EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 17, No. 4, 2024, 3610-3621 ISSN 1307-5543 — ejpam.com Published by New York Business Global # Modifications to Mixed $\theta(\nu_1, \nu_2)$ -open Sets in Generalized Topological Spaces Abdo Qahis^{1,*}, Awn Alqahtani² ¹ Department of Mathematics, Faculty of Science and Arts, Najran University, Saudi Arabia **Abstract.** Á. Császár and Makai Jr. [5] introduced the concepts of the mixed operation $\gamma_{\theta(\nu_1,\nu_2)}$ and mixed $\theta(\nu_1,\nu_2)$ -open sets in generalized topological spaces. In this paper, we extend this framework by introducing the concepts of mixed operation $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$ and mixed $\tilde{\theta}(\nu_1,\nu_2)$ -open sets (briefly, $\tilde{\theta}(\nu_1,\nu_2)$ -open sets) and investigate their fundamental properties in generalized topological spaces. We explore the relationships among $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$, $\gamma_{\theta(\nu_1,\nu_2)}$, and $\gamma_{\theta}(\nu)$, as well as the relationships among $\tilde{\theta}(\nu_1,\nu_2)$ -open sets, $\theta(\nu_1,\nu_2)$ -open sets, and μ -open sets. Additionally, we introduce the notion of $G(\nu_1,\nu_2)$ -regularity in generalized topological spaces. Finally, we provide characterizations of $\tilde{\theta}(\nu_1,\nu_2)$ -open sets using mixed $G(\nu_1,\nu)$ -regular concept. 2020 Mathematics Subject Classifications: 54A05, 54C08 Key Words and Phrases: $\gamma_{\theta(\nu_1,\nu_2)}$ operation, $\theta(\nu_1,\nu_2)$ -open sets, $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$ operation, $\tilde{\theta}(\nu_1,\nu_2)$ -open set, $G(\nu_1,\nu_2)$ -regularity ## 1. Introduction Á. Császár [1] introduced the concepts of generalized topology and generalized open sets, as well as the interior and closure operators within generalized topological spaces. For further details, see [1]. In the same work, he also introduced the notion of $\theta(\nu)$ -open sets and investigated their properties. Similarly, in [7], the author defined a weaker form of $\theta(\nu)$ -open sets called $\tilde{\theta}(\nu)$ -open sets in generalized topological spaces. For additional details, see [6, 12]. Furthermore, in [5], Á. Császár and Makai Jr. modified the concept of $\theta(\nu)$ -open sets by considering two generalized topologies ν_1 and ν_2 on a nonempty set X, introducing the notion of mixed $\theta(\nu_1, \nu_2)$ -open sets (briefly, $\theta(\nu_1, \nu_2)$ -open). In our research, inspired by the approach in [4, 5], we extend the definitions of $\tilde{\theta}(\nu)$ -open sets and the operation $\gamma_{\tilde{\theta}}(\nu)$ by considering a mixture of two generalized topologies ν_1 and ν_2 . In Section 3, we introduce the mixed operation $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$ (briefly, $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$) and explore the relationships between this new operation and the operation $\gamma_{\theta(\nu_1,\nu_2)}$. Additionally, Copyright: © 2024 The Author(s). (CC BY-NC 4.0) DOI: https://doi.org/10.29020/nybg.ejpam.v17i4.5475 Email addresses: cahis82@gmail.com (A. Qahis), Odalqahtani@nu.edu.sa (A. Alqahtani) ^{*}Corresponding author. we establish sufficient conditions for equivalence between the operation $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$ and the previous operation $\gamma_{\theta(\nu_1,\nu_2)}$. In Section 4, we define the class of mixed $\tilde{\theta}(\nu_1, \nu_2)$ -open sets (briefly, $\tilde{\theta}(\nu_1, \nu_2)$ -open sets) as a new category lying strictly between the class of ν_1 -open sets and the class of $\theta(\nu_1, \nu_2)$ -open sets. As the main results of this section, we introduce the concept of relative mixed $G(\nu_1, \nu_2)$ -regular (briefly, $G(\nu_1, \nu_2)$ -regularity) as a novel separation axiom in generalized topological spaces. Moreover, we provide a characterization of $G(\nu_1, \nu_2)$ -regular spaces. ## 2. Preliminaries Let X be a nonempty set and ν a collection of subsets of X. ν is defined as a Generalized Topology (GT) on X if it satisfies the following conditions: - (i) $\emptyset \in \nu$. - (ii) Any union of elements within ν is also an element of ν . This concept was introduced by \acute{A} . Császár in [1]. We denote the pair (X, ν) as a Generalized Topological Space (GTS) on X. The subsets in ν are termed ν -open sets, and their complements are ν -closed sets, as defined in [2]. The union of all elements of ν is denoted by \mathcal{M}_{ν} . Additionally, a GTS (X, ν) is called strong [11] if $X \in \nu$. For a subset A of a GTS (X, ν) , the ν -closure of A, denoted $c_{\nu}(A)$, is defined as the intersection of all ν -closed sets containing A. The ν -interior of A, denoted $i_{\nu}(A)$, is defined as the union of all ν -open sets contained in A (see [1, 2]). Recalling from [3], let ν be a GT on the nonempty set X, and $\mathcal{P}(X)$ denote the power set of X. Define $\theta(\nu) \subseteq \mathcal{P}(X)$ such that $A \in \theta(\nu)$ if for each $x \in A$, there exists $M \in \nu$ containing x with $M \subseteq c_{\nu}(M) \subseteq A$. Then $\theta(\nu)$ forms a GT on X, included in ν . The sets in $\theta(\nu)$ are known as $\theta(\nu)$ -open sets, and their complements are referred to as $\theta(\nu)$ -closed sets. The operation $\gamma_{\theta} : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined for $A \subseteq X$ by $$\gamma_{\theta}(A) = \{x \in X : c_{\nu}(M) \cap A \neq \emptyset, \forall M \in \nu, x \in M\}.$$ In [7], Min extended this by defining $\tilde{\theta}(\nu) \subseteq \mathcal{P}(X)$ such that $A \in \tilde{\theta}(\nu)$ if for each $x \in A$, there exists $M \in \nu$ containing x with $M \subseteq c_{\nu}(M) \cap \mathcal{M}_{\nu} \subseteq A$. $\tilde{\theta}(\nu)$ is a GT on X, contained in ν , and $\theta(\nu) \subseteq \tilde{\theta}(\nu)$. The elements of $\tilde{\theta}(\nu)$ are referred to as $\tilde{\theta}(\nu)$ -open sets, while their complements are known as $\tilde{\theta}(\nu)$ -closed sets. The operation $\gamma_{\tilde{\theta}} : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined for $A \subseteq X$ by $$\gamma_{\tilde{\theta}}(A) = \{ x \in X : (c_{\nu}(M) \cap \mathcal{M}_{\nu}) \cap A \neq \emptyset, \forall M \in \nu, x \in M \}.$$ Furthermore, in [5], Á. Császár and Makai Jr. introduced $\theta(\nu_1, \nu_2)$ for combining two GTs ν_1 and ν_2 on X. A set $A \subseteq X$ belongs to $\theta(\nu_1, \nu_2)$ if $x \in A$ implies the existence of $M \in \nu_1$ with $x \in M \subseteq c_{\nu_2}(M) \subseteq A$. $\theta(\nu_1, \nu_2)$ is also a GT contained in ν_1 on X. The elements of $\theta(\nu_1, \nu_2)$ are called $\theta(\nu_1, \nu_2)$ -open sets, and their complements are $\theta(\nu_1, \nu_2)$ -closed sets. The operation $\gamma_{\theta(\nu_1, \nu_2)} : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined for $A \subseteq X$ by $$\gamma_{\theta(\nu_1,\nu_2)}(A) = \{ x \in X : c_{\nu_2}(M) \cap A \neq \emptyset, \forall M \in \nu_1, x \in M \}.$$ In conclusion, we revisit the following definitions and facts due to their significance in our paper's content. **Lemma 1.** [9] Let ν_1 and ν_2 be two GTs on a nonempty set X, and let $A \subseteq X$. If $A \in \nu_2$, then $\gamma_{\theta(\nu_1,\nu_2)}(A) = c_{\nu_1}(A)$. **Definition 1.** [5] Let ν_1 and ν_2 be two GTs on a nonempty set X. A subset A of X is called (ν_1, ν_2) -regular-open if $A = i_{\nu_1}(c_{\nu_2}(A))$. **Theorem 1.** [5] Let ν_1 and ν_2 be two GTs on a nonempty set X, and let $A \subseteq X$. Then A is $\theta(\nu_1, \nu_2)$ -closed if and only if $\gamma_{\theta(\nu_1, \nu_2)}(A) = A$. **Definition 2.** [8] Let (X, ν) be a GTS. We say that X is G-regular with respect to \mathcal{M}_{ν} if, for every point $x \in \mathcal{M}_{\nu}$ and every ν -closed set F such that $x \notin F$, there exist sets U and V in ν satisfying the following conditions: $x \in U$, $F \cap \mathcal{M}_{\nu} \subseteq V$, and $U \cap V = \emptyset$. **Definition 3.** [9] Let ν_1 and ν_2 be two GTs defined on a nonempty set X. We say that X is (ν_1, ν_2) -regular if, for every point $x \in X$ and every ν_1 -closed set F with $x \notin F$, there exist open sets $U \in \nu_1$ and $V \in \nu_2$ such that $x \in U$, $F \subseteq V$, and $U \cap V = \emptyset$. # 3. Properties of the mixed operation $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$ We begin this section by introducing our primary Definition of the mixed operation $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$ and presenting intriguing results associated with it. **Definition 4.** Let ν_1 and ν_2 be two GTs defined on a nonempty set X, and let $A \subseteq X$. Define $\gamma_{\tilde{\theta}(\nu_1,\nu_2)} : \mathcal{P}(X) \to \mathcal{P}(X)$ as a mixed operation by: $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \{x \in X : (c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A \neq \emptyset, \text{ for all } M \in \nu_1, x \in M\}.$$ If $x \in X - \mathcal{M}_{\nu_1}$, then by definition, $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. According to this definition, $x \notin \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$ if and only if there exists $M \in \nu_1$ such that $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A = \emptyset$. **Remark 1.** Let ν be a GT on a nonempty set X. For any subset $A \subseteq X$, it holds that $\gamma_{\tilde{\theta}(\nu,\nu)}(A) = \gamma_{\tilde{\theta}(\nu)}(A)$. In Remark 1 above, for a strong GTS (X, ν) , the following equality holds: $$\gamma_{\tilde{\theta}(\nu,\nu)}(A) = \gamma_{\tilde{\theta}(\nu)}(A) = \gamma_{\theta(\nu)}(A).$$ **Theorem 2.** Let ν_1 and ν_2 be two GT's on a nonempty set X. Then $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq \gamma_{\theta(\nu_1,\nu_2)}(A)$ for any $A \subseteq X$. Proof. Let $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$ and $M \in \nu_1$ such that $x \in M$. Then $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A \neq \emptyset$. Since $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A \subseteq c_{\nu_2}(M) \cap A$, it follows that $c_{\nu_2}(M) \cap A \neq \emptyset$. Therefore, $x \in \gamma_{\theta(\nu_1,\nu_2)}(A)$. The following example shows that generally $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \neq \gamma_{\theta(\nu_1,\nu_2)}(A)$. **Example 1.** Consider the set $X = \{a, b, c, d\}$ equipped with two generalized topologies: $\nu_1 = \{\emptyset, \{b, d\}\}$ and $\nu_2 = \{\emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{a, c\}$. Observe the following: $$c_{\nu_2}(\{b,d\}) = X$$ and $\mathcal{M}_{\nu_1} = \{b,d\}.$ Additionally, $$c_{\nu_2}(\{b,d\}) \cap A \neq \emptyset$$ and $(c_{\nu_2}(\{b,d\}) \cap \mathcal{M}_{\nu_1}) \cap A = \emptyset$. Therefore, $$b, d \in \gamma_{\theta}(\nu_1, \nu_2)(A)$$ and $b, d \notin \gamma_{\tilde{\theta}(\nu_1, \nu_2)}(A)$. Thus, $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \{a,c\} \quad and \quad \gamma_{\theta}(\nu_1,\nu_2)(A) = X.$$ Consequently, $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subset \gamma_{\theta}(\nu_1,\nu_2)(A).$$ Corollary 1. Let ν_1 and ν_2 be two GT's on a nonempty set X and let $A \subseteq X$. If (X, ν_1) is a strong GTS, then $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \gamma_{\theta(\nu_1,\nu_2)}(A)$. **Theorem 3.** Let ν_1 and ν_2 be two GT's on a nonempty set X and $A, B \subseteq X$. Then the operation $\gamma_{\bar{\theta}(\nu_1,\nu_2)}$ has the following properties. (i) if $$A \subseteq B$$, then $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(B)$. (ii) $$A \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$$. (iii) if $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq A$$, then $A = \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Proof. (i) Let $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$ and $M \in \nu_1$ such that $x \in M$. Then, $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A \neq \emptyset$. Since $A \subseteq B$, it follows that $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap B \neq \emptyset$, and hence $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(B)$. (ii) Case 1: If $x \in A$ and $x \in \mathcal{M}_{\nu_1}$, then for each ν_1 -open set M containing x, $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A \neq \emptyset$, so $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Case 2: If $x \in A$ and $x \notin \mathcal{M}_{\nu_1}$, then by Definition 4, $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Therefore, $A \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. From cases 1 and 2, we derive that $A \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. (iii) Let $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq A$$. Then by (ii), $A \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Hence, $A = \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. **Theorem 4.** Let ν_1 and ν_2 be two GT's on a nonempty set X and let $A \subseteq X$. Then the following hold. (i) If $$A \subseteq X - \mathcal{M}_{\nu_1}$$, then $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = X - \mathcal{M}_{\nu_1}$. (ii) $$X - \mathcal{M}_{\nu_1} \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$$. *Proof.* (i) Let $A \subseteq X - \mathcal{M}_{\nu_1}$ and $x \in X - \mathcal{M}_{\nu_1}$. By Definition 4, $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$ implies $X - \mathcal{M}_{\nu_1} \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Conversely, if $x \in \mathcal{M}_{\nu_1}$, then for any $M \in \nu_1$ containing x, $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A = \emptyset$, hence $x \notin \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. This implies $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = X \setminus \mathcal{M}_{\nu_1}$. (ii) This follows directly from the definition of the operation $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$. **Theorem 5.** Let ν_1 and ν_2 be two GT's on a nonempty set X and $A \subseteq X$. Then the following hold. (i) If $$A \in \nu_1$$, then $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \gamma_{\theta(\nu_1,\nu_2)}(A)$. (ii) If $$A \in \nu_2$$, then $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \gamma_{\theta(\nu_1,\nu_2)}(A)$. *Proof.* (i) This follows directly from Definition 4. (ii) By Theorem 2, $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq \gamma_{\theta(\nu_1,\nu_2)}(A)$. For the converse inclusion, let $x \in \gamma_{\theta(\nu_1,\nu_2)}(A)$ and $M \in \nu_1$ such that $x \in M$. Then $c_{\nu_2}(M) \cap A \neq \emptyset$. Hence, there exists $z \in c_{\nu_2}(M) \cap A$. Since A is a ν_2 -open set containing z, it follows that $M \cap A \neq \emptyset$. As $M \cap A = (M \cap \mathcal{M}_{\nu_1}) \cap A$, we have $(M \cap \mathcal{M}_{\nu_1}) \cap A \neq \emptyset$. Thus, $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A \neq \emptyset$. This implies $\gamma_{\theta(\nu_1,\nu_2)}(A) \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Finally, we conclude $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \gamma_{\theta(\nu_1,\nu_2)}(A)$. Based on Lemma 1 and the implication (ii) from Theorem 5 above, we derive the following corollary. Corollary 2. Let ν_1 and ν_2 be two GT's on a nonempty set. If $A \in \nu_2$, then $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \gamma_{\theta(\nu_1,\nu_2)}(A) = c_{\nu_1}(A)$. **Theorem 6.** Let ν_1 and ν_2 be two GT's on a nonempty set X and $A \subseteq X$. Then $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1})$ *Proof.* Since $A \cap \mathcal{M}_{\nu_1} \subseteq A$, by Theorem 3(i), we have $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1}) \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. For the converse inclusion, suppose $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$ and $M \in \nu_1$ contains x. Then $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A \neq \emptyset$. By the equality: $$(c_{\nu_2}(M)\cap \mathcal{M}_{\nu_1})\cap A=(c_{\nu_2}(M)\cap \mathcal{M}_{\nu_1})\cap [(A\cap \mathcal{M}_{\nu_1})\cup (A\cap (X-\mathcal{M}_{\nu_1}))],$$ it follows that $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap (A \cap \mathcal{M}_{\nu_1}) \neq \emptyset$. Hence, $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1})$, implying $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1})$. Therefore, $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1})$, completing the proof. **Definition 5.** Let ν_1 and ν_2 be two GTs defined on a nonempty set X, and let $A \subseteq \mathcal{M}_{\nu_1}$. We define the restriction operation with respect to \mathcal{M}_{ν_1} as follows: $$(\gamma \mid_{\mathcal{M}_{\nu_1}})_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \{x \in \mathcal{M}_{\nu_1} : c_{\nu_2}(M) \cap A \neq \emptyset, \forall M \in \nu_1, x \in M\}.$$ The following lemma is crucial for proving the next theorem. **Lemma 2.** Let ν_1 and ν_2 be two GT's on a nonempty set X and $A \subseteq X$. Then $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = (X - \mathcal{M}_{\nu_1}) \cup (\gamma \mid_{\mathcal{M}_{\nu_1}})_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1}).$$ *Proof.* Let $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$ and $M \in \nu_1$ such that $x \in M$. By the definition of $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$, $$(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A \neq \emptyset$$ and $$(c_{\nu_2}(M)\cap \mathcal{M}_{\nu_1})\cap A=c_{\nu_2}(M)\cap (\mathcal{M}_{\nu_1}\cap A).$$ Since $\mathcal{M}_{\nu_1} \cap A \subseteq \mathcal{M}_{\nu_1}$, by Definition 5, $x \in (\gamma \mid_{\mathcal{M}_{\nu_1}})_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1})$, hence $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq (\gamma \mid_{\mathcal{M}_{\nu_1}})_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1}).$$ Obviously, $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq (X - \mathcal{M}_{\nu_1}) \cup (\gamma \mid_{\mathcal{M}_{\nu_1}})_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1}). \tag{1}$$ For the other inclusion, from Theorem 4(ii), $X - \mathcal{M}_{\nu_1} \subseteq \gamma_{\bar{\theta}(\nu_1,\nu_2)}(A)$. Let $x \in (\gamma \mid_{\mathcal{M}_{\nu_1}})$ $(A \cap \mathcal{M}_{\nu_1})$. Then for each ν_1 -open set M containing x, $$c_{\nu_2}(M) \cap (\mathcal{M}_{\nu_1} \cap A) \neq \emptyset.$$ Since $$c_{\nu_2}(M) \cap (\mathcal{M}_{\nu_1} \cap A) = (c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A,$$ it follows that $x \in \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$ and thus $$(\gamma \mid_{\mathcal{M}_{\nu_1}})_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1}) \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A).$$ Thus, $$(X - \mathcal{M}_{\nu_1}) \cup (\gamma \mid_{\mathcal{M}_{\nu_1}})_{\tilde{\theta}(\nu_1, \nu_2)} (A \cap \mathcal{M}_{\nu_1}) \subseteq \gamma_{\tilde{\theta}(\nu_1, \nu_2)} (A). \tag{2}$$ From equalities (1) and (2), we conclude that $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = (X - \mathcal{M}_{\nu_1}) \cup (\gamma \mid_{\mathcal{M}_{\nu_1}})_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1}).$$ **Theorem 7.** Let ν_1 and ν_2 be two GT's on a nonempty set X, and let $A \subseteq X$. The following properties then hold: (i) $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(X) = X$$. (ii) $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(X - \mathcal{M}_{\nu_1}) = X - \mathcal{M}_{\nu_1}.$$ (iii) $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(\emptyset) = X - \mathcal{M}_{\nu_1}.$$ (iv) If $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = A$$, then $X - \mathcal{M}_{\nu_1} \subseteq A$. *Proof.* (i) By Theorem 3(ii), $X \subseteq \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(X)$, implying $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(X) = X$. (ii) From Lemma 2, we obtain $$\begin{split} \gamma_{\tilde{\theta}(\nu_{1},\nu_{2})}(X-\mathcal{M}_{\nu_{1}}) &= (X-\mathcal{M}_{\nu_{1}}) \cup (\gamma\mid_{\mathcal{M}_{\nu_{1}}})_{\tilde{\theta}(\nu_{1},\nu_{2})} \big((X-\mathcal{M}_{\nu_{1}}) \cap \mathcal{M}_{\nu_{1}} \big) \\ &= (X-\mathcal{M}_{\nu_{1}}) \cup (\gamma\mid_{\mathcal{M}_{\nu_{1}}})_{\tilde{\theta}(\nu_{1},\nu_{2})} (\emptyset) \\ &= (X-\mathcal{M}_{\nu_{1}}) \cup \emptyset \\ &= X-\mathcal{M}_{\nu_{1}}. \end{split}$$ - (iii) This follows directly from Lemma 2 and Definition 5. - (iv) Let $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = A$. Then by Lemma 2, $$\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = (X - \mathcal{M}_{\nu_1}) \cup (\gamma \mid_{\mathcal{M}_{\nu_1}})_{\tilde{\theta}(\nu_1,\nu_2)}(A \cap \mathcal{M}_{\nu_1}) = A,$$ which implies $X - \mathcal{M}_{\nu_1} \subseteq A$. ## 4. Mixed $\tilde{\theta}(\nu_1, \nu_2)$ -Open Sets **Definition 6.** Let ν_1 and ν_2 be two GTs defined on a nonempty set X. A subset A of X is mixed $\tilde{\theta}(\nu_1, \nu_2)$ -open (briefly, $\tilde{\theta}(\nu_1, \nu_2)$ -open) if for every $x \in A$, there exists $M \in \nu_1$ such that $x \in M$ and $M \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq A$. The complement of a $\tilde{\theta}(\nu_1, \nu_2)$ -open set is called a $\tilde{\theta}(\nu_1, \nu_2)$ -closed set. The family of all $\tilde{\theta}(\nu_1, \nu_2)$ -open sets in X is denoted by $\tilde{\theta}(\nu_1, \nu_2)$. **Remark 2.** Let ν be a GT on a nonempty set X. Then every $\hat{\theta}(\nu, \nu)$ -open set in X is $\hat{\theta}(\nu)$ -open. **Theorem 8.** Let ν_1 and ν_2 be two GT's on a nonempty set X. Then $$\theta(\nu_1, \nu_2) \subseteq \tilde{\theta}(\nu_1, \nu_2) \subseteq \nu_1.$$ *Proof.* To show $\theta(\nu_1, \nu_2) \subseteq \tilde{\theta}(\nu_1, \nu_2)$, take $A \in \theta(\nu_1, \nu_2)$ and $x \in A$. There exists $M \in \nu_1$ such that $M \subseteq c_{\nu_2}(M) \subseteq A$. Since $c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq c_{\nu_2}(M)$, we have $M \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq A$. Hence, A is $\tilde{\theta}(\nu_1, \nu_2)$ -open, implying $A \in \tilde{\theta}(\nu_1, \nu_2)$. Next, to show $\tilde{\theta}(\nu_1, \nu_2) \subseteq \nu_1$, suppose $A \in \tilde{\theta}(\nu_1, \nu_2)$ and $x \in A$. There exists $M \in \nu_1$ such that $x \in M \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq A$. Therefore, $A = \bigcup_{x \in A} M_x \in \nu_1$. **Remark 3.** According to Theorem 8, the diagram below illustrates the relationship. $$\theta(\nu_1, \nu_2)$$ -open $\Rightarrow \tilde{\theta}(\nu_1, \nu_2)$ -open $\Rightarrow \nu_1$ -open The implications stated above do not work in reverse, as illustrated by the following example. **Example 2.** Let $X = \{a, b, c, d\}$. Consider two generalized topologies $\nu_1 = \{\emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\nu_2 = \{\emptyset, \{b, d\}\}$ on X. It can be verified that: The set $\{a, b, c\}$ is $\tilde{\theta}(\nu_1, \nu_2)$ -open but not $\theta(\nu_1, \nu_2)$ -open. The set $\{a,b\}$ is ν_1 -open but not $\ddot{\theta}(\nu_1,\nu_2)$ -open. **Remark 4.** Let ν_1 and ν_2 be two GT's on a nonempty set X. If the GTS (X, ν_1) is strong, then $\tilde{\theta}(\nu_1, \nu_2) = \theta(\nu_1, \nu_2)$. **Theorem 9.** Let ν_1 and ν_2 be two GT's on a nonempty set X. Then $\dot{\theta}(\nu_1, \nu_2)$ is also a generalized topology on X contained in ν_1 . *Proof.* It is evident that $\emptyset \in \tilde{\theta}(\nu_1, \nu_2)$. Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a collection of $\tilde{\theta}(\nu_1, \nu_2)$ open sets in X, and let $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}$. There exists $\alpha_0 \in \Lambda$ such that $x \in A_{\alpha_0}$. Since A_{α_0} is $\tilde{\theta}(\nu_1, \nu_2)$ -open, there exists $M \in \nu_1$ such that $x \in M$ and $M \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq A_{\alpha_0} \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha}$. Therefore, $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is $\tilde{\theta}(\nu_1, \nu_2)$ -open. **Theorem 10.** Let ν_1 and ν_2 be two GT's on a nonempty set X, and let $A \subseteq X$. Then A is $\tilde{\theta}(\nu_1, \nu_2)$ -closed if and only if $\gamma_{\tilde{\theta}(\nu_1, \nu_2)}(A) = A$. Proof. Let A be a $\tilde{\theta}(\nu_1, \nu_2)$ -closed set. Assume $x \in X - A$. Then X - A is $\tilde{\theta}(\nu_1, \nu_2)$ -open. According to Definition 6, there exists $M \in \nu_1$ such that $x \in M \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq X - A$. Hence, $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A = \emptyset$, implying $x \notin \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Therefore, $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq A$. By Theorem 3 (ii), we conclude $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = A$. Conversely, suppose $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = A$. If $x \in X - A$, then there exists $M \in \nu_1$ containing x such that $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A = \emptyset$, implying $M \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq X - A$. Hence, X - A is $\tilde{\theta}(\nu_1, \nu_2)$ -open, showing A is $\tilde{\theta}(\nu_1, \nu_2)$ -closed. Based on (ii) of Theorems 5 and 10, the following corollary follows. **Corollary 3.** Let ν_1 and ν_2 be two topologies on a nonempty set X, and let $A \subseteq X$. If $A \in \nu_2$ and $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = A$, then A is $\theta(\nu_1,\nu_2)$ -closed set. **Theorem 11.** Let ν_1 and ν_2 be two GT's on a nonempty set X, and let $A \subseteq X$. If A is $\tilde{\theta}(\nu_1, \nu_2)$ -open and $x \in A$, then there exists a (ν_1, ν_2) -regular-open set U containing x such that $U \subseteq c_{\nu_2}(U) \cap \mathcal{M}_{\nu_1} \subseteq A$. *Proof.* Let A be $\tilde{\theta}(\nu_1, \nu_2)$ -open in X, and suppose $x \in A$. Thus, there exists a ν_1 -open set M such that $x \in M \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq A$. Define $U = i_{\nu_1}(c_{\nu_2}(M))$. Then U is (ν_1, ν_2) -regular-open, with $M \subseteq U \subseteq c_{\nu_2}(U) = c_{\nu_2}(i_{\nu_1}(c_{\nu_2}(M))) \subseteq c_{\nu_2}(M)$. This implies $x \in M \subseteq U \subseteq c_{\nu_2}(U) \cap \mathcal{M}_{\nu_1} \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq A$. Therefore, $x \in U \subseteq c_{\nu_2}(U) \cap \mathcal{M}_{\nu_1} \subseteq A$ for some (ν_1, ν_2) -regular-open set U. Since every set that is (ν_1, ν_2) -regular-open is ν_1 -open in X, the following corollary is clearly derived. **Corollary 4.** Let ν_1 and ν_2 be two GT's on a nonempty set X, and let $A \subseteq X$. Then A is $\tilde{\theta}(\nu_1, \nu_2)$ -open if and only if there exists a (ν_1, ν_2) -regular-open set U containing x such that $U \subseteq c_{\nu_2}(U) \cap \mathcal{M}_{\nu_1} \subseteq A$. **Definition 7.** Let ν_1 and ν_2 be two GTs defined on a nonempty set X. We say that X is $G(\nu_1, \nu_2)$ -regular with respect to \mathcal{M}_{ν_1} (or simply $G(\nu_1, \nu_2)$ -regular) if, for every $x \in \mathcal{M}_{\nu_1}$ and every ν_1 -closed set F with $x \notin F$, there exist open sets $U \in \nu_1$ and $V \in \nu_2$ such that: $$x \in U$$, $F \cap \mathcal{M}_{\nu_1} \subseteq V$, and $U \cap V = \emptyset$. **Proposition 1.** Let ν_1 and ν_2 be two GT's on a nonempty set X such that $\nu_1 = \nu_2$. If X is (ν_1, ν_2) -regular, then X is either ν_1 -regular or ν_2 -regular. **Proposition 2.** Let ν_1 and ν_2 be two GT's on a nonempty set X. If X is a (ν_1, ν_2) -regular, then X is $G(\nu_1, \nu_2)$ -regular. *Proof.* Let X be (ν_1, ν_2) -regular. Take $x \in \mathcal{M}_{\nu_1}$ and consider any ν_1 -closed set F such that $x \notin F$. By the definition of (ν_1, ν_2) -regularity, there exist $U \in \nu_1$, $V \in \nu_2$ such that $x \in U$, $F \subseteq V$, and $U \cap V = \emptyset$. Since $F \cap \mathcal{M}_{\nu_1} \subseteq F \subseteq V$, we conclude that X is $G(\nu_1, \nu_2)$ -regular. **Theorem 12.** Let X be a nonempty set and ν_1, ν_2 be two GT's on X. The following statements are equivalent: - (i) X is $G(\nu_1, \nu_2)$ -regular. - (ii) For every $x \in X$ and every ν_1 -open set U containing x, there exists a ν_1 -open set V containing x such that $V \subseteq c_{\nu_2}(V) \cap \mathcal{M}_{\nu_1} \subseteq U$. - Proof. (i) \Rightarrow (ii): Assume X is $G(\nu_1, \nu_2)$ -regular. For $x \in \mathcal{M}_{\nu_1}$ and a ν_1 -open set U containing x, there exist $V \in \nu_1$ and $W \in \nu_2$ such that $x \in V$, $(X U) \cap \mathcal{M}_{\nu_1} \subseteq W$, and $V \subseteq X W$. Since X W is ν_2 -closed, $c_{\nu_2}(V) \subseteq X W$. Hence, $c_{\nu_2}(V) \cap ((X U) \cap \mathcal{M}_{\nu_1}) \subseteq c_{\nu_2}(V) \cap W = \emptyset$, implying $V \subseteq c_{\nu_2}(V) \cap \mathcal{M}_{\nu_1} \subseteq U$. - $(ii) \Rightarrow (i)$: Let F be a ν_1 -closed set and $x \in \mathcal{M}_{\nu_1}$ with $x \notin F$. Since X F is a ν_1 -open set containing x, by hypothesis, there exists a ν_1 -open set V containing x such that $x \in V \subseteq c_{\nu_2}(V) \cap \mathcal{M}_{\nu_1} \subseteq X F$. This implies $c_{\nu_2}(V) \cap \mathcal{M}_{\nu_1} \cap F = \emptyset$. Hence, $F \cap \mathcal{M}_{\nu_1} \subseteq X c_{\nu_2}(V)$, and since $X c_{\nu_2}(V) \in \nu_2$ and $V \cap (X c_{\nu_2}(V)) = \emptyset$, we conclude X is $G(\nu_1, \nu_2)$ -regular. **Theorem 13.** Let ν_1 and ν_2 be two GT's on a nonempty set X. If X is $G(\nu_1, \nu_2)$ -regular, then every ν_1 -open set is $\tilde{\theta}(\nu_1, \nu_2)$ -open. *Proof.* Let X be $G(\nu_1, \nu_2)$ -regular, and consider any ν_1 -open set A in X. For each $x \in A$, by Theorem 12, there exists a ν_1 -open set V such that $x \in V \subseteq c_{\nu_2}(V) \cap \mathcal{M}_{\nu_1} \subseteq A$. Hence, A is $\tilde{\theta}(\nu_1, \nu_2)$ -open. Corollary 5. Let ν_1 and ν_2 be two GT's on a nonempty set X. If X is $G(\nu_1, \nu_2)$ -regular, then $\nu_1 = \tilde{\theta}(\nu_1, \nu_2)$. Proof. It can be deduced from Theorem 8 and Theorem 13. **Definition 8.** Let ν_1 and ν_2 be two GTs defined on a nonempty set X, and let $A \subseteq X$. Define the following notions: $$c_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \bigcap \left\{ F \subseteq X \mid A \subseteq F \text{ for } \tilde{\theta}(\nu_1,\nu_2)\text{-closed set } F \text{ in } X \right\};$$ $$i_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \bigcup \left\{ V \subseteq X \mid V \subseteq A \text{ for } \tilde{\theta}(\nu_1,\nu_2)\text{-open set } V \text{ in } X \right\};$$ $$l_{\tilde{\theta}(\nu_1,\nu_2)}(A) = \left\{ x \in X \mid c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq A \text{ for some } \nu_1\text{-open set } M \text{ containing } x \right\}.$$ Note that $x \in c_{\tilde{\theta}(\nu_1,\nu_2)}(A)$ if and only if $\forall U \in \tilde{\theta}(\nu_1,\nu_2), \ (x \in U \Rightarrow U \cap A \neq \emptyset).$ **Theorem 14.** Let ν_1 and ν_2 be two GT's on a nonempty set X, and let $A \subseteq X$. Then the following hold: - (i) $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq c_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq c_{\theta(\nu_1,\nu_2)}(A)$. - (ii) For any $x \in X$, $x \in l_{\tilde{\theta}(\nu_1,\nu_2)}(A)$ if and only if there exists a ν_1 -open set M such that $x \in M$ and $M \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq A$. - Proof. (i) Let $x \notin c_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. This implies there exists a $\tilde{\theta}(\nu_1,\nu_2)$ -open set V such that $x \in V$ and $V \cap A = \emptyset$. Since V is $\tilde{\theta}(\nu_1,\nu_2)$ -open, there exists $M \in \nu_1$ such that $x \in M$ and $M \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq V \subseteq X A$. This implies $(c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1}) \cap A = \emptyset$, hence $x \notin \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Thus $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq c_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Since every $\theta(\nu_1,\nu_2)$ -open set in X is $\tilde{\theta}(\nu_1,\nu_2)$ -open, it follows that $c_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq c_{\theta(\nu_1,\nu_2)}(A)$. - (ii) The proof is clear from the definition. **Corollary 6.** Let ν_1 and ν_2 be two generalized topologies on a nonempty set X, and let $A \subseteq X$. Then $i_{\tilde{\theta}(\nu_1,\nu_2)}(A) \subseteq l_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. *Proof.* Let $x \in i_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. This means there exists a $\tilde{\theta}(\nu_1,\nu_2)$ -open set V in X containing x, such that $x \in V \subseteq A$. Since V is $\tilde{\theta}(\nu_1,\nu_2)$ -open, there exists $M \in \nu_1$ such that $x \in M$ and $M \subseteq c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq V \subseteq A$. Therefore, $x \in l_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Let ν_1 and ν_2 be two GT's on a nonempty set X. The notations are defined as follows: $l_{\theta(\nu_1,\nu_2)}(A) = \{x \in X : c_{\nu_2}(M) \subseteq A \text{ for some } \nu_1\text{-open set } M \text{ containing } x\}; \ l_{\tilde{\theta}(\nu_1)}(A) = \{x \in X : c_{\nu_1}(M) \cap \mathcal{M}_{\nu_1} \subseteq A \text{ for some } \nu_1\text{-open set } M \text{ containing } x\} \ [10].$ REFERENCES 3620 Corollary 7. Let ν_1 and ν_2 be two GT's on a nonempty set X. Then for any subset $A \subseteq X$, $$l_{\theta(\nu_1,\nu_2)}(A) \subseteq l_{\tilde{\theta}(\nu_1,\nu_2)}(A).$$ *Proof.* Let $x \in l_{\theta(\nu_1,\nu_2)}(A)$. This means there exists a ν_1 -open set M containing x such that $c_{\nu_2}(M) \subseteq A$. Since $c_{\nu_2}(M) \cap \mathcal{M}_{\nu_1} \subseteq c_{\nu_2}(M) \subseteq A$, it follows that $x \in l_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. Therefore, $l_{\theta(\nu_1,\nu_2)}(A) \subseteq l_{\tilde{\theta}(\nu_1,\nu_2)}(A)$. **Remark 5.** Let ν be a GT on a nonempty set X, and let $A \subseteq X$. Then $l_{\tilde{\theta}(\nu,\nu)}(A) = l_{\tilde{\theta}(\nu)}(A)$. **Theorem 15.** Let ν_1 and ν_2 be two GTs on a nonempty set X and let $A \subseteq X$. Then the following properties hold: (i) $$i_{\tilde{\theta}(\nu_1,\nu_2)}(A) = X - c_{\tilde{\theta}(\nu_1,\nu_2)}(X-A)$$ and $c_{\tilde{\theta}(\nu_1,\nu_2)}(A) = X - i_{\tilde{\theta}(\nu_1,\nu_2)}(X-A)$. (ii) $$l_{\tilde{\theta}(\nu_1,\nu_2)}(A) = X - \gamma_{\tilde{\theta}(\nu_1,\nu_2)}(X-A)$$ and $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}(A) = X - l_{\tilde{\theta}(\nu_1,\nu_2)}(X-A)$. *Proof.* The proof is straightforward and hence omitted. ### Conclusion In this work, we have introduced and studied the operation $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$ and $\tilde{\theta}(\nu_1,\nu_2)$ open sets in generalized topological spaces. We have established several significant results concerning these concepts. The relationships among $\gamma_{\tilde{\theta}(\nu_1,\nu_2)}$, $\gamma_{\theta(\nu_1,\nu_2)}$, and $\gamma_{\theta}(\nu)$, as well as the relationships among $\tilde{\theta}(\nu_1,\nu_2)$ -open sets, $\theta(\nu_1,\nu_2)$ -open sets, and μ -open sets have been thoroughly investigated. Finally, we have derived various properties and characterizations in terms of the concept of $G(\nu_1,\nu_2)$ -regularity. ## Acknowledgements The authors thank the readers of European Journal of Pure and Applied Mathematics, for making our journal successful. ### References - [1] Á Császár. Generalized topology, generized continuity. *Acta mathematica hungarica*, 96(4):351–357, 2002. - [2] Á Császár. Generalized open sets in generalized topologies. *Acta mathematica hungarica*, 106:53–66, 2005. - [3] Á Császár. δ -and θ -modifications of generalized topologies. Acta mathematica hungarica, 120(3):275–279, 2008. REFERENCES 3621 [4] Á Császár. Mixed constructions for generalized topologies. *Acta Mathematica Hungarica*, 122(1):153–159, 2009. - [5] Á Császár and E Makai Jr. Further remarks on δ -and θ -modifications. Acta Mathematica Hungarica, 123(3):223–228, 2009. - [6] Y. K.Kim and W.k. Min. $\mathcal{H}(\theta)$ -Open Sets Induced by Hereditary Classes on Generalized Topological Spaces. *International Journal of Pure and Applied Mathematics*, 93:307–315, May 2014. - [7] W K Min. Remarks on θ -open sets in generalized topological spaces. Applied mathematics letters, 24(2):165–168, 2011. - [8] Won Keun Min. Continuity on generalized topological spaces. *Acta mathematica hungarica*, 129:350–356, 2010. - [9] Won Keun Min. Mixed weak continuity on generalized topological spaces. *Acta Mathematica Hungarica*, 132(4):339–347, 2011. - [10] Abdo Qahis and Fatimah Al Mahri. A new class between $\tilde{\theta}_{\mu}$ -open sets and μ -open sets in generalized topological spaces. *Missouri Journal of Mathematical Sciences*, 36(1):98–110, 2024. - [11] Ratna Dev Sarma. On extremally disconnected generalized topologies. *Acta Mathematica Hungarica*, 134(4):583–588, 2012. - [12] Ugur Sengul. More on δ and θ -modifications. Creative Mathematics and Informatics, $30(1):89-96,\ 02\ 2021.$