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Abstract. The present study aims to examine the movement of a simple pendulum that is con-
nected by a lightweight spring and connected with a rotating wheel. The motivation behind this
topic is to gain a comprehensive understanding of intricate dynamic systems that involve consis-
tent mechanical components and response with time delay. This system is not only theoretically
attractive but also practically appropriate in domains such as robotics, engineering, and control
systems. As well-known, all classical perturbation methods exploit Taylor expansion to simplify
the practicality of restoring forces. In contrast, the non-perturbative approach, as a novel method-
ology, transforms any nonlinear ordinary differential equation into a linear one. It scrutinizes the
restoring forces, away from employing Taylor expansion; hence it eliminates the previous weakness.
The concept of the non-perturbative approach is based mainly on the He’s frequency formula. The
confidence of the non-perturbative approach comes from the numerical compatibility between the
nonlinear and linear ordinary differential equation via the Mathematica Software. Therefore, in-
stead of handling the nonlinear ordinary differential equation, we investigate the linear one. The
achieved response is plotted over time to show the impact of the acted parameters during a specified
time interval. Moreover, the phase plane curves that correspond to the plotted solution are pre-
sented and examined. The stability criteria of the analogous linear ordinary differential equation
are provided and drawn to explore the stability /instability zones. The performance is applicable in
engineering and other fields due to its ease of adaptation to different nonlinear systems. Therefore,
the non-perturbative approach can be regarded as substantial, successful, and interesting and can
extended to be applied in further categories within the field of couples dynamical systems.
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Abbreviations
Symbol Meaning Symbol Meaning
HFF He’s frequency formula ODE Ordinary differential equation
NPA | Non-perturbative analysis DO Dulffing oscillator
MS Mathematica Software HPM | Homotopy perturbation technique
1.C. Initial conditions SP Simple pendulum

1. Introduction

A basic SP, which is only a mass (which is defined as a bob) hanging from a fixed
location by a thread or rod that influences in response to gravity, can perform a great
deal of the current work. Among SPs, pendulum clocks are the most well-known problem.
The hands of the clock are twisting to keep precise time by means of a pendulum that
swings back and forth at regular intervals. A SP is a perfect watch because its period
is insensitive to changes in amplitude. With the use of a newly proposed formula, one
can approximately determine the period of a SP [2]. It was considered both small and
large amplitudes of oscillation, while deriving the nonlinear ODE, which represents and
explains the swing of a simple SP [9]. The fundamental element of a SP experiment is a
pendulum bob, which is an item with a slight mass suspended from a light thread cite3.
To solve the nonlinear problems of a mass spring oscillator, which is the same as the
DO [44], the vibrational iterative approach and using the Laplace transform was used.
Discovering the Lagrange multiplier is a crucial part of the variational iterative method,
and thus is a common application of variational theory. This research looked at the motion
of a classical point particle in a revolving frame with a central restoring force [8]. These
responses were applied to the problems of surface-based pendulums, and most especially to
the SP. It is possible for a cubic-quintic DO to arise, for instance, in the case of a magnetic
spherical pendulum’s governing equation of motion. The current endeavor aims to solve
this problem analytically within certain bounds. The problem was resolved by integrating
methods such as the HPM, nonlinear expanded frequency, and Laplace transforms [21].
Keep in mind that this issue covers the same ground as the previous one [20], but with
certain limitations:

1. A crucial component of this inquiry is the time-delay.
2. The current approach uses the so-called NPA rather than the HPM.

3. Neglecting the disadvantages of increasing the restoring forces through Taylor ex-
pansion, which is an essential part of the equation of motion, is considered.

The ODEs played a vital role in many branches of applications, including applied
mathematics, physics, chemistry, and biology. The physical significance of the scenario
is a qualitative factor that governs dynamic behaviors. Although establishing a signifi-
cant analysis of a nonlinear DO can often be challenging, the solution to a linear ODE was
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straightforward. Evaluating minuscule parameters posed a challenging endeavor, demand-
ing the utilization of distinct methodologies. The semi-analytical HPM can be a helpful
approach to comprehending common nonlinear DO. The first Chinese mathematician Prof.
He suggested this approach to analyze the nonlinear DO [31]. Except for the requirement
for a modest parametric assumption, the HPM has all the compensations of all perturba-
tion methodologies. In comparison to earlier approaches, the HPM was overcome by the
complexity of calculation, so using less computer memory, and calculating more quickly.
Alluhydan et al. [40] studied how a location and velocity time-delay could reduce the
excited nonlinear vibration of DO. A modified was employed to attain an approximate
uniform solution to the issue being addressed. The linear time-delay system stability
problem was created [54]. It began by describing a comprehensive vector of multiple in-
tegral inequalities, which can understand many results as unusual situations. Second,
these multiples were used to build a delay-dependent stability standard for time-delay
systems. For a time-varying delay linear system, the delay-dependent stability problem
was suggested [55]. They provided evidence that their approach was more useful for han-
dling time-varying delay systems. Rahman [5] reviewed many models that incorporate
time-delays, including discrete, distributed, and hybrid approaches that combine the two,
highlighting the rationale behind doing so. A time-delayed nonlinear vibration absorption
system’s dynamical responses to harmonic excitation were documented in a previous ar-
ticle [49]. A complicated averaging method was used to study the forced system’s slow
and fast dynamics. The system under consideration was a one-equation of motion model
with nonlinear restoration and damping functions [30]. Two species of zooplankton and
one phytoplankton species coexisted under certain conditions [3].

The exact solutions of the complicated nonlinear ODEs that govern the dynamical
regulations generally seen in engineering and physics are often unknown. Traditional
approaches, such as numerical methods and perturbation techniques, are utilized to es-
tablish the precise frequency-amplitude connection and predict the dynamic reactions.
The complex dynamics of systems can be better understood with the use of these meth-
ods, which allow for a thorough examination of quantitative and qualitative aspects of
system behavior. An excessive arrangement of studies has been conducted on the efficacy
and broad applicability of this methodology [28, 41, 43, 52]. As mentioned earlier, the
HFF was played a crucial role in obtaining closed-form analytical solutions for oscilla-
tors, especially those using the DO [45]. The HFF formula has evolved into a powerful
mathematical instrument in studying nonlinear oscillators with periodic solutions. Prof.
He gave an innovative review paper and was the first to present it [32]. The clarity and
empirical confirmation of this frequency formula made it a fast favorite among engineers
[29, 33, 34, 42, 50, 51, 56, 57]. HFF has been fine-tuned through the years, leading to even
greater accuracy, as was previously seen [12, 35, 38]. Furthermore, as mentioned earlier,
the scope of this frequency method’s utility has expanded to include fractal oscillators [53].
In the study of nonlinear oscillatory systems, the NPA stands in unambiguous contrast
to traditional perturbative approaches. This method is a strong mathematical instrument
that can deal with many parameter regimes, particularly those with strong nonlinearity.
An important method for obtaining analytical approximations in research on nonlinear
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oscillators was employed. The primary goal of the NPA is to reduce the complexity of
the nonlinear model to a more manageable level so that the solutions can be clearly spec-
ified. This will allow for a more accurate approximation of the original system’s behavior
[10, 11, 13-19, 22-27] . The goal of this simplification is to reduce the average difference
between the two systems by making the transformation from a nonlinear to a linear form
of the equation. Accordingly, departing from perturbation techniques’ repetitive refining,
the NPA offered a fresh viewpoint. The goal of the NPA is to understand the details of
nonlinear systems on their own, without relying on small changes from a known solution.
This method can reveal insights into a broader range of system behavior, unconstrained
by the constraints of minor disturbances. The ability to probe dynamics that may be
inaccessible or concealed by more traditional perturbation approaches makes this breadth
all the more important. A two-dimensional asymmetric system was examined [6]. The sys-
tem’s equations of motion were generated and solved analytically. A nonlinear oscillator
equation featuring two dominant linear terms was analyzed [1]. An approximate solu-
tion was derived with the power series method. Additionally, by including a parameter
into the original equation, we identify the fixed points of the altered nonlinear oscillator
equation and conduct a stability analysis of these fixed points. The periodic motion of
the micro-electro-mechanical system (MEMS) was analyzed [37]. A novel approach using
polyvinylidene fluoride unsmooth nanofibers to transfer electronic current was provided
[39]. The unique unsmooth surface of these nanofibers provides a high surface energy
(geometrical potential), making them highly sensitive to microorganisms (e.g., viruses)
absorbed on their surface.

In light of the significance of the aforementioned aspects, the present work emphasizes
analyzing the movement of an SP that is connected to a rolling wheel and linked by a
light spring. This topic is motivated due to the prospective implementations of the SP in
physics, manufacturing, and practical mechanisms. A classic experiment involving a light
spring attached to a rolling wheel, followed by a SP, can be used to investigate various
physical phenomena. Here are some specific examples:

1. This model is useful for studying oscillations that involve both a spring’s restoring
force and the rotational dynamics introduced by a rolling wheel. The SP adds an
additional degree of freedom, making the system more complex and enhancing its
usefulness for studying multi-mode oscillations.

2. By carefully examining the system, investigators can investigate into the preservation
of energy in a system that involves both rotational and translational motion. The SP
and wheel enable the exploration of how potential and kinetic energy are exchanged
within the system.

3. This circumstance can be expanded to encompass damping forces or external driv-
ing forces to examine more intricate phenomena such as resonance, damping, and
stability in oscillatory systems.

4. When the oscillations reach a large magnitude, the system may exhibit nonlinear
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behavior, which can be determined using this prototype. Nonlinear dynamics is an
attractive area of focus in physics, particularly when studying chaotic systems.

5. This prototype serves as an educational tool for teaching fundamental concepts in
classical mechanics, including rotational dynamics, harmonic motion, and the inter-
action between different types of motion.

6. In manufacturing, prototypes have the ability to mimic real-world systems found in
automobiles, such as suspension systems that involve springs, wheels, and rotating
components working together. Gaining insight into these interactions is crucial for
developing highly efficient mechanical systems.

This model offers a diverse framework for exploring different mechanical principles,
incorporating rotational motion, spring dynamics, and SP oscillation. Several quires are
answered at the end of the current work such as:

i. What about the governing equation of motion of the model?
ii. How does the NPA convert the original nonlinear ODE into a linear one?
iii. What is the influence of the time-delay parameter?

iv. What about the time history as well as stability analysis of the system?

To crystallize the presentation of the problem, the subsequent sections of the article will be
organized as follows: A brief explanation of the NPA is presented in § 2. The methodology
of the problem is presented in § 3. Two scenarios involving the presence/absence of
the time-delay factor are discussed. Furthermore, the estimated solution is contrasted
with numerical calculations to authenticate the prototype link. The results of the main
outcomes are presented in § 4. A summary of the principal conclusions is provided in
which the solution attained is graphed over time to illustrate the effects of the operated
parameters. Additionally, the phase plane curves corresponding to the depicted solution
are showcased and scrutinized. Stability criteria are furnished and depicted to delve into
regions of both stability and instability. Lastly, § 5 contains the concluding remakes of
the obtained results are provided.

2. A Brief Clarification of the NPA

The aim of this Section is to create specific structures in converting the nonlinear con-
figuration to a linear one that has documented solutions and can be rationally approached
by the inventive organization [48]. In a few opinions, it is possible to interpret a nonlinear
ODE into a linear one in a way that reduces the consistency of the two systems’ alter-
ations. It is exemplified that this additional can be simply skillful. The basic idea of HFF
is now utilized to linearize a nonlinear oscillator, resulting in a linear oscillator generating
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a solution that covers the complete time period of the oscillation history [47]. The real-
ity and uniqueness of a comprehensive corresponding linear system have previously been
thoroughly examined [36]. The NPA can now designated as follows:

Given a nonlinear ODE, the nonlinear forces may be abstracted as three different fea-
tures as follows: quadratic nonlinear forces (do not produce secular terms), odd nonlinear
damping forces (yield secular terms), and lastly the restoring nonlinear odd force (yield
secular terms) [4]. This means that any nonlinear ODE may be reorganized using these
modules, which leads to the subsequent example:

E+F(CC O+ ¢ O+ Fa(¢ ¢ Q) =0, (1)

where F1(C, ¢, ), Fa(¢, ¢, ¢) and F3(¢, ¢, ¢) are the odd damping secular terms, even
nonsecular terms, and odd secular terms respectively, in which they are defined as:

F1(¢, ¢ Q) = ar€ + b3+ 1 + da (P + e ((?
(G5 €5 €) = aa(C +b2C? + caC® + daCC ; (2)
F3(¢, ¢, Q) = W+ b3CC+ e3¢+ dsC® + e3(C?

where w is the natural frequency, aj, bj, ¢j, dj, and e; (j =1, 2,3) are the constant phys-
ical coeflicients.

The HFF aims to convert the nonlinear ODE as given in Eq. (1) into the following linear
differential equation, following Moatimid et al. [10, 11, 13-19, 22-27] , one gets

U+ Oequ¥ + wzqvv = A. (3)

Eq. (3) is a linear equation that can be determined using conventional techniques. The
aim is to calculate the three coefficients that contained in Eq. (3). This equation contains
the damping constant o.q, (equivalent damping), wgqv (equivalent frequency) and the non-
homogeneous part A. The total frequency is shortened to A2, which will be determined
later. This frequency comes simply from the standard normal form approach. This concept
may simply be introduced as: v(t) = ¥(t) Exp(—0eqot/2), where () is an unknown
function to be determined. Therefore, Eq. (3) is then used to produce the harmonic
equation as shown below.

12} + A2¢ = AExp(Ueqvt/2)7 (4)
2 %0.2

where A2 = Wequ cqu Tepresents the total frequency of the system.

The linear version of the modest harmonic oscillator is represented by Eq. (3). Prof. He
recently investigated this topic by leveraging the peculiarities of specific functions [36]. It
was provided the subsequent guessing solution:

u= AcosAt, u(0) = A, u(0) =0. (5)

According to Moatimid et al. [10, 11, 13-19, 22-27] , the three factors that have emerged
from Eq. (3) can be written as follows:

(1) Frequency Formula
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Employing the HFF to show a benefit in scheming frequencies for the developed generalized
F5(¢, ¢, ¢). According to Moatimid et al. [10, 11, 1319, 22-27] , Elias-Zuniga et al. [46],
He, and Liu [7], the corresponding parameter may be determined as:

2w /A 27 /A
> _ . - 2
= [ RGOy [ 0
(2) Damping Formula

One may estimate the frequency of a particular function Fi (¢, C , C ) using the HFF. As well
as the procedure of Moatimid et al. [10, 11, 13-19, 22-27] to achieve the corresponding
damping term:

2w/ — 27/
v = [ RGOy [ Ear @
(3) Non-Secular Part

It must be noted that the quadratic formula applies to the non-secular component. Accord-
ingly, the inhomogeneity will be calculated by substituting: © — kA, © — kAQ, and i —
kAQ? in the even non-secular function g(u, , ). As shown by Moatimid et al. [10, 11, 13—
19, 22-27] , the factor k is defined as k = 1/2v/n — r, where n indicates the order of the
system and r signifies the degree of freedom of the system. Therefore, in the present case:
n = 2 and r = 1, then the significance of k becomes k = 1/2. To do this, the nonlinear
Eq. (1) is converted into the linear Eq. (3). The standard normal form of Eq. (3) may be
used to guess the stability requirements in a humbler procedure, where the total frequency
is defined by the formulation: A? = w2 , — 02, /4.

The stability requirements need: A? > 0 and 0,qy > 0.

3. Structure of the Model

In our earlier work [20], we deduced the controlling governing equation of the SP linked
with a rotating wheel and constrained by a light spring. The fundamental controlling
equation for motion is given as:

(r2 +1+2rcosf)f — % sin @ + kr?6 = 0, (8)

where 7 is the radius of the rolling wheel, and k is the stiffness of the light spring.

It should be noted that the stiffness of the light spring is a critical factor in determining the
dynamic properties of the system, such as stability, frequency, and energy characteristics.
Moreover, the radius of a rolling wheel significantly influences its efficiency, performance,
and applicability for particular applications. The sketch of the physical model is shown in
Fig. (1).

As previously stated, the current calculations are a complete departure from the earlier
investigation [54].
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Figure 1: Displays the physical configuration of the prototype.

To repair the weakness in utilizing the Taylor expansion in expanding the restorative
forces, the NPA as a novel approach is employed.
Eq. (1) may be formulated as follows:

é—i—%cos&é—

) ker?
sin 062 + -
147

1+ 72 1+ 72

0 =0. (9)
The following analysis tackles both the presence and absence of the time delay.

3.1. The Presence of a Time-Delay

As shown in the introduction, the time delay has much significance in diverse fields. Time-
delay in a dynamical system is the period of time that elapses between the input and a
modification in the system and the corresponding reaction.

1. Stability: The presence of a time-delay can have an impact on the stability of a
system. Introducing a delay to a system that is initially stable can cause it to become
unstable, as the system’s reaction may no longer be synchronized with the inputs.

2. Oscillations: Time-delays have the ability to cause systems that would otherwise
have a stable state to exhibit oscillating behavior. This phenomenon might result in
prolonged or even escalating oscillations, which may be undesirable in some appli-
cations.

2. Control Challenges: When dealing with time-delay, as it adds complexity to the
controller design and makes it harder to forecast the future state of the system. It
is necessary to implement more advanced control mechanisms in order to guarantee
the appropriate level of performance.
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4. Precision: Delays can lessen the accuracy of the system’s reaction, principally in
systems that necessitate instantaneous processing, such as communication systems
or robots.

In the design and analysis of dynamical systems, it is crucial to properly take into account
time-delays to guarantee appropriate functioning and stability.

Therefore, the upcoming analysis is based on the time-delay of the position, i.e., in the
last term in Eq. (9). Accordingly, one gets:

.. 2r .. . ]{77'2
0+ ——=cosfb — sin 6 62
+1—1—7“2 1+ r2 +1+r2
The time-delay in position denotes the interval between the implementation of a modifica-
tion in a system and the subsequent observation of its influence on the system’s position.

This postponement may arise from various factors:

O(t—7)=0. (10)

1. Massive objects oppose alterations in their motion because of inertia. Upon the
application of a force, there is a time-delay before the item accelerates and its position
alters, correspondingly.

2. In several systems, the command or signal for positional alteration requires time to
propagate through the system. In mechanical systems, signals must traverse gears
or linkages, but in electronic systems, signals propagate at finite velocities.

3. Frictional forces and damping mechanisms, such as air resistance or internal system
damping, can induce a delay in response, impeding positional changes.

4. Frictional forces and damping components, such as air resistance or internal system
damping, can induce a delay in response, impeding positional changes.

5. In systems regulated by control loops (e.g., robotic arms, motors), intrinsic time-
delays arise from feedback processing, decision-making within control algorithms,
and actuator reaction times.

6. In structures, material elasticity can induce a lagged response, since applied forces
lead to progressive deformations that influence positioning.

These variables accumulatively result in a delayed response of an object’s or system’s
position to an input change, referred to as ”time delay in position”.
The I.C. should ideally be visualized as in the following manner

0(0) = A, 6(0)=0. (11)

where A is the initial oscillation amplitude.
Now, returning again to the fundamental time delay as in Eq. (10), the NPA enables us
to transform the nonlinear ODE as given in Eq. (10) into an equivalent linear one like
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the simple harmonic motion under the same I.C. as given in Eq. (11). Therefore, the
formulation of the guessing solution may proceed as follows:

u=AcosQt, u=—AQsinQt, and i =—0%u, (12)

where () is known as the total frequency that depends on all parameters of the original
system. It will be determined later.
Appropriately, the shift of the independent time delay may be expressed as:

u(t —7) = AcosQt — 1)
= A(cos Qt cos Q7 + sin Q¢ sin Q1) (13)
= u(t) cos Qr — Fa(t) sin Q.

At this stage, Eq. (3) can be expressed as follows:

0+ f1(0) + f2(0, 6, 6) =0, (14)
where
F2(0, 0, 6) = 15 cos0 § — TL50%sin 0 + £ 0cosQr [

Currently, an equivalent frequency w? can be evaluated as shown previously by Moatimid
et al. [10, 11, 13-19, 22-27] in the following manner:

2w /Q 2w/ r
Do :/ ufa(u, i, ii)dt// u?dt = e (—2Q2Jo(A) + krecosQr),  (16)
0 0

where Jy(A) is the Bessel function of the first kind of argument A of order zero.
Additionally, following Moatimid et al. [10, 11, 13-19, 22-27] , Elias-Zuniga et al. [46],
He, and Liu [7], the assessment of the equivalent damping term can be carried out as
follows:

2w /Q 2w /Q ) k2
Cego = /0 ufl(u)dt//o u dt = 1Y) sin Q7. (17)

The equivalent linear ODE, as given in the simple harmonic motion, can now be con-

structed as follows:
i + Tegu 4+ wiyu = 0. (18)

Furthermore, the standard normal form can be attained along with the transformation
u(t) = f(t)Exp(—Teqyt/2). Elementary, the unknown function satisfies the following
simple harmonic differential equation:

f+@%f =0, (19)

where Q% = w?,, — T2, /4.
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In other words, the total frequency can be obtained by combining the results in Eqgs. (10)
and (11) with the previous relation to produce:

2
2_ T 602 1 kr?
0 = 52 ( 2Q°Jo(A) + kr cos QT) + Acos Q1 1 < 10,2 sin QT> ) (20)

As seen, Eq. (20) is a transcendental equation in 2. For simplicity, Taylor expansion
may be employed to approximate the values of the trigonometric functions in €2 as sine =
g, and cose 22 1. In this simplification, the total frequency can be written as follows:

rv4k + 4kr? — k2r272

T oA (L2 1 2rdo(A) 21)
To determine the value of the equivalent frequency, consider the following dataset:
r=3.0,k=0.5, 7=0.001 and A =0.5.
The stability standard requires
0%>0, and Ty > 0. (22)

For more convenience, along with the mathematic Software with the commend NDsolve,
the graph of the nonlinear ODE as in Eq. (10) is graphed with the linear ODE as given
in Eq. (18).

Returning to the foundational time delay as given in Eq. (10), the NPA enables us to create
a comparable linear ODE. The I.C. are given in Eq. (11). They are identical to those used
by the resulting linear equation as displayed in Eq. (18) to obtain the non-perturbative
solution (NPS). As stated earlier, the corresponding frequency is influenced by each of the
original characteristics (15). It is also useful to contrast the equivalent linear ODE solution
with the numerical solution (NS) of Eq. (10). The equivalent linear damping parameter
is provided in Eq. (19). The two responses are shown in this comparison, as shown in
Fig. (2). The two curves are plotted with the previous data. As observed, the results
are quite consistent with each other. Moreover, the mathematical software indicates that
within a time span of 100 units, the absolute error between the theoretical and computed
solutions is 0.00284. When the linear and nonlinear solutions are coinciding, it indicates
that, despite differing definitions, they share the same spatial positions. This indicates
that the two curves embody the same geometric form or trajectory. It frequently implies
that the fundamental physical processes, restrictions, or relationships governing the curves
are analogous, or that one curve represents a transformation or particular instance of the
other.
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Figure 2: Demonstrates a strong correspondence between the NS of Eq. (10) and the NPS of Eq. (19).

For more convenience, with the aid of MS, Table (1) is presented to indicate the rela-
tion between the numerical as well as the actual values.

Table (1): points out the rapprochement between the numerical NS and NPA outcomes

t Numerical Equivalent Absolute error

0 0.5 0.5 0.

10 0.304706739041348 0.30224373475524535 0.0024630042861026324
20 —0.13107368871285635 —0.1291550605636387 0.0019186281492176438
30 —0.4657496564370769 —0.4635706663352717 0.002178990101805167
40 —0.4356924771688938 —0.4334637584494958 0.002228718719398004
50 —0.06289263814986465 —0.06340077978309462 0.0005081416332299721
60 0.3610442523582828 0.35565425149696445 0.005390000861318356
70 0.5029857461263576 0.500386739396239 0.0025990067301185915
80 0.2500442070772532 0.2492719030498598 0.0007723040273934223
90 —0.20066057864782982 —0.19307043080206004 0.007590147845769779
100 —0.4956085135621511 —0.48979923333890363 0.005809280223247448

For more clarification, the stability diagrams are plotted to display the stability configu-
ration due to the influence of the variation of the various physical parameters. Therefore,
the stability configurations are plotted to show the impacts of the parameters; r, k, and 7
in Figs. (3), (4), and (5). In this regard, Fig. (3) is sketched to illustrate the influence of
the radius of the rolling wheel. As seen this parameter has a destabilizing influence. The
destabilizing impact of a rotating wheel, especially in the context of automobiles, is caused
by a phenomenon known as gyroscopic effect or gyroscopic precession. When a wheel is
in motion, it produces angular momentum, which enhances stability within the rotational
plane. However, if not adequately balanced, this can also increase the likelihood of tipping
over for systems such as bicycles or motorcycles. The gyroscopic effect serves to stabilise
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the wheel against minor disturbances, but it can also present difficulties in maintaining
balance when steering or when external forces, such as bumps or side winds, impact the
wheel. The interplay between the steering forces and the wheel’s angular momentum can
result in a phenomenon called ”speed vibrate,” characterized by wobbling or oscillation.
If left uncontrolled, this can have a destabilizing effect. Furthermore, the area of contact
between the wheel and the ground might move as the wheel is rolling, causing alterations
in the direction of the frictional force. If these variations are not accounted for by the
rider or the design of the vehicle, they can potentially disrupt the motion and make it less
stable.

Similarly, the stiffness of the light spring has a destabilizing impact as seen in Fig. (4).
The destabilizing effect of the rigidity of a lightweight spring generally pertains to the
inclination of a system with a stiff (high spring constant) spring to become less stable under
specific circumstances. Within mechanical systems, a spring with higher stiffness applies
a larger force when subjected to a specific displacement, resulting in more prominent
oscillations or vibrations. If these oscillations are not adequately attenuated, they can
amplify in magnitude, potentially resulting in instability. Stiff springs, whether used in
control systems or structural dynamics, can enhance the sensitivity of a system to external
forces or disturbances. The heightened sensitivity might result in a more intense response
of the system to perturbations, so making it more challenging to maintain balance and
perhaps leading to instability.

In contrast, the time-delay parameter has a stabilizing influence as seen in Fig. (5). The
stabilizing effect of time delay pertains to the occurrence where the introduction of a
delay in the feedback loop of a system can result in enhanced stability under specific
circumstances. Although delays are commonly linked to destabilizing effects, this may
appear counterintuitive. However, in certain systems, especially in control systems or in
models of population dynamics, the introduction of a time delay can mitigate oscillations
or decrease the magnitude of fluctuations, thus leading to the stabilization of the system.
The stabilization is a result of the delay’s ability to efficiently mitigate abrupt fluctuations
in the system’s condition, hence limiting excessive responses to disruptions. By reducing
the speed of the feedback, the system is less prone to quick oscillations or chaotic behavior
that could arise from immediate feedback, thereby improving overall stability.
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Figure 3: Displays the influence of the radius of the rolling wheel in the stability profile.
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Figure 5: Demonstrates the impact of the time-delay parameter on the stability profile.

3.2. The Non-Existence of a Time-Delay

Simply setting 7 = 0 and using the same justifications as in the preceding subsection,
one finds that the damping term disappears. Additionally, some modification is found in
the equivalent frequency. In this scenario, the total frequency has the same form as the
equivalent frequency.
rvk

VIFrZy/142rJo (A)/(1+12)
(2) is presented in Fig. (6) but without the time-delay aspect. The Mathematica soft-
ware 12.0.0.0 additionally established that the absolute error concerning the theoretical
and computational solutions is 0.00130537 up to a temporal interval of 100 units. The
convergence of linear and nonlinear solutions signifies that, despite their distinct defini-
tions, they occupy identical spatial places. This signifies that the two curves represent the
same geometric shape or path. It often suggests that the underlying physical processes,
constraints, or relationships driving the curves are similar, or that one curve signifies a
transition or specific case of the other.

Therefore, it is given as: ) = . The same information from Fig.

4. Discussion of the Results

The current section presents a discussion of the achieved results which are drawn in
Figs. (7), (8), and (9). The graphed curves in Fig. (7) are calculated when k = 0.5, A =
0.5, and 7 = 0.01 at various values of r(= 0.5,0.7,0.9), whereas the drawn ones in Fig.
(8) are plotted when the values r = 0.5,4 = 0.5, 7 = 0.01, and k(= 0.5,0.7,1) are
considered. Furthermore, the inspection on the graphed curves in Fig. (9) are explored
whenr = A =k = 0.5 and 7(= 0.001,0.01,0.05). The figures show the time histories of the
solution of Eq. (18) and the corresponding phase plane diagrams as indicated, respectively,
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Figure 6: Sketches a comparison between the NS of Eq. (9) in the absence of time delay and the NPS of Eq.
(19).

in parts (a) and (b) of these figures. It is observed that the behavior of the waves describing
the obtained solution using NPA has periodicity manner, which give an induction about
the stationary behavior of the obtained solution. Moreover, the amplitudes of the drawn
waves besides the oscillation’s number increase, to some extent, with the increase of r
and k values, as illustrated in Figs. (7a) and (8a), respectively. The increase of 7 values
produces standing periodic waves with some distinct nodes, where the amplitudes of the
drawn curves are changed slightly with the increase of 7 values, as seen Fig. (9a).

Based on the above, one can conclude that the obtained solution using NPA has a stable
performance and is free of chaos. This supposition has been asserted through the graphed
curves of the corresponding phase plane of the NPA, as seen in Figs. (7b), (8b), and
(9b), in which closed curves are plotted for the identical considered values of r, k, and T,
respectively.

Within dynamical systems analysis, the phase plane appears as a surface on which the
interaction of variables can be graphically represented. The plotted closed curves provide
an interesting story about equilibrium and periodicity inside these systems. These curves,
which elegantly repeat themselves along axes of symmetry, capture the essence of stability
and cyclic behavior. Their symmetry is evidence of the system’s intrinsic balance, where
every closed curve draws a line that loops back onto itself with ease.

The notions of stability and instability zones hold significant relevance across diverse
disciplines including engineering, physics, and ecology. These zones help to determine the
conditions under which a system will remain stable or become unstable. Stability criteria
are used to analyze the stability of a system and predict its behavior under different
circumstances. To draw the stability and instability areas, conditions (22) are plotted
when r and k have the same considered values above to produce the stable regions and
the unstable ones, as seen in parts of Fig. (10). It noted that the stable zones diminish
as the values of parameters r and k increase, as depicted in sections (a) and (b) of this
figure, respectively.
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In dynamic systems, especially within control theory or ODEs involving delays, time delay
can profoundly influence the stability of the system. Here is a concise elucidation:

1. In instances of brief time delays, the feedback loop promptly adjusts to alterations,
enabling the system to respond nearly instantaneously to its prior conditions. This
may induce quick oscillations and overreaction, resulting in unstable behavior, as the
system lacks sufficient time to stabilize before the subsequent input, influenced by
outdates data, impacts it. The system becomes too responsive, exacerbating errors
or disturbances rather than mitigating them.

2. A prolonged latency in the feedback loop integrates antiquated data, hence impeding
the system’s responsiveness. This delay enables the system to respond more gradu-
ally, mitigating oscillations and averting excessive activity. The postponed reaction
serves as a damping mechanism, successfully stabilizing the system by inhibiting
immediate alterations that could otherwise lead to instability.

In conclusion, brief delays may induce instability through excessively quick feedback and
adjustments, whereas prolonged delays might enhance system stability by tempering re-
sponses to changes, so enabling better absorption of shocks.
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Figure 7: (a) Presents the time history of the obtained solution using NPA at r(= 0.5,0.7,0.9), and (b) the
corresponding phase plane curves.
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Figure 8: (a) Shows the behavior of u(t) at k(= 0.5,0.7,1), and (b) the related phase plane curves.
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Figure 9: (a) Describes the behavior of u(t) at 7(= 0.001,0.01,0.05), and (b) the related phase plane curves.



K. Alluhydan, G. M Moatimid, T. S. Amer / Eur. J. Pure Appl. Math, 17 (4) (2024), 3185-3208 3203

—_—r=05=r=07 =r=09% —k=05—=k=07=k=1

0.30}?)

0.30f Stable Region Stable Region

0.25} 0.25
0.20f 0.20
7 oasf 7015

0.10{Unstable Region 0.10[Unstable Region

0.05} 0.05

0.00k . - i 0.00 ik j . | .

0 1 2 3 4 5 6 0 1 2 3 4 5 [
T T

Figure 10: Shows stable and unstable regions: (a) at (= 0.5,0.7,0.9) and (b) at k(= 0.5,0.7,1).

5. Conclusions

The current investigation centers on the analysis of the motion of a SP that is linked
to a rolling wheel and attached to a spring that has a slight weight. The rationale behind
the current subject is seen in the potential applications of the SP in the fields of physics,
manufacturing, and practical mechanisms. As well-known classical perturbation methods
are often employ Taylor expansion to simplify the current situation by increasing the ex-
isting restoring forces. Conversely, the NPA as a novel methodology converts the nonlinear
ODE into a linear one. The NPA concept primarily relies on the HFF. It also allows for
the assessment of the stability of the SP. Therefore, while analyzing approximations for
highly nonlinear oscillators in the MS, the NPA proves to be a more helpful instrument
for guaranteeing precision and dependability. To guarantee the precision of the outcomes,
a quantitative approach utilizing the MS is utilized to attain a strong level of concurrence
between the two systems. The derived analytical solution serves as a foundation for com-
prehending the interrelated nonlinear dynamics of the oscillators. Numerical computations
are visually performed to validate the new approach and assess the effectiveness and ap-
plicability of the strategy. The results were compared to the precise numerical responses
and demonstrated complete accuracy. The technique is widely relevant in engineering and
other fields since it can be easily adapted to many nonlinear systems. The empirical ap-
proximation inquiry allows for a qualitative analysis of the findings. The temporal results
are examined for different values of the physical frequency and time-delay parameters. The
results are determined based on the visible curves. Graphical representations are employed
to illustrate the influence of parameters on the behavior of motion. These representations
consist of solutions that have been developed over a period of time, together with their
related phase plane graphs. Furthermore, stability and instability zones have been drawn
and examined. Furthermore, the NPA can be expanded to encompass further categories
within the realm of couples of dynamical systems and is considered significant, produc-
tive, and captivating. The main outcomes derived from this study can be summarized as
follows:
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i. The Taylor expansion is used by all conventional techniques to make the provided
problem simpler when restoring forces are involved. This drawback is no longer
present with the adopted scheme.

ii. This approach, in contrast to earlier conventional methods, enables us to examine
the instability analysis of the problem.

iii. In conclusion, it appears that the novel technique is a straightforward, valuable,
and efficient tool. It has the potential to be employed in the analysis of various
classifications of nonlinear oscillations.

iv. Based on the numerical calculations and the stability requirements, it is discovered
that the parameters rand k& have a dual role in the stability configuration.

In light of the great significance in the coupled system in various classes of the dynamical
system, in the future work, the NPA will be developed to analyze such problems. Fractal
oscillators are technical analysis tools used in financial markets to identify turning points
or reversals in price movements by examining patterns that repeat at different scales.
Therefore, another aim of the progress works is to inspect the fractal oscillators.
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