

The O.LS estimates for the parameters Θ can be obtained by minimizing the equation
(32) concerning the Θ = (λ, γ, θ, β, α) or by solving the equations from (33) to (37) using
numerical techniques available in statistical software.

5.3. Weighted Least Square Method (W.LS)

The W.LS method is similar to the O.LS method, which depends on the differences
between the empirical and theoretical of the cdf, in addition to the variance of the order
statistic as a wight [33]. Therefore, the W.LS function for EFG is written as

U2(Θ) =
n∑

i=1
ωi

[
1 −

[
1 − exp

{
−
(

λ

γ(exθ − 1)

)β
}]α

−
(

i

n + 1

)]2

(38)

where ωi = (n+1)2(n+2)
i(n+1−i)

The equation (38) is derived for each parameter in the EFG distribution and the
derivation equations are given as follows. The W.LS estimation is obtained by minimizing
the equation (38) or by solving the nonlinear equations from (39) to (43) using numerical
iterative technique available in any statistical software.
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5.4. Cramér-von Mises Method (CRM)

[27] introduced the CRM method for estimation parameters. The function of the CRM
method for EFG distribution is presented in equation (44).

CRM(Θ) = 1
12n

+
n∑

i=1

[
1 −

[
1 − exp

{
−
(

λ

γ(exθ − 1)

)β
}]α

−
(2i − 1

2n

)]2

(44)

The equations below show the partial derivatives of the parameters Θ = (λ, γ, θ, β, α)
from (44). The CRM estimates for EFG parameters are derived by solving the equations
from (45) to (49) using numerical technique or by minimizing (44) using optimization
technique available in R Package.
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5.5. Maximum product of spacing Method (MPS)

[12] proposed the MPS method in order to improve the performance of the MLH
estimator. Let a random sample from EFG distribution with size n and x(1), x(2), ..., x(n)
is the corresponding ordered sample. The idea of the MPS method is to optimize the
geometric mean of spacings, which refers to the variations between the CDF values of
adjacent data points. The spacings between neighboring ordered values can be defined as
Di(Θ) = F (x(i); Θ) − F (x(i−1); Θ), Θ = (λ, γ, θ, β, α), i = 1, . . . , n + 1.
Therefore, the MPS function for EFG is given as

M(Θ) = 1
n + 1

n+1∑
i=1

logDi(Θ)

M(Θ) = 1
n + 1
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α

−
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γ(eθx(i) − 1)

)β

α ]

(50)

The first partial derivative of (50) with respect to Θ = (λ, γ, θ, β, α), are given as
follows. The MPS estimates for EFG parameters are derived by solving the equations



I. A. Alsaggaf / Eur. J. Pure Appl. Math, 17 (4) (2024), 3856-3898 3873

from (51) to (55) using numerical technique or via maximizing (50) using optimization
technique available in R Package.

∂ℓ
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∂ℓ

∂θ
= αβλβ

(n + 1) · γβ
·
n+1∑
i=1



1 − e
−

 λ(
e
θx(i)−1

−1
)

γ

β


α

−

1 − e
−

 λ(
e
θx(i−1)−1

−1
)

γ

β


α

−1

·


x(i−1) ·

( 1
eθx(i−1) − 1

)β+1
· e

θx(i−1)−

 λ

γ·
(

e
θx(i−1) −1

)β

·

1 − e
−

 λ

γ·
(

e
θx(i−1) −1

)β


α−1

−


x(i) ·

( 1
eθx(i) − 1

)β+1
· e

θx(i)−

 λ

γ·
(

e
θx(i) −1

)β

·

1 − e
−

 λ

γ·
(

e
θx(i) −1

)β


α−1
(53)

∂ℓ

∂β
= α

(n + 1) ·
n+1∑
i=1



1 − e
−

 λ(
e
θx(i−1)−1

−1
)

γ

β


α

−

1 − e
−

 λ(
e
θx(i)−1

−1
)

γ

β


α

−1

·

1 − e
−

 λ(
e
θx(i)−1

−1
)

γ

β


α−1

·

 λ(
eθx(i)−1 − 1

)
γ

β

·ln

 λ(
eθx(i)−1 − 1

)
γ

·e
−

 λ(
e
θx(i)−1

−1
)

γ

β

−

1 − e
−

 λ(
e
θx(i−1)−1

−1
)

γ

β


α−1

·

 λ(
eθx(i−1)−1 − 1

)
γ

β

·ln

 λ(
eθx(i−1)−1 − 1

)
γ

·e
−

 λ(
e
θx(i−1)−1

−1
)

γ

β

(54)



I. A. Alsaggaf / Eur. J. Pure Appl. Math, 17 (4) (2024), 3856-3898 3875

∂ℓ

∂α
= 1

(n + 1) ·
n+1∑
i=1



1 − e
−

 λ(
e
θx(i−1)−1

−1
)

γ

β


α

−

1 − e
−

 λ(
e
θx(i)−1

−1
)

γ

β


α

−1

·

ln

1 − e
−

 λ(
e
θx(i)−1

−1
)

γ

β
 ·

1 − e
−

 λ(
e
θx(i)−1

−1
)

γ

β




−

ln

1 − e
−

 λ(
e
θx(i−1)−1

−1
)

γ

β
 ·

1 − e
−

 λ(
e
θx(i−1)−1

−1
)

γ

β


 (55)

6. Numerical Study

The Monte Carlo simulation technique is carried out to assess and compare the effec-
tiveness of the various estimation methods that are used for estimating the parameters of
EFG. The simulation involved using gradient samples of varying sizes, beginning with a
small size of 15 and gradually increasing to larger sizes of 30, 50, 100, and 200. Further-
more, two sets of parameters have been implemented:
Set I: (λ=2.4, γ=0.5, θ=0.3, β=0.7, α=1.2).
Set II: (λ=0.5, γ=3, θ=0.7, β=1.5, α=2.4).
The bias and mean square error (MSE) of the parameter estimation are calculated for
each simulation scenario.
Tables 1 and 2 show the simulation results. The table displays the parameter estimation
values and corresponding bias and MSE for each method of estimation. It appears that
with an increase in the sample size, the MSE values for all the estimators decrease. Out
of all the estimators, the MLH estimator has the lowest MSE value.
Based on the Figures 2 and 5, it seems that MLH estimator is the closest estimate of the
parameter at different sample sizes, while the other estimators get closer to the correct pa-
rameter values as the sample size increases. Additionally, the figures show that the MPS
estimate is the farthest from the actual value for certain parameters at smaller sample
sizes. However, all estimators are equally accurate at a large sample size of 200.
Based on Figures 3, 4, 6 and 7. It seems that as the sample size increases, the MSE
values for all estimators decrease. The MLH estimator appears to have the least MSE
compared to the other estimators. For smaller sample sizes, the MSE values for the es-
timators O.LS, W.LS and CRM are quite similar. However, the MPS estimator has the
highest MSE values compared to the other estimators, particularly for smaller sample sizes.
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Table 1: Parameter estimation from five different methods (Set I)

Set I
(λ=2.4, γ=0.5, θ=0.3, β=0.7, α=1.2)

n Par. MLH O.LS W.LS CRM PMS

15 λ̂ 2.3512 2.3514 2.2721 2.2945 2.7462
Bias 0.0880 1.3073 1.3129 1.4186 2.2728
MSE 0.1449 2.4218 2.4173 6.1409 5.2112

γ̂ 0.5853 0.7343 0.7397 0.5872 0.8009
Bias 0.3438 0.6234 0.6168 0.5049 0.8180
MSE 0.4272 0.9822 1.0735 0.7979 1.9747

θ̂ 0.4146 0.4041 0.4078 0.4029 0.5314
Bias 0.1279 0.2022 0.2041 0.1879 0.3605
MSE 0.1874 0.2770 0.2781 0.2570 0.4948

β̂ 1.2062 1.3493 1.3998 1.4720 1.4974
Bias 0.5773 0.8197 0.8667 0.9135 1.0597
MSE 0.7961 1.3511 1.4236 1.4539 1.9745

α̂ 1.0688 1.5481 1.5404 1.8106 2.2968
Bias 0.4159 0.9719 1.0091 1.2483 1.8040
MSE 0.4933 1.6519 1.6428 5.8150 6.9145

30 λ̂ 2.3543 2.1697 2.2125 2.1767 2.2907
Bias 0.0796 0.8750 1.0115 0.9276 1.4084
MSE 0.1150 1.4818 2.8512 1.5135 2.2168

γ̂ 0.6052 0.6801 0.6010 0.5952 0.6313
Bias 0.3305 0.5076 0.4423 0.4615 0.5785
MSE 0.3994 0.8231 0.6472 0.7740 1.1232

θ̂ 0.3975 0.3724 0.3965 0.3889 0.5049
Bias 0.1080 0.1486 0.1725 0.1577 0.3068
MSE 0.1655 0.1973 0.2327 0.2131 0.4302

β̂ 1.1226 1.2623 1.2033 1.2796 1.1178
Bias 0.4793 0.6863 0.6331 0.7080 0.6009
MSE 0.6604 1.1075 0.9828 1.1464 1.0554

α̂ 1.0755 1.4750 1.4975 1.6354 1.5666
Bias 0.3603 0.8252 0.8498 0.9924 0.9858
MSE 0.4352 1.3811 1.6379 1.7390 1.6794

50 λ̂ 2.3654 2.1632 2.1517 2.1655 2.3983
Bias 0.0629 0.6827 0.6992 0.6994 1.2418

continued on next page
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Table1 :Parameter estimation...(Set I) – (continue)
Set I

(λ=0.5, γ=3, θ=0.7, β=1.5, α=2.4)
n Par. MLH O.LS W.LS CRM PMS

MSE 0.0858 1.2851 1.1158 1.4107 2.1186
γ̂ 0.5890 0.6261 0.5891 0.6034 0.6500

Bias 0.2698 0.4180 0.3784 0.3881 0.5074
MSE 0.3298 0.5994 0.5783 0.6171 0.9859

θ̂ 0.3767 0.3706 0.3849 0.3767 0.4654
Bias 0.0824 0.1319 0.1398 0.1322 0.2635
MSE 0.1319 0.1778 0.1966 0.1807 0.3756

β̂ 1.0309 1.1495 1.1011 1.1891 1.0577
Bias 0.3635 0.5474 0.4859 0.5680 0.4699
MSE 0.4649 0.8643 0.7305 0.8702 0.7161

α̂ 1.1120 1.3688 1.3172 1.3952 1.4319
Bias 0.2647 0.6773 0.6025 0.7374 0.8438
MSE 0.3332 1.0368 0.8795 1.1953 1.4303

100 λ̂ 2.3723 2.1838 2.2314 2.1722 2.3261
Bias 0.0497 0.4811 0.4522 0.4706 0.8865
MSE 0.0661 0.7516 0.7180 0.7981 1.5979

γ̂ 0.5763 0.6084 0.5951 0.5827 0.5667
Bias 0.2128 0.3248 0.2888 0.3086 0.3828
MSE 0.2574 0.5113 0.4116 0.4396 0.8550

θ̂ 0.3623 0.3611 0.3640 0.3662 0.4438
Bias 0.0653 0.1030 0.0999 0.1063 0.2198
MSE 0.0985 0.1401 0.1406 0.1460 0.3195

β̂ 0.9861 1.0927 1.0592 1.1041 0.9392
Bias 0.2997 0.4475 0.3985 0.4560 0.3131
MSE 0.3687 0.6403 0.5507 0.6640 0.4185

α̂ 1.1205 1.2691 1.2199 1.2531 1.3295
Bias 0.1763 0.5499 0.4654 0.5245 0.6425
MSE 0.2299 0.8246 0.6782 0.7788 0.9742

200 λ̂ 2.3693 2.2044 2.2811 2.1933 2.399
Bias 0.0470 0.3583 0.3040 0.3442 0.7237
MSE 0.0602 0.5660 0.4806 0.5366 1.4105

γ̂ 0.6100 0.6133 0.6261 0.6138 0.5544
Bias 0.2043 0.2594 0.2363 0.2608 0.2879
MSE 0.2459 0.3524 0.3196 0.3639 0.4193

θ̂ 0.3482 0.3466 0.3416 0.3446 0.4114
Bias 0.0508 0.0814 0.0686 0.0795 0.1728
MSE 0.0771 0.1127 0.0979 0.1092 0.2581

continued on next page
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Table1 :Parameter estimation...(Set I) – (continue)
Set I

(λ=0.5, γ=3, θ=0.7, β=1.5, α=2.4)
n Par. MLH O.LS W.LS CRM PMS

β̂ 0.9965 1.0396 1.0239 1.0433 0.9337
Bias 0.3015 0.3651 0.3361 0.3671 0.2667
MSE 0.3472 0.4695 0.4147 0.4762 0.3266

α̂ 1.1079 1.1799 1.1661 1.2015 1.2353
Bias 0.1660 0.3560 0.3165 0.3699 0.4783
MSE 0.2057 0.4830 0.4182 0.5231 0.6832

Table 2: Parameter estimation from five different methods (Set II)

Set II
(λ=2.4, γ=0.5, θ=0.3, β=0.7, α=1.2)

n Par. MLH O.LS W.LS CRM PMS

15 λ̂ 1.3173 1.1633 1.2466 1.3151 1.3479
Bias 0.9575 1.1856 1.2501 1.2147 1.6603
MSE 1.3253 2.6838 2.6338 2.4629 4.3668

γ̂ 2.5823 3.3157 3.1059 2.9964 3.1173
Bias 0.4383 2.0975 1.9570 2.0707 2.5715
MSE 0.7287 3.6010 3.1051 3.8074 5.3895

θ̂ 1.4061 0.9920 1.0960 1.1645 1.2406
Bias 0.8966 0.9272 0.9912 0.9403 1.2764
MSE 1.2245 1.7337 1.7678 1.5917 2.0885

β̂ 1.3022 1.4707 1.4469 1.5112 1.6331
Bias 0.5074 0.9303 0.9227 0.9219 1.1114
MSE 0.6403 1.3643 1.3735 1.3535 1.9297

α̂ 2.2546 3.7934 3.9230 4.2419 5.9237
Bias 1.0808 2.7599 2.8551 3.1269 5.0923
MSE 1.2991 6.1538 6.5440 6.8010 18.1692

30 λ̂ 1.1721 1.1353 1.1595 1.2092 0.9323
Bias 0.7999 0.9932 1.0928 1.0549 1.0962
MSE 1.0942 2.1260 2.2174 2.1770 2.4700

γ̂ 2.6875 3.0399 3.1581 2.9533 3.2234
Bias 0.3306 1.5615 1.6747 1.6252 2.1068
MSE 0.5654 2.2631 2.6847 3.7378 4.2600

θ̂ 1.1944 0.9915 0.9529 1.0952 0.9429
continued on next page
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Table2 :Parameter estimation...(Set II) – (continue)
Set II

(λ=2.4, γ=0.5, θ=0.3, β=0.7, α=1.2)
n Par. MLH O.LS W.LS CRM PMS

Bias 0.7035 0.7708 0.8299 0.8488 0.9901
MSE 0.9602 1.4288 1.3899 1.4607 1.6179

β̂ 1.1308 1.2555 1.2452 1.2808 1.3091
Bias 0.4412 0.7083 0.7196 0.7061 0.7921
MSE 0.5113 0.9514 0.9675 0.8969 1.2750

α̂ 2.2898 3.5279 3.8083 3.5672 4.9085
Bias 0.8181 2.3179 2.5358 2.3424 3.7576
MSE 1.0171 5.2966 6.4424 4.4101 13.8399

50 λ̂ 1.1081 1.0230 0.9116 1.0299 0.7250
Bias 0.7285 0.8321 0.8173 0.8375 0.7688
MSE 1.0041 1.6203 1.6048 1.6681 1.8030

γ̂ 2.7400 3.1485 3.0437 2.9673 3.1842
Bias 0.2777 1.3605 1.3479 1.3011 1.8411
MSE 0.4723 1.9355 2.0288 1.7906 3.1472

θ̂ 1.0677 0.8891 0.8341 0.9384 0.7971
Bias 0.5804 0.6812 0.6886 0.6898 0.8131
MSE 0.7856 1.1375 1.0790 1.1663 1.6433

β̂ 1.0720 1.1172 1.0975 1.1837 1.1255
Bias 0.4519 0.5965 0.5688 0.5880 0.6143
MSE 0.5018 0.6921 0.6572 0.7098 0.7777

α̂ 2.3206 3.2388 3.2671 3.2239 4.0809
Bias 0.6817 1.8042 1.7741 1.8734 2.7098
MSE 0.8571 3.0798 3.1481 3.7484 7.1000

100 λ̂ 0.9495 0.8179 0.7823 0.8777 0.6716
Bias 0.5370 0.5686 0.5446 0.6090 0.6284
MSE 0.7206 1.0441 0.9622 1.1496 1.1765

γ̂ 2.8457 3.0526 3.0523 3.0116 3.3954
Bias 0.1683 1.0339 0.9871 1.0464 1.6882
MSE 0.2711 1.3585 1.3000 1.3737 2.8454

θ̂ 0.9178 0.7481 0.7597 0.8205 0.6769
Bias 0.4089 0.4939 0.5212 0.5410 0.6537
MSE 0.5590 0.7567 0.7646 0.8684 1.0054

β̂ 1.0485 1.0705 1.0508 1.0858 1.0268
Bias 0.4562 0.5283 0.05091 0.5250 0.5384
MSE 0.4870 0.5948 0.5585 0.5901 0.6105

α̂ 2.3061 3.0350 2.8741 2.9541 3.4503
Bias 0.5229 1.4461 1.2220 1.3575 1.8577

continued on next page
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Table2 :Parameter estimation...(Set II) – (continue)
Set II

(λ=2.4, γ=0.5, θ=0.3, β=0.7, α=1.2)
n Par. MLH O.LS W.LS CRM PMS

MSE 0.6534 2.5415 1.9669 2.2529 2.8001
200 λ̂ 0.9068 0.7664 0.7823 0.7629 0.6124

Bias 0.4635 0.4518 0.5446 0.4391 0.4917
MSE 0.6317 0.6975 0.9622 0.6648 0.8302

γ̂ 2.8778 3.0805 3.0523 3.0105 3.4361
Bias 0.1324 0.8169 0.9871 0.7978 1.3674
MSE 0.2184 1.0906 1.3000 1.0826 2.0207

θ̂ 0.8507 0.7006 0.7597 0.7193 0.5915
Bias 0.3253 0.4022 0.5212 0.3869 0.5609
MSE 0.4267 0.5675 0.7646 0.5341 0.8099

β̂ 1.0180 1.0246 1.0508 1.0351 0.9873
Bias 0.4821 0.5069 0.5091 0.4959 0.5298
MSE 0.4991 0.5511 0.5585 0.5407 0.5694

α̂ 2.3671 2.8549 2.8741 2.8335 3.3185
Bias 0.4047 1.0719 1.2220 1.0796 1.5162
MSE 0.5222 1.5927 1.9669 1.6631 2.1942
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Figure 2: Compare parameter estimation from different methods at each sample size set I
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Figure 3: Compare MSE for different estimation methods at each sample size set I
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Figure 4: MSE at different n set I
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Figure 5: Compare parameter estimation from different methods at each sample size set
II
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Figure 6: Compare MSE for different estimation methods at each sample size set II
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Figure 7: MSE at different n set II
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7. Application

In this section, the newly developed distribution is applied to real-world data from
patients with various types of cancer, including brain, bladder, Bone and blood cancers.
The analysis involves comparing different estimation methods, as well as evaluating the
performance of the new distribution against other competing distributions.

7.1. Compare between estimation methods

In this section, different datasets of cancer patient data are analyzed, each group
suffering from a different type of cancer such as bladder cancer, brain cancer, bone cancer
and blood cancer . The data are modeled using the EFG model and the model parameters
are estimated using the five different estimation methods. The datasets are provided
below.

Dataset I: Bladder Cancer
The remission times by months of bladder cancer patients were recorded in a dataset

that included 36 individuals [20].
Dataset II: Brain Cancer
This data represents the lifetime by day for 87 patients with brain cancer diseases

collected from the Atomic Medicine and Radiance Hospital in Baghdad [22].
Dataset III: Bone Cancer
Simulated data has been considered by [29] to represent the survival times (in days)

of 73 patients who have been diagnosed with acute bone cancer.
Dataset IV: Blood Cancer
This data consists of the lifetime (in years) of 40 blood cancer (leukemia) patients from

one of the Ministry of Health hospitals in Saudi Arabia reported in [6]
Dataset V: Bladder Cancer
This data represents the duration of remission (in months) for a group of 128 patients

who were diagnosed with bladder cancer [26].

Table 3: Descriptive statistics for the datasets
Data Min Q1 Median Mean Q3 Max Skw Kur

Dataset I 0.08 1.16 2.08 1.94 2.71 3.36 -0.29 1.86
Dataset II 11 37.5 67.5 78.26 92 274 1.47 5.37
Dataset III 0.09 0.92 1.57 3.76 2.75 86.01 6.79 51.78
Dataset IV 0.32 2.19 3.35 3.14 4.26 5.38 -0.42 2.27
Dataset V 0.08 3.35 6.39 9.37 11.84 79.05 3.29 18.48

Table 3 displays a summary for the datasets. The table presents a range of skewness
and kurtosis values that reflect different shapes of the data distribution. The skewness
values vary in terms of direction and severity, with some being positive and others negative,
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and some being large while others are small. Similarly, the kurtosis values also differ, with
some being small and others large, indicating variations in the width of the distribution’s
tail.

Table 4: Estimation Survival time for bladder cancer patients (Dataset I)
Est. α̂ θ̂ γ̂ λ̂ β̂ KS P.value
MLH 7.2725 0.2072 9.8959 0.0040 1.9577 0.1467 0.4208

(5.7753) (0.0587) (26.4236) (0.0031) (0.7532)
O.LS 6.3994 0.2570 2.1266 0.0068 1.3603 0.1487 0.4036

(29.7235) (0.3706) (20.2968) (0.0188) (3.6681)
W.LS 3.0007 0.2090 5.7650 0.0048 2.6659 0.1442 0.4422

(0.6459) (0.0142) (2.4854) (0.0012) (0.3396)
MPS 1.7373 0.2571 2.1588 0.0152 2.5544 0.1554 0.3493

(0.9347) (0.0862) (9.3294) (0.0699) (0.9404)
CVM 1.0113 0.5146 0.0609 0.0050 1.7158 0.1670 0.2681

(3.2626) (1.9698) (0.7743) (0.0114) (6.1166)

Figure 8: Estimation Survival time for Bladder cancer patients (Dataset I)
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Table 5: Estimation Survival time for Brain cancer patients
Est. α̂ θ̂ γ̂ λ̂ β̂ KS P.value
MLH 0.6469 0.5550 0.3064 0.0390 0.0560 0.1244 0.4211

(0.6738) (0.2586) (2.0015) (0.2472) (0.0528)
O.LS 0.0685 0.1171 1.3718 2.4640 1.3474 0.1454 0.2410

(0.2126) (0.3623) (0.5018) (0.5015) (0.1552)
W.LS 0.0832 0.0502 2.3820 1.1014 2.5989 0.1459 0.2373

(0.0081) (0.0050) (0.1833) (0.3195) (0.0910)
MPS 0.4982 0.4982 0.3169 0.0325 0.0729 0.1213 0.4542

(0.4306) (0.2841) (2.1811) (0.2197) (0.0659)
CVM 0.0460 0.0776 1.5981 0.6614 3.0128 0.1497 0.2122

(0.1406) (0.2408) (0.0884) (0.0885) (0.1441)

Figure 9: Estimation survival time for brain cancer patients

.
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Table 6: Estimation survival time for acute bone cancer patients
Est. α̂ θ̂ γ̂ λ̂ β̂ KS P.value
MLH 3.7435 0.5731 0.0898 2.5659 0.0080 0.0908 0.5843

(2.0732) (0.1339) (0.7592) (20.2149) (0.0042)
O.LS 1.2000 0.7829 0.2822 0.2372 0.5734 0.0683 0.8852

(28.0826) (5.7028) (14.3646) (10.5554) (10.3191)
W.LS 1.8908 0.7619 0.0752 0.1117 0.2702 0.0714 0.8503

( 0.4005) (0.0941) (0.0767) ( 0.0640) (0.1330)
MPS 1.1891 0.8510 0.0123 1.1132 0.0092 0.1330 0.1510

(0.3298) (0.1210) ( 0.0131) ( 1.3190) (0.0051)
CVM 1.2552 0.8531 0.0054 0.0065 0.4297 0.0702 0.8649

(7.5602) (1.7563) (0.0052) (0.0087) (1.9309)

Figure 10: Estimation Survival time for acute bone cancer patients
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Table 7: Estimation survival time for blood cancer patients
Est. α̂ θ̂ γ̂ λ̂ β̂ KS P.value
MLH 12.5138 0.2339 11.5206 0.0044 1.0836 0.1104 0.7143

(10.2835) (0.0876) (39.7697) (0.0026) (0.4653)
O.LS 0.3832 0.7476 0.4354 0.0084 2.01428 0.1403 0.4103

(1.7182) (3.4603) (4.1605) (0.0570) (6.5835)
W.LS 1.6424 0.2544 1.1654 0.0005 2.4439 0.1012 0.8070

(0.3505) (0.0263) (0.4141) (0.0003) (0.0797)
MPS 1.5480 0.3466 1.0598 0.0139 1.4797 0.1399 0.4139

(0.8931) (0.1544) (3.1758) (0.0613) (0.6700)
CVM 2.0440 0.2554 1.8712 0.0009 2.1143 0.1010 0.8092

(10.1339) (0.4582) (16.1734) (0.0042) (0.9868)

Figure 11: Estimation Survival time for blood cancer patients
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Table 8: Estimation survival time for bladder cancer patients (Dataset V)
Est. α̂ θ̂ γ̂ λ̂ β̂ KS P.value
MLH 0.2559 0.4308 0.1958 0.0647 1.0659 0.0708 0.5419

(0.0229) (0.0036) (0.0036) (0.0036) (0.0036)
O.LS 0.1478 0.6019 1.5195 0.3035 1.4830 0.0321 0.9994

(0.0747) (0.1446) (4.3697) (0.1478) (0.1464)
W.LS 2.2327 0.5686 0.0349 0.0313 0.0842 0.0349 0.9977

(0.2789) (0.0255) (0.0055) (0.0050) (0.0120)
MPS 0.2632 0.4361 0.6715 0.2136 1.0025 0.0831 0.3400

(0.0287) (0.0136) (0.0150) (0.0148) (0.0646)
CVM 0.9312 0.7291 0.1447 0.1240 0.1832 0.0370 0.9948

(4.8391) (1.7438) (3.2033) (2.4158) (0.8814)

Figure 12: Estimation Survival time for bladder cancer patients (Dataset V)

The Tables from 4 to 8 display the results of parameter estimation and its standard
error (SE) (in parentheses). The tables also include the test statistic of the Kolmogorov
Smirnov (KS) goodness of fit test along with its P.value which is used to check the fitting
of data with the EFG distribution. The estimated distribution with the lowest KS and
highest p.value is considered as the best fit for data. Additionally, to compare the fitting of
the data with the estimated EFG distribution by the estimation methods, the figures from
8 to 12 display the empirical distribution of each dataset concurrently with the estimated
pdf and cdf of EFG distribution by the five estimation methods.

Based on the results presented in the tables from 4 to 8, it seems that the EFG
distribution could effectively represent the survival time data for cancer patients since the
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p.values are greater than 0.05 in all of the six datasets. Furthermore, the W.LS method
provides the best estimation for EFG parameters fitting with the bladder cancer datasets
(Table 4 and Table 8). Even though, the CVM method produces the highest p.value
for representing the bone cancer and blood cancer datasets as seen in Tables 6 and 7, the
W.LS still provides a close fit to the data with a smaller SE comparing to CVM. According
to brain cancer and breast cancer datasets, the MPS method gives the best fitting to these
datasets.

7.2. Compare EFG against other distributions

This section provides a comparison of the performance of the EFG model against four
competing distributions, each with a different number of parameters. The CDFs of these
distributions are outlined below.

• Exponentiated Gompertz Exponential (EGoG) [1]
F (x) =

{
1 − e

γ
θ

[1−eλxθ]
}α

, x > 0; θ, γ, λ, α > 0.

• The Fréchet
F (x) = exp

{
−
(

x−λ
θ

)−α
}

, x > 0; α, θ > 0, −∞ < λ < ∞.

• Gompertz given in (3).

• The exponential(E)
F (x) = θ e−θx,.

The EFG model is evaluated using several goodness-of-fit indices (GoF). These include
the negative log-likelihood value (−ℓ), Akaike Information Criterion (AIC), corrected AIC
(CAIC) and Bayesian Information Criterion (BIC). Kramér-von Mises (KVM) test statis-
tic, Kolmogorov-Smirnov (KS) test statistic, and their corresponding p-values are calcu-
lated as well. A model is deemed the best fit for the data when its values for these statistics
are lower than those of the competing models.

The tables from (9) to (12) present the GoF measurements for the EFG model and
the competing distributions. The results indicate that the exponential and Gompertz
distributions did not adequately fit all the data, as they yielded significant p-values less
than 0.05. In contrast, other distributions, such as EGoG and Fréchet, demonstrated
p-values greater than 0.05 for most datasets, suggesting they can effectively represent the
data. While these models fit the majority of datasets (p-value> 0.05), the EFG model
exhibited the highest p-value among all fitted models. Additionally, the tables show that
the NEG distribution achieved the lowest values across all GoF indices, indicating that it
fits all five datasets better than the other competing distributions.
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Table 9: The Performance of EFG for Bladder cancer data.

Distributions EFG EGoE Fréchet Gompertz E

−ℓ 49.481 72.603 53.814 66.089 59.857
AIC 108.962 153.206 113.628 136.179 121.714

CAIC 113.529 156.374 116.004 137.762 122.505
BIC 116.879 159.541 118.379 139.346 123.297

KVM 0.126 0.437 0.159 1.089 0.656
p-value 0.473 0.057 0.137 0.001 0.016

KS 0.146 0.190 0.175 0.333 0.230
p-value 0.428 0.147 0.222 0.001 0.044

Table 10: The Performance of EFG for Brain cancer data.

Distributions EFG EGoE Fréchet gompertz E

−ℓ 260.789 302.709 270.203 266.799 268.003
AIC 531.578 613.417 546.405 537.599 538.006

CAIC 536.358 617.241 549.273 539.511 549.273
BIC 541.138 621.065 552.141 541.423 539.918

KVM 0.089 6.290 0.858 0.556 0.522
p-value 0.646 2.2x10−16 0.005 0.028 0.035

KS 0.124 0.558 0.284 0.226 0.186
p-value 0.421 5.9x10−14 0.001 0.012 0.062

Table 11: The Performance of EFG for Bone cancer data.

Distributions EFG EGoE Fréchet gompertz E

−ℓ 142.975 146.544 155.419 203.825 169.589
AIC 295.951 301.088 316.839 411.651 341.179

CAIC 301.677 305.669 320.275 413.941 320.275
BIC 307.403 310.249 323.710 416.232 343.4693

KVM 0.139 0.172 0.222 0.423 1.546
p-value 0.426 0.329 0.229 0.062 1.2x10−4

KS 0.103 0.091 0.1219 0.182 0.251
p-value 0.584 0.379 0.2281 0.016 1.9 x10−4
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Table 12: The Performance of EFG for Blood cancer data.

Distributions EFG EGoE Fréchet gompertz E

−ℓ 68.592 75.771 74.386 83.953 85.778
AIC 147.185 159.542 154.772 171.9054 173.556

CAIC 151.407 162.920 157.306 173.594 174,401
BIC 155.629 166.298 159.839 175.283 175.245

KVM 0.094 0.221 0.201 1.077 1.084
p-value 0.616 0.230 0.267 0.001 0.001

KS 0.110 0.139 0.136 0.299 0.300
p-value 0.714 0.421 0.451 0.002 0.001

8. Conclusion

Obtaining accurate estimates regarding patients’ condition is extremely important as
this helps the doctor determine the appropriate treatment. This study focused on inves-
tigating the EFG distribution and its effectiveness in representing the survival time of
cancer patients. It also provides a comprehensive overview of the statistical properties
of the distribution such as the quantile function,moments, moment-generating function,
characteristic function, R´enyi entropy, and order statistics More addition, the study also
examined the performance of five different types of estimates, MLH, O.LS, W.LS, CRM
and MPS including simulation and application to real data for cancer patients. The re-
sults revealed that the EFG distribution is an ideal representation of the survival time
for patients with various types of cancer. Additionally, the W.LS method provided the
best estimate for survival time with minimal SEs. Moreover, the performance of the EFG
model is assessed in comparison to various competing distributions. Notably, EFG proves
to be a more suitable choice than several of these models, as it consistently achieves the
lowest values across multiple goodness-of-fit criteria. This underscores EFG’s superior-
ity in both effectiveness and flexibility when analyzing survival times for cancer patients.
Based on these findings, the EFG model is a promising option for modeling survival time
data, especially within the medical field.
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The lomax generator of distributions: Properties, minification process and regression
model. Applied Mathematics and Computation, 247:465–486, 2014.

[15] Thiago AN De Andrade, Subrata Chakraborty, Laba Handique, and Frank Gomes-
Silva. The exponentiated generalized extended gompertz distribution. Journal of
Data Science, 17(2):299–330, 2019.



REFERENCES 3897

[16] Awad El-Gohary, Ahmad Alshamrani, and Adel Naif Al-Otaibi. The generalized
gompertz distribution. Applied mathematical modelling, 37(1-2):13–24, 2013.

[17] Zahra Karimi Ezmareh and Gholamhossein Yari. Kumaraswamy-g generalized gom-
pertz distribution with application to lifetime data. International Journal of Indus-
trial Engineering, 33(4):1–22, 2022.

[18] Benjamin Gompertz. Xxiv. on the nature of the function expressive of the law of
human mortality, and on a new mode of determining the value of life contingencies.
in a letter to francis baily, esq. frs &c. Philosophical transactions of the Royal Society
of London, (115):513–583, 1825.

[19] Amal S Hassan and Said G Nassr. Power lindley-g family of distributions. Annals of
Data Science, 6:189–210, 2019.

[20] Rafif Hibatullah, Yekti Widyaningsih, and Sarini Abdullah. Marshall-olkin extended
power lindley distribution with application. J. Ris. and Ap. Mat, 2(2):84–92, 2018.

[21] Xiaoyan Huo, Saima K Khosa, Zubair Ahmad, Zahra Almaspoor, Muhammad Ilyas,
and Muhammad Aamir. A new lifetime exponential-x family of distributions with ap-
plications to reliability data. Mathematical Problems in Engineering, 2020(1):1316345,
2020.

[22] SA Jasim. Estimate Survival Function for the Brain Cancer Disease by using three
Parameters Weibull Distribution. PhD thesis, MSc Thesis, Baghdad University, Col-
lege of Education (Ibn Al-Haitham), 2010.

[23] Jibril Yahaya Kajuru, Hussaini Dikko Garba, Aminu Mohammed Suleiman, and
Aliyu Fulatan Ibrahim. The generalized gompertz-g family of distributions: Sta-
tistical properties and applications. UMYU Scientifica, 3(1):120–128, Mar. 2024.

[24] Hadeel S Klakattawi. Survival analysis of cancer patients using a new extended
weibull distribution. Plos one, 17(2):e0264229, 2022.

[25] Granino Arthur Korn and Theresa M Korn. Mathematical handbook for scientists
and engineers: definitions, theorems, and formulas for reference and review. Courier
Corporation, 2000.

[26] Elisa T Lee and John Wang. Statistical methods for survival data analysis, volume
476. John Wiley & Sons, 2003.

[27] PD Macdonald. Estimation procedure for mixtures of distributions. Journal of the
Royal Statistical Society Series B - Statistical Methodology, 33(2):326–+, 1971.

[28] Mohamed AW Mahmoud and Farouq Mohammad A Alam. The generalized linear
exponential distribution. Statistics & probability letters, 80(11-12):1005–1014, 2010.



REFERENCES 3898

[29] M Mansour, Haitham M Yousof, WA Shehata, and Mohamed Ibrahim. A new two
parameter burr xii distribution: properties, copula, different estimation methods and
modeling acute bone cancer data. Journal of Nonlinear Science and Applications,
13(5):223–238, 2020.

[30] Ahmed Sayed M Metwally, Amal S Hassan, Ehab M Almetwally, BM Golam Kibria,
and Hisham M Almongy. Reliability analysis of the new exponential inverted Topp–
Leone distribution with applications. Entropy, 23(12), 2021.

[31] JJA Moors. A quantile alternative for kurtosis. Journal of the Royal Statistical
Society: Series D (The Statistician), 37(1):25–32, 1988.

[32] Pelumi E Oguntunde, Mundher A Khaleel, Mohammed T Ahmed, Adebowale O Ade-
jumo, Oluwole A Odetunmibi, et al. A new generalization of the lomax distribution
with increasing, decreasing, and constant failure rate. Modelling and Simulation in
Engineering, 2017, 2017.

[33] James J Swain, Sekhar Venkatraman, and James R Wilson. Least-squares estima-
tion of distribution functions in johnson’s translation system. Journal of Statistical
Computation and Simulation, 29(4):271–297, 1988.

[34] Muhammad Hussain Tahir, Muhammad Mansoor, Muhammad Zubair, and Gho-
lamhossein Hamedani. Mcdonald log-logistic distribution with an application to
breast cancer data. Journal of Statistical Theory and Applications, 2014.


