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Abstract. In this paper, we investigate higher-order calculus using the conformable derivative
and integral. We use a fractional variant of the calculus of variations to obtain the Euler-Lagrange
equation. Our route integral quantization approach streamlines the procedure by integrating solely
over canonical coordinates qi, eliminating the requirement to integrate higher-order derivatives
(qi = Dα

t qi). In addition, we employ the conformable derivative to develop canonical conserved
energy-momentum and Ostrogradsky’s Hamiltonian. Furthermore, we generalized the Hamilton
formulation for higher order derivatives and applied this new formulation to obtained equations of
motion for a one dimensional point particle.
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1. Introduction

Higher-Order Derivatives is proving to be invaluable across a spectrum of disciplines
including chemistry, biology, and electronics [6, 20]. Recent research has showcased its util-
ity in scaling phenomena [19, 23], classical mechanics, and mathematical modeling [25, 31].
Scholars have ventured into higher-order dynamical systems using Dirac’s restricted dy-
namics [1, 2], examining the harmony between constraints and equations of motion [8], and
advancing our understanding of systems with higher-order derivatives [9, 17]. Simplified
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quantization techniques have been devised for both conservative and non-conservative sys-
tems [16], with discrete systems receiving particular attention [4]. Recent inquiries have
extended fractional equations to encompass fields like the Lee-Wick field [22], complex
scalar fields [5], and the Dirac field [7]. Moreover, Noether’s theorem has been invoked
to determine conserved quantities [3], while the application of Hamilton formalism with
higher-order derivatives has facilitated the derivation of equations of motion, maintain-
ing consistency with conventional mechanics [10]. The Riemann-Liouville derivative has
emerged as a powerful tool for problem-solving [12], exhibiting convergence in the time
domain as segment size increases. Many studies have advanced Hamilton-Ostrogradskii
principle formulations for higher-order dynamical systems, including developments in sys-
tems with higher-order derivatives and fractional derivatives, as well as innovations in path
integral quantization [13, 15, 24, 29]. On the other hand, the Riemann-Liouville derivative
and Caputo derivative do not obey the Leibniz rule and chain rule, which prevent us from
applying these derivatives to the ordinary physical system with high-order derivatives.
The conformable derivative was introduced in [18, 21]. This derivative obeys the Leibniz
rule and the chain rule. The innovative approach, based on Leibniz and chain principles,
gives identical derivatives of all orders under one, creating a flexible framework for studying
higher-order derivatives. With increasing adoption by researchers, this definition broadens
its applicability to include Hamiltonian formalism with high-order identical derivatives,
ensuring independence from higher-order coordinate derivatives. This novel mathematical
framework enables a more detailed depiction of dynamical systems characterized by com-
plex behaviors such as memory effects, non-local interactions, and anomalous diffusion.
Efforts focusing on fractional calculus within classical domains, mechanical systems, and
variation problems aim to deepen our understanding of anomalous dynamics and non-local
influences in physics and engineering. This paper aims to address the identified limitations
by introducing a novel Hamiltonian formulation for systems involving higher-order deriva-
tives. Our approach leverages a new definition of the conformable derivative that complies
with both the Leibniz and chain rules, thereby enhancing its applicability. We anticipate
that this proposed method will provide a wide range of accurate solutions to generalized
differential equations with higher derivatives, effectively overcoming existing limitations.
By integrating higher-order derivatives and fractional operators into our framework, we
expect to create more adaptable models compared to those derived from traditional cal-
culus. Furthermore, we intend to demonstrate that our Hamiltonian formulation can be
developed independently of higher-order derivatives of the coordinates, which will sim-
plify the analysis of complex dynamical systems and improve our understanding of their
dynamics.

The structure of this paper is as follows: Section 2 briefly discusses the definitions of
conformable derivatives. Section 3 presents the Generalized Ostrogradsky’s Construction
Form. Section 4 provides illustrative examples, and Section 5 introduces applications
of conformable calculus along with suggestions for further research. Finally, the paper
concludes with closing remarks.
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2. Calculus of variations

This section presents two distinct definitions of derivatives: left- and right-conformable
derivatives (denoted CFDs). These definitions are integral to the Hamiltonian formulation
and are employed in solving cases that result in equations of motion of various orders, such
as (1/2, 1, 3/2, 2...). The left conformable derivative and the right-conformable derivative
are defined and explored, along with their corresponding integrals, the left conformable
integral (CFI) and the right conformable integral (CFI) [11, 18]. These concepts are funda-
mental to understanding and applying higher-order calculus in various physical contexts.
The right conformable derivative is defined as follows [11, 18]:

Dα
s|xf(t) = lim

ϵ→∞

(t+ ϵ(t− s)1−α)− f(t)

ϵ

With the condition that s < t for the derivative to be valid for all t ≥ s. The left-
conformable derivative is defined as follows [11, 18]:

Dα
t|s′f(t) = − lim

ϵ→∞

(t+ ϵ(s
′ − t)1−α)− f(t)

ϵ

Noting that t ≥ s to avoid undefined expressions, as (t − s)α becomes negative in such
cases. In the case where 0 < α ≤ 1, the left conformable integral (CFI) is defined as
follows:

Iαs|tf(t) =

∫ t

s
(ξ − s)1−αf(ξ)dξ

Ensuring the integral limits are correctly defined from s to t. The right conformable
integral (CFI) is defined as follows:

Iα
t|s′f(t) =

∫ s
′

t
(s

′ − ξ)1−αf(ξ)dξ

The relationships between the conformable derivatives (CFD) and integrals (CFI) are
expressed as follows:

Dα
s|tI

α
s|tf(t) = f(t),

Dα
t|s′I

α
t|s′f(t) = f(t)− f(a),

Next, we generalize to the case when s = 0, and use the notationDα
s|t to denote (D

α
s|t = Dα

t )
as follows :

Dα
s|xf(t) = lim

ϵ→∞

(t+ ϵt1−α)− f(t)

ϵ

Where 0 < α ≤ 1 and Dα
x represents a right CFD. The definition of CFD can be reformu-

lated using l’Hôpital’s rule as follows [30]:
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Dα
s|tf(t) = f

′
(t)t1−t,

Assuming f is differentiable, which is necessary for equation 2 to hold true.

3. Generalized Ostrogradsky’s Construction Form

This section explores the Lagrangian and Hamiltonian formulations of mechanical sys-
tems characterized by higher-order partial derivatives. It defines the configuration space
using generalized coordinates and derives equations of motion through the Euler-Lagrange
equations [14, 28].
Lagrangian Formulation
We begin with a configuration space defined by n generalized coordinates q(t), Dα

s|tq(t) and

D2α
s|tq(t), and D2α

s|tαq(t). The equations of motion arise from the Euler-Lagrange equations,
represented as :

Jα [t] = Iα0|t0L(qi(t, ϵ
α), Dα

s|tqi(t, ϵ
α), D2α

s|tqi(t, ϵ
α))

Where
qi(t, ϵ

α) = q(t) + ϵη(t)

Dα
t qi(t, ϵ

α) = Dα
t q(t) + ϵDα

t η(t) and η(0) = η(t0) = 0

Subsequently, the need for an external value can be expressed as follows:

[∂ϵS]ϵ=0 = Iα0|t0 [∂ϵL(qi(t, ϵ), D
α
t qi(t, ϵ), D

α
t D

α
t qi(t, ϵ))]

=

∫ t

0
tα−1

[
∂L
∂qi

∂qi
∂ϵ

+
∂L

∂Dα
t qi

∂Dα
t qi

∂ϵ

∂L
∂Dα

t D
α
t qi

+
∂Dα

t D
α
t qi

∂ϵ

]
dt

=

∫ t

0
tα−1

[
∂L
∂qi

η +
∂L

∂Dα
t qi

Dα
t η +

∂L
∂Dα

t D
α
t qi

Dα
t D

α
t η

]
dt

By employing integration by parts, we obtain the following expression:

0 =

∫ t

0
tα−1

[
∂L
∂qi

−Dα
t

(
∂L

∂Dα
t qi

)
+

(
∂L

∂Dα
t D

α
t qi

)]
η(t)dt

This results in the fractional Euler-Lagrange equation.

∂L
∂qi

−Dα
t

(
∂L

∂Dα
t qi

)
+

(
∂L

∂Dα
t D

α
t qi

)
= 0 (1)

By comparing Equations (A.3) and (A.4), we observe that the differential representation
of the Hamiltonian requires identifying the partial derivatives of H with respect to qi ,
P1 , P2 ,and t. Using this comparison, we derive the Hamiltonian equations of motion as
follows (see appendix A):
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• First equation of motion: Since the term Dα
s|tqid(P1) in equation (A.3) should

correspond to the term ∂H
∂P1

dP1 in equation (A.4), we obtain :

Dα
s|tqi =

∂H

∂P1
,

• Second equation of motion: Similarly, the term D2α
s|tqid(P2) should match the

term ∂H
∂P2

dP2 in Equation (A.4), leading to:

D2α
s|tqi =

∂H

∂P2
,

• Third equation of motion: Moving to the term involving dqi in Equation (A.3),
we observe that it should be equivalent to the term (Dα

s|tP1+D2α
s|tP2)dqi in Equation

(4). Thus, we find:
∂H

∂qi
= −Dα

s|tP1 +D2α
s|tP2,

• Fourth equation of motion: The term ∂H
∂(t) represents the temporal change of the

Hamiltonian, which is related to the temporal change of the term as :

∂H

∂t
= − ∂l

∂t′

It should be highlighted that the results deduced from the above equations are closely
aligned with what is observed in classical field theory, especially when dealing with integer
orders within equations of motion.

L = L(qi, D
α
t qi, D

2α
t qi, D

3α
t qi, · · · , Dnα

t qi, t)

Integrating the Lagrangian values with respect to time yields the action, which is a func-
tional that describes the path followed in configuration space, represented as:

S =

∫
L(qi, D

α
t qi, D

2α
t qi, D

3α
t qi, · · · , Dnα

t qi, t)dt,

The evolution of the classical system is determined by solving the Euler–Lagrange equa-
tions of motion, which are derived as follows :
n∑

i=0

(−1)iDiα
t

(
dL

dqi

)
= 0 qi = Diα

t q i = 1, 2, 3, · · ·

The Hamiltonian formulation is defined as follows:
n∑

i=1

piqi − L, qi = Diα
t q, i = 1, 2, 3, · · ·

When calculating the total differential of the Hamiltonian, we obtain the following result.

dH =

n∑
i=1

pid(D
iα
t qi)+(Diα

t qi)dpi−
∂L

∂(Diα
t qi)

d(Diα
t qi)−

∂L

∂qi
, qi = Diα

t q, i = 1, 2, 3, · · ·

(2)
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To provide an alternative perspective on the generalized momenta pi, which is linked to the
expression qi = Diα

t q, let’s examine the following formulation. We can uniquely present
the generalized momenta by utilizing the equation qi = Diα

t q :

pi =
∂L

∂qi
=

∂L

∂Diα
t q

(3)

After substituting the momentum values into (3), we obtain at the following outcome :

dH =
n∑

i=1

Diα
s|tqd(pi)−

∂L

∂q
dq − ∂L

∂t
dt, (4)

By employing the Euler-Lagrange (1), we obtain at the following result:

−∂L

∂q
=

n∑
i=1

(−1)iDiα
s|t(

∂L

∂qi
) =

n∑
i=1

(−1)i(
∂ipi
∂ti

) i = 1, 2, 3, · · · , n. (5)

When we substitute (5) with (4), the outcome is as follows:

dH =

n∑
i=1

pid(D
iα
s|tqd(pi)) + (−1)i(

∂ipi
∂ti

)dq −Diα
s|tLdt. (6)

This indicates that the Hamiltonian can be expressed in the following manner:

H = H(q, Pi, t) i = 1, 2, 3, · · · , n.

The total differential of this function is represented as follows:

dH =
∂H

∂q
∂q +

n∑
i=1

∂H

∂qi
d(pi) +

∂H

∂t
dt, (7)

When we compare (6) and (7), we can derive the following set of Hamilton’s equations of
motion.

∂H

∂q
=

n∑
i=1

(−1)ipi, Diα
s|t =

∂H

∂pi
,

To further establish the validity of our method for handling high-order derivatives, we will
provide two examples of generalized conformable derivative concepts. These examples will
serve to introduce and clarify the application of these concepts in supporting our approach.
In this context, the path integral quantization is given as follows :

K =

∫
dpdqei

∑n
k=1(Pkq

k−H(q,qk,t)dt

For quadratic H(q, qk, t) in terms of Pk, and after integration over the momenta Pk we
obtain :



Y. M. Alawaideh et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5478 7 of 14

K =

∫
dqei

∫
Ldt

One should notice that the path integral quantization is obtained as an integration over
the canonical coordinates qi without any need to integrate over higher order derivatives
(qi, ql) as given by Ostrogradskii formulation.

4. Generalized Conformable Fractional Higher-Order Derivatives

Classical mechanics describes the motion of particles and systems under forces, often
described by a Lagrangian function. Recent interest in incorporating fractional derivatives
has led to the development of fractional mechanics, using conformable derivatives. This
work builds upon fractional mechanics and conformable derivatives to derive a generalized
form of Euler-Lagrange equations for higher order conformable derivatives, establishing
energy and momentum conservation in the presence of time independence and translational
invariance of the Lagrangian [26].
Let’s begin by revisiting some fundamental concepts regarding theories involving particles
in one dimensional motion. These theories are described by a Lagrangian function denoted
as ”L” which depends on variables like position (x), velocity (Dα

s|tx), and acceleration

(D2α
s|tx)) at a given time (t).

δL− δt
∂L

∂t
= δqi

∂L

∂qi
+ δDα

t qi
∂L

∂Dα
t qi

+ δD2α
t qi

∂L

∂D2α
t qi

=

δqi

(
∂L

∂qi
− d

dt

∂L

∂Dα
t qi

+
d2

dt2
∂L

∂D2α
t qi

)
+

d

dt

(
δqi

∂L

∂Dα
t qi

+ δDα
t qi

∂L

∂D2α
t qi

− δqi
d

dt

∂L

∂D2α
t qi

)
.

Therefore, the equation of motion is as follows:

∂L

∂qi
−Dα

t

∂L

∂Dα
t qi

+D2α
t

∂L

∂D2α
t qi

= 0 (8)

This aligns with the Euler-Lagrange outcome (refer to (1)). Through the utilization of
fractional calculus in the preservation principles of classical mechanics, with a particu-
lar emphasis on fractional energy and momentum, we establish what we term fractional
mechanics. Within this framework, we reassess the equation of motion.

Diα
s|t

(
L−Dα

t qi
∂L

∂Dα
t qi

−D2α
t qi

∂L

∂D2α
t qi

+Dα
t qi

d

dt

∂L

∂Dα
t qi

)
=

∂L

∂t

When the Lagrangian remains constant over time, indicating its time independence, it
implies the existence of a conserved quantity known as energy. Consequently, the total
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energy remains constant as time progresses.

E = Dα
s|tqi

∂L

∂Dα
s|tqi

+D2α
s|tqi

∂L

∂D2α
s|tqi

−Dα
s|tqi

d

dt

∂L

∂Dα
s|tqi

− L

In the presence of translational invariance within the Lagrangian ∂L
∂qi

= 0, we anticipate
the conservation of momentum. Considering the equation for the equation of motion, we
introduce the momentum px with the following expression:

pqi =
L

∂Dα
s|tqi

− d

dt

∂L

∂D2α
s|tqi

This results in equation (11) being expressed as follows:

D2α
s|tpqi =

∂L

∂qi

Therefore, when the Lagrangian exhibits translational invariance, the conservation of mo-
mentum in the x-direction is expressed as px follows. Consequently, the energy can be
defined as:

E = Dα
s|tqipqi +D2α

s|tqi
∂L

∂D2α
s|tqi

− L

Example 1. let us consider the Lagrangian [22]

L =
1

2
ax(D2α

t x)2 − 1

2
bx(Dα

t x)
2

By applying the Euler-Lagrange equation 1 with respect to the independent variable qi, we
obtain:

3

2
α(D2

s|tqi)
2 + bqiD

2
s|tqi + 2α(D

s|t
1 qi)q

(3)
i +

1

2
b(D

s|t
1 qi)

2 + aqiq
(4)
i = 0. (9)

The momenta p1 and p2 are given as:

p1 =
∂L

∂Dα
s|tx

= −bxDα
t x.

p2 =
∂L

∂D2α
s|tx

= axD2α
s|tx.

The Hamiltonian density can be written as:

H = p1D
α
s|tq + p2D

2α
s|tq − L =

p21
2bx

+
p22
2ax

(10)

Additionally, the equations of motion according to Hamilton’s formalism are:

Dα
s|tx =

−p1
bx

.
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D2α
s|tx =

p2
ax

.

H

∂x
= −Dα

s|tp1 +Dα
s|tp2.

Using the equation above, we obtain the following outcome:

3

2
a(D2α

s|tqi)
2 + bqiD

2α
s|tqi + 2a(Dα

s|tqi)q
(3)
i +

1

2
b(Dα

s|tqi)
2 + aqiq

(4)
i = 0 (11)

The above equation is exactly the same as the equation that has been derived by Euler-
Lagrange 9 in fractional form. For α = 1, we get:

3

2
a(D2

s|tqi)
2 + bqiD

2
s|tqi + 2a(D1

t qi)q
(3)
i +

1

2
b(D1

s|tqi)
2 + aqiq

(4)
i = 0 (12)

Using the conformable derivative [29] and assuming D2
s|tqi = q̈l, D

1
s|t = q̇l

3

2
a(q̈l)

2 + bqiq̈l + 2a(q̇l)q
(3)
i +

1

2
b(q̇l)

2 + aqiq
(4)
i = 0 (13)

It is worth noting that the results in Equation 13 are consistent with those found in Muslih
et al [27]. Besides, the path integral is given by

K =

∫
dqe

i( 1
2
ax(D2α

s|tx)
2− 1

2
bx(Dα

s|tx)
2)dt

(14)

The path integral (14), is an integration over the canonical coordinate x, without any need
to any integration over the velocity x = Dα

s|tx as given by Ostrogradskii formulation.

5. Higher-Order Calculus: Applications and Recommendations for
Future Work

Understanding conformable calculus is crucial due to its high potential value, espe-
cially in higher order derivatives, Hamiltonian systems, nonlinear motion, and differential
equations. The Hamiltonian formalism for fractional differential equations is essential for
comprehending the dynamics of intricate physical systems, particularly at the nanoscale.
This approach enables the exploration of fractional derivatives of point particles, offering
valuable insights into the movements of nanoscale materials and particles. These practical
implications highlight the importance of derivatives in understanding complex systems
in engineering and applied physics. This method helps researchers delve deeper into the
stability, oscillation, and periodicity of systems exhibiting memory effects or long-range
interactions. By incorporating the Hamiltonian method into the study of conformable
derivatives, we can achieve a more comprehensive understanding of how systems respond
to external influences and disturbances. Further research on conformable derivatives and
generalized point particles is vital for advancing our understanding of these complex sys-
tems. The insights gained from such studies have the potential to revolutionize fields
like nanotechnology, biomechanics, and advanced engineering, offering innovative solu-
tions and a deeper comprehension of the fundamental principles governing these intricate
phenomena.
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6. Conclusion

In this research, we investigated two systems using the conformable version of the
calculus of variations to derive the fractional Euler-Lagrange equation. It applies this
calculus to the conformable version of classical mechanics, introducing the conformable
Lagrangian and deriving the equation of motion. The path integral quantization was
obtained directly as an integration over the canonical coordinate qi without the need to
integrate over the variable Dα

t qi. The classical equations of motion obtained in this work
perfectly matched those obtained through the Lagrangian formulation. The Hamiltonian
Method for Generalized Conformable Differential Equations with Higher-Order Derivatives
offers a structured framework for studying nonlinear dynamics and invariance principles
in complex systems involving controlled Lagrangians with higher-order derivatives. This
research enhances theoretical applications in this domain, demonstrating invariance results
concerning state variables and exploring a natural Hamiltonian formulation for composite
higher derivative theories involving time derivatives.
The approach, along with a numerical example, enables us to identify both the static and
dynamic parameters of particles or structures in motion. This forms the foundation for a
new research project we are currently developing.
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Appendix

In this appendix, we shift from the Lagrangian approach to the Hamiltonian approach,
we introduce paired generalized momenta (pi and Φ) associated with and associated in
conjunction with their respective generalized coordinates.

pi = Dα
s|t

∂L

∂Dα
s|tqi

+D2α
s|t

∂L

∂(D2α
s|tqi)

πi =
∂L

∂(Dα
s|tqi)

We expand the phase space to include the canonical variables (qi, pi) and their associ-
ated counterparts (ql, πi), where (ql = Dα

s|t). Within this augmented phase space, the
Hamiltonian is expressed as follows:

H = piqi + πiD
2α
s|tqi − L

This implies that the Hamiltonian can be expressed as a function, as follows:

H = H(qi, pi, qi, πi, t)

In the generalized case:

L = L(qi, D
α
s|tqi, D

2α
s|tqi, · · · , D

nα
s|t qi, t)
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Considering the variation principle, it is evident that the Euler–Lagrange equations gov-
erning the motion of the system are expressed as follows :

n∑
i=0

(−1)iDiα
s|tqi(

dL

dqi
) = 0 qi = Diα

s|tq
i i = 0, 1, 2, · · ·

To streamline the representation of these equations through Ostrogradskii’s method and
the introduction of paired generalized momenta (pi, πi) linked to the generalized coordi-
nates (qi, D

α
s|tqi) the equations can be reformulated as follows :

pk−1
i =

∂L

∂(Dα
xλ
Dα

s|xλ
qi)

− d
dt(

∂L

∂(∂Dqk+1
i )

), k = 0, 1, 2, · · · , n− 1, πi =
dL
dqn .

The phase space, defined by the canonical variables (qi and pk−1
i )and their associated

counterparts (qi
k and πi) encompasses the generalized coordinates (qi

k and qk+1
i ). The

formulation of the Hamiltonian is as follows :

H =

n−1∑
k=1

pkq
k + πiq

n
i − L

This implies that the Hamiltonian can be represented as follows:

H = H(qi, p
k−1
i , qk−1

i , πi, t),

Now, the Hamiltonian formalism, denoted as H, is obtained by employing the Legendre
transformation in the following manner:

H = P1D
α
s|tqi + P1D

2α
s|tqi − L,

Determining the total differential of this Hamiltonian leads us to the following outcome.
dH = P1d(D

α
s|tqi) + Dα

s|tqid(P1) + P2d(D
α
s|tD

α
s|tqi) + D2α

s|tqid(P2) − ∂L
∂qi

− ∂L
∂Dα

s|tqi
Dα

s|tqi −
∂L

∂D2α
s|tqi

D2α
s|tqi, (A.2)

The generalized momenta P1 and P2 corresponding to Dα
s|tqi and D2α

s|tqi can be defined as
follows:

P1 =
∂L

∂(Dα
s|tqi)

,

P2 =
∂L

∂(D2α
s|tqi)

,

Substituting the values of momenta P1 and P2 into (2), we get :
dH = P1d(D

α
s|tqi) +Dα

s|tqid(P1) + P2d(D
α
s|tD

α
s|tqi) +D2α

s|tqid(P2)− ∂L
∂qi

,

By applying (1) of the Euler-Lagrange equation, we arrive at the following conclusion:
dH = P1d(D

α
s|tqi)+Dα

s|tqid(P1)+P2d(D
2α
s|tqi)+D2α

s|tqid(P2)+
∂L
∂t −(Dα

s|tP1−D2α
s|tP2)dqi, (A.3)

This indicates that the Hamiltonian can be represented in the following as follows:

H = H(qi, P1, P2, t)
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The total differential for this function can be expressed as:

dH =
∂H

∂qi
dqi +

∂H

∂P1
dP1 +

∂H

∂P2
dP2 +

∂H

∂t
dt (A.4)


