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Abstract. Most selection problems are multi-decision and multi-criteria in nature. The group
decision (GD) literature presents several methods for solving them. Most of them belong to
utilities functions based class. However, the use of any one group decision method of this class for a
specific problem is often not appropriate, given the characteristics of the latter. In this the present
work is to compare four GD utility functions based methods, two of which are classical (Lon-Zo
and MACASP) and two new (KEMIRA G-I and KEMIRA G-II), by examining their suitability
for solving two multi-criteria choice problems, namely the selection of a crop variety adapted to
the Centre-Est region of Burkina Faso and the selection of a site for the implementation of a
waste incineration plant in the city of Vilnius in Lithuania. The results show that group decision
methods based on aggregation utility functions are most suitable when the criteria are homogeneous
(i.e. when criteria can compensate naturally). However, when the criteria are heterogeneous (i.e.
when there is no natural compensation between criteria), these methods can still be successfully
applied when the heterogeneous nature of the criteria is taken into account. This explains the
good performance of the KEMIRA G-I and KEMIRA G-II methods, which take into account the
heterogeneous nature of the criteria, compared with the Lon-Zo and MACASP methods, which do
not.
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1. Introduction

Selection problems are generally multi-criteria and multi-decision-maker in nature. To
solve them, the literature on group decision support generally presents three categories of
methods: Those based on outranking relations[1, 4], multi-attribute utility theory[11, 12]
and interactive methods[2]. In this work, we are interested in the class of methods based on
multi-attribute utility theory. More specifically in this paper we focus on the classical Lon-
Zo [11] and MACASP [11] methods and two new methods KEMIRA G-I[10] and KEMIRA
G-II, both extensions of the KEMIRA method[7]. The classical Lon-Zo and MACASP
methods are based on the harmonic and arithmetic mean, respectively.

The two new methods are based on the KEmeny Median Indicator Ranks Accordance
( KEMIRA[7] ) method and the Borda [8] method. All these methods have their own
advantages and disadvantages.

The Lon-Zo and MACASP methods are often used for ranking problems, where al-
ternatives are ranked from best to worst[11, 15]. The KEMIRA G-I and KEMIRA G-II
methods are suitable for solving, in general, the multi-criteria problem when the set of
criteria is divided into a few homogeneous sub-groups of criteria, i.e. criteria between
which compensation is naturally possible[5, 7, 10]. For example, with two criteria such
as average annual economic profit and average annual wage, we could naturally accept
compensation between them when aggregating them using a utility function because they
are naturally expressed in the same monetary unit. However, if we consider two criteria
such as average annual economic profit and average annual level of education, aggregating
the latter two using a utility function would naturally not be acceptable. which is why the
last two criteria are referred to as heterogeneous.

The KEMIRA G-I and KEMIRA G-II methods can be used simultaneously to elicit
criteria weights and to select the best alternatives by eliminating certain alternatives ac-
cording to predefined performance thresholds.

Through two case studies, we propose to compare the two methods of group decision,
Lon-Zo and MACASP with the two new methods KEMIRA G-I and KEMIRA G-II

The rest of our paper is organised as follows. In Section 2, we present the classic Lon-Zo
and MACASP methods. Section 3 describes the new KEMIRA G-I and KEMIRA G-II
methods. Section 4 is dedicated to the results of applying the four methods to the two case
studies. In section 5 we discuss the different results obtained in section 4. We conclude
our work and open the door to future work in section 6.

2. Presentation of Lon-Zo and MACASP method

In what follows, we adopt the following notations:

• D = {d1, d2, · · · , dL} the set of Decision Makers (DMs), (L ≥ 2) with L the number
of DMs;

• A = {a1, a2, ..., aK} the set of alternatives, (K ≥ 2) and K is the total number of
alternatives;



N. C., Nana , S. A. M. Takougang , T. B. J. Batieno / Eur. J. Pure Appl. Math, 17 (4) (2024), 4195-4210 4197

• G = {g1, g2, · · · , gm} the set of criteria;

• wdl
j the weight assigned to criterion j par by Decision Maker dl;

• gdlj (ak) the partial evaluation of the alternative ak w.r.t. criterion gj by the DM dl.

2.1. Lon-Zo method

The Lon-Zo method uses the weighted sum and harmonic mean as aggregation func-
tions. By weighted sum, the overall performance gdl(ak) given to each alternative by the
decision-maker dl is determined by equation (1):

gdl(ak) =

j=m∑
j=1

wdl
j .gdlj (ak), k = 1, · · · ,K, j = 1, · · · ,m, (1)

where m is the total number of criteria.
The harmonic mean is used to determine the overall evaluation (or performance) g(ak)

of the action ak. It is defined by equation (2):

g(ak) =
L

L∑
l=1

1

gdl(ak)

. (2)

2.2. MACASP method

MACASP[11] uses the weighted sum and arithmetic mean as aggregation functions.
The evaluation that decision-makers give by consensus on alternative ak with regard to
criterion j is gj(a

k) and it is defined by equation (3):

gj(a
k) =

L∑
l=1

wdl
j .gdlj (ak), k = 1, · · · ,K, j = 1, · · · ,m. (3)

The overall performance g(ak) of the alternative ak is obtained according to equation
(4) :

g(ak) =
1

m

m∑
j=1

gj(a
k) =

1

m

m∑
j=1

(

L∑
l=1

wdl
j .gdlj (ak)). (4)

3. Description of KEMIRA G-I and KEMIRA G-II methods

In this section we introduce the following notations:
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• G denotes the set of criteria that can be partitioned into S groups Gi such that
Gi = {(i, 1), (i, 2), · · · (i, ni)} with i ∈ {1, · · · , S}, where ni is the number of criteria
inside the group Gi, and (i, j) denotes the criterion gj inside the group Gi. So
G = G1 ∪G2 ∪ · · · ∪GS .

• ak,dli,j denotes the performance of the alternative ak with respect to criterion gj inside
the group Gi given by the DM dl and wdl

i,j the weight of criterion gj inside the group
Gi, given by the DM dl.

We assume that each decision-maker is able to rank the criteria in each group Gi from
most to least important[3, 9, 10], as specified by relation (5). Without loss of generality,
we also assume that all criteria are to be maximized.

(i, 1)d1 ≿ (i, 2)d1 ≿ · · · ≿ (i, n1)
d1

(i, 1)d2 ≿ (i, 2)d2 ≿ · · · ≿ (i, ni)
d2

...
...

...
(i, 1)dL ≿ (i, 2)dL ≿ · · · ≿ (i, ni)

dL .

(5)

3.1. KEMIRA G-I method

In what follows, we present the main stages of KEMIRA G-I method[10].

3.1.1. Step 1: median ranking of criteria in descending order of preference

Applying Borda’s voting method [8] based on relation (5), we obtain the median ranking of
criteria for the set D of decision-makers in each group Gi as specified in equation (6) and
of course its corresponding weights ranking in equation (7) such that relation (8) holds.

(i, 1) ≿ (i, 2) ≿ · · · ≿ (i, ni), ∀i ∈ {1, 2, . . . , S} (6)
wi,1 ≿ wi,2 ≿ · · · ≿ wi,ni , ∀i ∈ {1, 2, . . . , S} (7)

ni∑
j=1

wi,j = 1,∀i ∈ {1, . . . , S}. (8)

3.1.2. Step 2: calculating average performance

The average performance Wi(a
k) of each alternative ak with respect to each group of

criteria Gi is then determined according to equation (9).

Wi(a
k) =

ni∑
j=1

a∗ki,j .wi,j , (9)

where a∗ki,j is the normalized performance of aki,j obtained following the equation (10)

a∗ki,j =
aki,j −minj a

k
i,j

maxj aki,j −minj aki,j
, ∀i ∈ {1, 2, . . . , S}. (10)
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3.1.3. Step 3: optimization problem

This stage consists of formulating an optimization problem that elicits the decision-makers’
preferences, i.e., the weights of the criteria, and also determine the best alternatives for
the decision-makers as a whole, by first setting the performance thresholds for each group
Gi of criteria. This optimization problem is defined by the equation (11).

maxwi,j fopt = |B|

s.t.


wi,1 ≥ wi,2 ≥ · · · ≥ wi,ni ,∀i ∈ {1, 2, · · · , S},∑ni

j=1wi,j = 1, ∀i ∈ {1, 2, · · · , S},
Wi(a

k) > αi, ∀i ∈ {1, 2, · · · , S},

(11)

where

• fopt is the value of the objective function;

• αi is the performance threshold associated to the group Gi, set by the decision-maker;

• B = {ak : Wi(a
k) > αi, i ∈ {1, 2, · · · , S}} denotes the set of best alternatives;

• |B| denotes the number of elements of B.

3.1.4. Step 4: Choosing best alternative(s)

The choice of a best alternative(s) is based on the following two conditions:

• if for the highest possible threshold we have a single alternative, it will be considered
the best alternative;

• if for the highest possible threshold, we have at least two alternatives, each decision-
maker is asked to rank the alternatives according to his preferences. Then the Borda
method is used to obtain a median ranking. This median ranking gives the best
alternative(s).

3.2. KEMIRA G-II method

In contrast to KEMIRA G-I, in KEMIRA G-II each decision-maker completes the
process of choosing the best alternative(s). The intersection and reunion of the sets of best
solutions found by each decision-maker is then exploited. Formally, under the hypothesis
stipulated by relation (5), the main stages of the KEMIRA G-II method are as follows.

3.2.1. Step 1: Calculate average performance

For each decision-maker dl the average performance W dl
i (ak) of each alternative ak is

determined according to equation (12):
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W dl
i (ak) =

ni∑
j=1

a∗k,dli,j .wdl
i,j (12)

where a∗k,dli,j is the normalized performance of ak,dli,j obtained following the equation (13)

a∗k,dli,j =
ak,dli,j −minj a

k,dl
i,j

maxj a
k,dl
i,j −minj a

k,dl
i,j

,∀i ∈ {1, 2, . . . , S}, ∀l ∈ {1, 2, . . . , L}. (13)

3.2.2. Step 2: optimization problem

The optimization problem used to elicit the weights of the criteria and to select the best
alternatives according to the preferences of each decision-maker is defined by equation (14).
The performance thresholds αi for each group of Gi must first be set by each decision-maker
dl:

maxwi,jfopt = |Bdl |

s.t.


wdl
i,1 ≥ wdl

i,2 ≥ · · · ≥ wdl
i,ni

,∀i ∈ {1, 2, · · · , S},∑ni
j=1w

dl
i,j = 1, ∀i ∈ {1, 2, · · · , S},

W dl
i (ak) > αi, ∀i ∈ {1, 2, · · · , S},

(14)

where

• αi denotes the performance threshold of the group Gi;

• Bdl = {ak : W dl
i (ak) > αi, i ∈ {1, 2, · · · , S}} denotes the set of best alternatives;

• |Bdl | denotes the number of elements of the set Bdl .

3.2.3. Step 3: determining the best compromise alternative(s)

To choose the best alternative(s), we use intersection and/or reunion and afterwards
Borda’s voting method:

• for each decision-maker dl, we determine the set Bdl of the best alternatives according
to his preferences;

• if Bd1 ∩Bd2 ∩ · · · ∩BdL ̸= ∅: each decision-maker ranks the alternatives obtained in
the intersection, and the Borda method is applied to select the best alternative(s);

• if Bd1 ∩ Bd2 ∩ · · · ∩ BdL = ∅: we consider the reunion Bd1 ∪ Bd2 ∪ · · · ∪ BdL ; each
decision-maker ranks the alternatives inside the reunion Bd1 ∪ Bd2 ∪ · · · ∪ BdL and
the Borda method is applied to select the best alternative(s).
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4. Case studies: application to two group decision-making case studies

4.1. First case study

The first case study concerns the selection of the best cowpea varieties (a bean species)
adapted to the Centre-North region of Burkina Faso. The team of stakeholders involved
in this research study includes breeders, producers and processors[9, 10]. The structuring
phase enabled fifteen (15) cowpea crop varieties to be identified and twelve (12) evaluation
criteria in interaction with the stakeholders. The evaluation criteria were divided into three
group (see [10] for more details).

4.1.1. Groups of criteria

The twelve criteria were divided into three groups of eight, three and one criteria respec-
tively.

• Group 1 (Production criteria): Type of plant habit (1, 1), Cycle-semi-maturity
(1, 2), Yield potential (1, 3), Disease resistance (1, 4), Striga resistance (1, 5), Drought
resistance (1, 6), Insect resistance (1, 7), forage potential (1, 8).

• Group 2 (Quality criteria): seed size (2, 1), seed color (2, 2), seed taste (2, 3).
Group 3 (Processing criteria): cooking time (3, 1).

4.1.2. Decision matrix

The normalized decision matrix or evaluation matrix is unique for all decision-makers and
is the one obtained from the evaluations of domain experts and the result synthesised in
Table 1.

4.1.3. Using KEMIRA G-I and KEMIRA G-II methods

As regards the application of the KEMIRA G-I and KEMIRA G-II methods to this first
case study, we highlight the following elements.

• Firstly the four decision-makers were able to express their preferences on the criteria
by ranking them through the respective groups as showed in Table 2.

• Secondly, for the KEMIRA G-I method, the median ranking is obtained by applying
the Borda voting method algorithm [8] and the result presented in Table 3.

• Thirdly, the KEMIRA[7] algorithm is implemented iteratively with the parameters in-
dicated in relations (15),(16),(17). The different results obtained using the KEMIRA
G-I and KEMIRA G-II methods, including execution times in second (s), are pre-
sented in Table 4 and Table 5 respectively.

maxiter = 10000 (15)
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Table 1: Normalized Evaluation Matrix

Names of the varieties (1,3) (1,2) (1,5) (1,8) (1,4) (1,7) (1,6) (1,1) (2,2) (2,1) (2,3) (3,1)

ak
1,1 ak

1,2 ak
1,3 ak

1,4 ak
1,5 ak

1,6 ak
1,7 ak

1,8 ak
2,1 ak

2,2 ak
2,3 ak

3,1

KVx442-3-25SH(Komcallé) a
1

0.32 0.71 0.11 0.07 0.23 0 1 1 1 1 1 1

KVx61-1(Bengsiido) a
2

0.25 0.42 1 0.34 0.23 0 1 1 1 0 1 0.57

KVx745-11P a
3

0 0.42 1 0.82 0.12 0 1 0 1 1 1 0.07

KVx771-10G(Nafi) a
4

0.25 0.42 1 0.04 0.23 1 1 1 1 1 1 0.78

KVx775-33-2G(Tiligré) a
5

0.36 0.42 1 0.46 1 0 0 1 1 1 1 0.57

Moussa Local a
6

0.25 0 0.11 0 0 1 0 1 1 0.5 1 0.14

Teeksongo a
7

0.25 0.57 1 1 1 1 1 0.5 1 0.5 1 0.5

Yipoussi(KVx780-1) a
8

0.41 1 0.11 0.29 0.23 0 0 0.5 1 0 1 0.07

Niizwe a
9

0.11 0.71 1 0.09 1 0 0 1 1 1 1 0.07

Yiss-Yande a
1
0

0.36 0.71 1 0.14 0.23 0 1 0.5 1 1 1 0.14

Gorom local a
1
1

0.17 0.28 0 0.09 0.12 0 0 0 0 0 0 0.14

Makoyin(KVx780-4) a
1
2

0.7 0.57 1 0.34 0.23 0 1 0.5 1 1 0.9 0.07

Issa-Sosso(KVx780-3) a
1
3

0.7 0.71 1 0.34 0.23 0.16 1 0.5 1 1 0.9 0.14

Neerwaya(KVx780-6) a
1
4

0.85 0.57 1 0.46 0.23 0.16 0 0.5 1 1 0.9 0

Gourgou(TZ1-GOURGOU) a
1
5

1 0.28 1 0.58 0.23 0 0 0.5 1 0.5 0.9 0.14

αi = pi%max15k=1Wi(a
k), i ∈ {1, 2, 3}, pi ∈ {10, 20, 30, 40, 50, 60, 70, 75, 80} (16)

p1 = p2 = p3 (17)

where maxiter is the maximum number of iterations.

• Looking KEMIRA G-I result as showed in Table 4, we have a single best variety for
the highest threshold: KVx771-10G(Nafi) (a4). So we did not need to ask decision-

Table 2: Criteria ranking by Decision-Makers

Goup 1 Goup 2 Goup 3
Rank d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4
1st (1, 3) (1, 3) (1, 3) (1, 3) (2, 2) (2, 1) (2, 2) (2, 2) (3, 1) (3, 1) (3, 1) (3, 1)

2nd (1,2) (1,2) (1,2) (1,2) (2,3) (2,3) (2,1) (2,1)
3th (1,1) (1,5) (1,4) (1,8) (2,1) (2,2) (2,3) (2,3)
4th (1,8) (1,6) (1,5) (1,7)
5th (1,5) (1,8) (1,7) (1,5)
6th (1,6) (1,7) (1,8) (1,4)
7th (1,4) (1,4) (1,6) (1,6)
8th (1,7) (1,1) (1,1) (1,1)

Table 3: Median criteria ranking

Group 1 median ranking Group 2 median ranking Group 3 median ranking
(1, 3) ≿ (1, 2) ≿ (1, 5) ≿ (1, 8) ≿ (1, 4) ≿ (1, 7) ≿ (1, 6) ≿ (1, 1) (2, 2) ≿ (2, 1) ≿ (2, 3) (3, 1)
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Table 4: KEMIRA G-I results

pi Criteria weights best varieties Time (s)
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,1) (2,2) (2,3) (3,1)
w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7 w1,8 w2,1 w2,2 w2,3 w3,1

10 0.19 0.17 0.15 0.15 0.13 0.13 0.05 0.02 0.66 0.25 0.09 1.0 {a1, a2, a4, a5, a7, a6, a10, a13, a15} 19.9298
20 0.2 0.16 0.15 0.13 0.11 0.11 0.1 0.04 0.5 0.36 0.14 1.0 {a1, a2, a4, a5, a7, a6, a10, a13} 23.5859

30; 40;50;60 0.26 0.22 0.20 0.10 0.09 0.02 0.02 0.02 0.42 0.32 0.25 1.0 {a1, a2, a4, a5, a7} 20.5216
70 0.31 0.29 0.06 0.06 0.05 0.04 0.04 0.04 0.37 0.37 0.25 1.0 {a1, a4} 21.2741

75;80 0.18 0.18 0.12 0.08 0.08 0.06 0.04 0.04 0.56 0.23 0.20 1.0 {a4} 20.8315

makers to rank the best varieties.

Table 5: KEMIRA G-II results

DMs pi Criteria weights Best varieties Time (s)
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,1) (2,2) (2,3) (3,1)
w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7 w1,8 w2,1 w2,2 w2,3 w3,1

10 0.18 0.18 0.17 0.13 0.1 0.09 0.09 0.06 0.39 0.35 0.26 1.0 {a1, a2, a4, a5, a7, a6, a10, a13, a15} 21.30
20 0.22 0.22 0.19 0.13 0.1 0.06 0.05 0.05 0.38 0.35 0.27 1.0 {a1, a2, a4, a5, a7, a6, a10, a13} 19.8321

d1 30; 40;50;60 0.23 0.22 0.17 0.15 0.12 0.05 0.00 0.00 0.37 0.33 0.28 1.01 {a1, a2, a4, a5, a7} 20.0806
70;75;80 0.21 0.2 0.17 0.14 0.1 0.09 0.05 0.04 0.55 0.31 0.13 1.0 {a1, a4} 20.3378

90 0.24 0.23 0.21 0.14 0.09 0.05 0.05 0.0 0.64 0.32 0.03 1.0 {a4}
10 0.19 0.18 0.16 0.12 0.12 0.09 0.07 0.06 0.52 0.31 0.17 1.0 {a1, a2, a4, a5, a7, a6, a10, a13, a15} 20.0149
20 0.21 0.21 0.13 0.13 0.1 0.08 0.07 0.06 0.58 0.38 0.04 1.0 {a1, a2, a4, a5, a7, a6, a10, a13} 20.0825

d2 30; 40;50;60 0.24 0.20 0.17 0.08 0.08 0.04 0.04 0.02 0.23 0.19 0.19 1. {a1, a2, a4, a5, a7} 20.2741
70 0.24 0.19 0.13 0.13 0.06 0.05 0.05 0.05 0.59 0.39 0.02 1.01 {a1, a4} 19.9214

75;80 0.17 0.17 0.16 0.13 0.12 0.11 0.09 0.06 0.5 0.31 0.19 1.0 {a4} 19.8384
90 ∅
10 0.18 0.18 0.17 0.16 0.16 0.06 0.05 0.03 0.99 0.0 0.0 1.0 {a1, a2, a4, a5, a7, a6, a10, a13, a15} 20.4354
20 0.25 0.16 0.15 0.12 0.08 0.05 0.05 0.04 0.43 0.38 0.17 1. {a1, a2, a4, a5, a7, a6, a10, a13} 20.2265

30; 40;50;60 0.27 0.22 0.15 0.13 0.11 0.05 0.05 0.01 0.54 0.37 0.07 1 {a1, a2, a4, a5, a7} 20.0531
d3 70 0.25 0.24 0.19 0.06 0.06 0.04 0.03 0.02 0.52 0.44 0.04 1.01 {a1, a4} 20.0882

75;80 0.22 0.15 0.14 0.12 0.12 0.09 0.08 0.06 0.38 0.33 0.27 1 {a4} 20.0554
90 ∅
10 0.23 0.18 0.16 0.13 0.1 0.08 0.07 0.06 0.44 0.32 0.25 1.0 {a1, a2, a4, a5, a7, a6, a10, a13, a15} 20.0593
20 0.18 0.17 0.17 0.16 0.14 0.11 0.04 0.03 0.58 0.39 0.03 1.0 {a1, a2, a4, a5, a7, a6, a10, a13} 20.1220

d4 30; 40;50;60 0.27 0.15 0.11 0.09 0.05 0.05 0.05 0.05 0.68 0.18 0.14 0.99 {a1, a2, a4, a5, a7} 20.0279
70 0.24 0.23 0.09 0.07 0.07 0.07 0.07 0.04 0.72 0.16 0.11 0.99 {a1, a4} 20.2027

75;80 0.15 0.14 0.14 0.14 0.10 0.07 0.07 0.03 0.54 0.24 0.20 1. {a4} 20.0774
90 ∅

• Looking KEMIRA G-II result as showed in Table 5 we note that:

– for pi = 80 we have Bd1 ∩Bd2 ∩Bd3 ∩Bd4 = {a4};
– for pi = 70 we have Bd1 ∩Bd2 ∩Bd3 ∩Bd4 = {a1, a4};
– for pi = 90 we have Bd1 = {a1} and Bd2 = Bd3 = Bd4 = ∅.

Considering particularly the case where pi = 70, the set of the best varieties is B =
{a1, a4}. To choose the best alternative among the element of B, we also use the Borda’s
rule as illustrated in Table 6. These results show that Vx771-10G(Nafi) a4 is the best
variety for KEMIRA G-II method, as for the results obtained with pi = 80.

4.1.4. Resolution using Lon-Zo and MACASP methods

The application of these two methods requires the weights of the criteria to be determined.
To do this, we used the revised Simos[13, 14] card method, called SFR[3]. The different
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Table 6: KEMIRA G-II results on the set of best alternatives

Rank d1 d2 d3 d4
1st a1 a4 a4 a4

2nd a4 a1 a1 a1

weight values found are shown in Table 7.

Table 7: Criteria weights for Lon-Zo and MACASP methods in study case 1
Criteria g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12

w
di
1 w

di
2 w

di
3 w

di
4 w

di
5 w

di
6 w

di
7 w

di
8 w

di
9 w

di
10 w

di
11 w

di
12

d1 5.25 6.13 7.30 2.04 3.79 2.92 1.45 4.08 10.99 10.99 10.99 33
d2 1.03 7.21 6.89 2.97 3.30 2.65 3.63 5.27 10.99 10.99 10.99 33
d3 0.83 6.54 7.53 4.80 4.55 1.58 4.31 2.82 13.34 16.84 2.80 33
d4 2.00 5.47 6.01 2.90 5.29 4.36 3.10 3.82 14.13 7.06 11.80 33

• Resolution using Lon-Zo method: Applying the Lon-Zo method to the first
case study gives the results shown in Table 8. Looking the overall performance, the

Table 8: Lon-Zo results

g
d1 (a

k
) = g

d2 (a
k
) = g

d3 (a
k
) = g

d4 (a
k
) = Time (s)

j=12∑
j=1

w
d1
j .g

d1
j (a

k
)

j=12∑
j=1

w
d2
j .g

d2
j (a

k
)

j=12∑
j=1

w
d3
j .g

d3
j (a

k
)

j=12∑
j=1

w
d4
j .g

d4
j (a

k
) g(ak) =

4

4∑
l=1

1

gdl (ak)

a1 82.0401 78.4368 77.2826 79.7055 79.3273
a2 59.0424 55.0413 52.1441 55.1176 55.2289
a3 29.9938 29.0018 34.5060 25.5707 29.4315
a4 77.2033 75.0291 75.8826 78.1417 76.5455
a5 69.9877 67.0653 68.7719 68.2416 68.5005
a6 41.0759 38.8767 38.4859 37.7534 39.0096
a7 66.2537 68.2096 66.9445 67.5662 67.2357
a8 38.1381 37.4442 34.4434 32.4802 35.4773 0.004998
a9 51.9282 48.9857 51.2404 50.4098 50.6171
a10 58.9875 53.1307 53.0384 55.5417 54.1520
a11 8.1923 8.6440 8.5635 7.8684 8.3053
a12 54.0195 52.1071 52.6589 54.0951 53.2062
a13 57.4217 56.0099 56.5747 57.6689 56.9111
a14 50.6085 49.3857 50.9241 49.2745 50.0376
a15 49.3026 47.4969 47.7555 46.1038 47.6377

KVx442-3-25SH(Komcallé (a1) variety is considered the best.

• Resolution using the MACASP method: Applying the MACASP method to
the first case study gives the results shown in Table 9.

Like the Lon-Zo method, the MACASP method proposes KVx442-3-25SH(Komcallé (a1)
as the best variety.

4.2. Second case study

The second case study concerns the choice of a site for a non-hazardous waste incinera-
tion plant in the Lithuanian capital Vilnius[6, 7]. In this study, five experts were involved in
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Table 9: MACASP results

Varieties g(ak) =

j=12∑
j=1

j=4∑
l=1

w
dl
j j.g

dl
j (a

k
)

4
Time(s)

a1 79.366
a2 55.3364
a3 29.7681
a4 76.5642
a5 68.5166
a6 39.0480
a7 67.2435
a8 35.6265
a9 50.6410 0.004994
a10 54.1746
a11 8.3171
a12 53.2201
a13 56.9188
a14 50.0482
a15 47.6647

the decision-making process. They also played the role of decision-makers. Seven potential
sites were selected on the basis of seven criteria, divided into two groups of criteria.

• Group 1 representing criteria related to different engineering infrastructures: (1,1):
Distance en km au réseaux de chauffage centralisé; (1,2):Distance in km to power
supply networks of 110 kW; (1,3): Distance in km to high-pressure gas pipeline (12
bar); (1,4): Distance in km to water supply networks

• Group 2 representing urban planning and social criteria: (2,1):Distance in km to
Vilnius city center; (2,2):Average number of people living in the territory within a
radius of 1 km2; (2,3):Usable surface owned by people living in the project area in
m2.

The normalized evaluation matrix is given in Table 10.

Table 10: Normalized Evaluation matrix

Sites (1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3)

ak
1,1 ak

1,2 ak
1,3 ak

1,4 ak
2,1 ak

2,2 ak
2,3

a1 1.5 0.6 2.5 1.37 9.26 3188.6 55,269
a2 3.5 1.2 4.5 0.5 8.64 497.5 9,327
a3 0.8 0.5 3 0.1 6.44 2.484 50.798
a4 4.8 1.2 1.6 2 11.19 2.676 56.206
a5 5.5 1 1.6 0.3 5.9 3.291 66.807
a6 0.6 0.7 2 0.6 6.09 6.490 132.136
a7 0.3 0.4 2 0.6 5.72 5946.7 123.314

4.2.1. Resolution using the KEMIRA G-I and KEMIRA G-II methods

• First, the five decision-makers (Experts) express their preferences by ranking the
criteria as showed in the Table 11.

• In a second stage, the median ranking is determined using the Borda voting method
and the result presented in Table 12.
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Table 11: Ranking of criteria by the five DMs

Group 1 Group 2
Rank d1 d2 d3 d4 d5 d1 d2 d3 d4 d5
1st (1,1) (1,1) (1,1) (1,1) (1,1) (2,2) (2,1) (2,3) (2,3) (2,1)
2nd (1,4) (1,4) (1,2) (1,2) (1,2) (2,3) (2,2) (2,1) (2,1) (2,3)
3rd (1,2) (1,2) (1,3) (1,4) (1,4) (2,1) (2,3) (2,2) (2,2) (2,2)
4th (1,3) (1,3) (1,4) (1,3) (1,3)

Table 12: Median ranking of criteria

group 1 median ranking group 2 median ranking
(1, 1) ≿ (1, 2) ≿ (1, 4) ≿ (1, 3) (2, 3) ≿ (2, 1) ≿ (2, 2)

• In a third stage, the KEMIRA algorithm is implemented with the parameters indi-
cated in relations (18), (19), (20). The results with different execution times associ-
ated are shown in Table 13 and Table 14.

maxiter = 10000 (18)
αi = pi%max15k=1Wi(a

k); i ∈ {1, 2, 3}, pi ∈ {10, 20, 30, 40, 50, 60, 70, 75, 80} (19)
p1 = p2 = p3 (20)

Table 13: KEMIRA G-I results

pi Criteria weights Best varieties Time
(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3)
w1,1 w1,2 w1,3 w1,4 w2,1 w2,2 w2,3

10;20;30;40;50 0.5 0.25 0.23 0.03 0.5 0.35 0.15 {a1, a6, a7} 14.001
60;70;80 0.33 0.3 0.21 0.16 0.39 0.39 0.21 {a7} 14.29

• Looking Table 13, KEMIRA G-I method select a7 as the best location site.

• Looking Table 14, for pi = 80: Bd1 = Bd2 = Bd3 = Bd4 = Bd5 = {a7}. So the
alternative a7 is selected as the best location site by KEMIRA G-II method.

4.2.2. Resolution by Lon-Zo et MACASP methods

Since we have taken this case study from the literature[6], we have considered the weights
obtained with the KEMIRA G-II method and assumed that the two groups of criteria are
of equal importance. The weights thus determined are presented in table 15.

Lon-Zo and MACASP methods also select a7 as the best location site as showed in
Table 16 and Table 17 respectively.

5. Discussion

In the first case study, we saw that the new methods and the classic methods proposed
different results. The Nafi (a4) is the best variety for the highest possible threshold ac-
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Table 14: KEMIRA G-II results

DMs pi Criteria weights Best varieties Time
(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3)
w1,1 w1,2 w1,3 w1,4 w2,1 w2,2 w2,3

10;20 0.34 0.34 0.26 0.06 0.44 0.28 0.28 {a1, a2, a3, a4, a6, a7} 14.54
30 0.33 0.30 0.24 0.12 0.35 0.33 0.32 {a1, a2, a4, a6, a7} 14.26
40 0.27 0.26 0.25 0.22 0.42 0.39 0.17 {a1, a4, a6, a7} 14.04

d1 50 0.33 0.32 0.18 0.17 0.46 0.43 0.11 {a1, a6, a7} 14.10
60;70 0.41 0.37 0.13 0.09 0.55 0.29 0.17 {a1, a7} 14.45
80 0.39 0.38 0.12 0.11 0.69 0.18 0.13 {a7} 13.92

10;20 0.36 0.3 0.19 0.15 0.64 0.22 0.13 {a1, a2, a3, a4, a6, a7} 13.64
30;40 0.38 0.27 0.18 0.15 0.37 0.34 0.27 {a1, a2, a4, a6, a7} 13.71

d2 50 0.37 0.33 0.25 0.05 0.54 0.34 0.11 {a1, a6, a7} 14.22
60;70 0.38 0.3 0.22 0.11 0.46 0.42 0.12 {a1, a7} 14.03
80 0.46 0.26 0.17 0.11 0.47 0.39 0.14 {a7} 14.20

d3 10;20;30;40;50 0.56 0.27 0.11 0.06 0.43 0.33 0.24 {a1, a6, a7} 14.69
60;70;80 0.45 0.35 0.16 0.04 0.5 0.36 0.14 {a7} 14.07

d4 10;20;30;40;50 0.5 0.25 0.23 0.03 0.5 0.35 0.15 {a1, a6, a7} 14.001
60;70;80 0.33 0.3 0.21 0.16 0.39 0.39 0.21 {a7} 14.29

10;20;30;40;50 0.56 0.27 0.11 0.06 0.43 0.33 0.24 {a1, a6, a7} 14.69
d5 60;70;80 0.45 0.35 0.16 0.04 0.5 0.36 0.14 {a7} 14.07

Table 15: Criteria weights
Criteria g1 g2 g3 g4 g5 g6 g7

w
di
1 w

di
2 w

di
3 w

di
4 w

di
5 w

di
6 w

di
7

d1 0.195 0.06 0.055 0.19 0.065 0.345 0.09
d2 0.23 0.085 0.055 0.13 0.235 0.195 0.07
d3 0.225 0.175 0.08 0.02 0.18 0.07 0.25
d4 0.165 0.15 0.08 0.105 0.195 0.11 0.195
d5 0.225 0.175 0.02 0.08 0.25 0.07 0.18

cording to the KEMIRA G-I and KEMIRA G-II methods, i.e., this variety outperforms
the highest possible threshold on all the criteria.

Unlike the Lon-Zo and MACASP methods, the a1 variety is considered the best. This
can be explained by the fact that this variety performs very well on some criteria and very
poorly on others without said criteria being homogeneous. However, such compensation
are generally allowed only when the criteria are all homogeneous, i.e. when natural com-
pensation are allowed between criteria. This is not the case, for example, when considering
in group 1, the criterion (1,4): disease resistance and in group 2, the criterion (2,2): seed
color. These two criteria are said to be heterogeneous. The KEMIRA G-I and KEMIRA
G-II methods are designed to avoid such compensation between heterogeneous criteria,
unlike the Lon-Zo and MACASP methods where this is not the case

Table 16: Lon-Zo results
g
d1 (a

k
) = g

d2 (a
k
) = g

d3 (a
k
) = g

d4 (a
k
) = g

d5 (a
k
) = Time(s)

j=7∑
j=1

w
d1
j .g

d1
j (a

k
)

j=7∑
j=1

w
d2
j .g

d2
j (a

k
)

j=7∑
j=1

w
d3
j .g

d3
j (a

k
)

j=7∑
j=1

w
d4
j .g

d4
j (a

k
)

j=7∑
j=1

w
d5
j .g

d5
j (a

k
) g(ak) =

5

5∑
l=1

1

gdl (ak)

a1 0.5562 0.6055 0.6202 0.5935 0.6343 0.6007
a2 0.3447 0.4006 0.3248 0.3707 0.4147 0.3680
a3 0.4358 0.4300 0.406 0.4106 0.3848 0.4126
a4 0.2017 0.3859 0.4770 0.4460 0.4814 0.3580 0.0039987
a5 0.3148 0.2700 0.3257 0.3669 0.3168 0.3158
a6 0.5168 0.5126 0.6875 0.6247 0.6373 0.5875
a7 0.8994 0.7118 0.7612 0.7353 0.7124 0.7538
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Table 17: MACASP results

Variétés g(ak) =

j=12∑
j=1

l=5∑
l=1

w
dl
j .g

dl
j (a

k
)

5
Time(s)

a1 0.6019
a2 0.3711
a3 0.4134
a4 0.3984 0.0030000
a5 0.3188
a6 0.5958
a7 0.7580

In the second case study, all four methods selected a7 as the best site. All criteria can
be considered in a single group. In fact, the criteria in both groups are all distance-related,
except for one criterion which refers to the number of people (and therefore has no unit).
Consequently, all the criteria of the two groups can naturally compensate for each other,
i.e., the criteria can all be considered as homogeneous.

Based on the partial or incomplete information given by the decision makers (we have
only asked to the DMs to rank the alternatives from best to the worst in each group as
showed in Table 3 and Table 11), KEMIRA G-I and KEMIRA G-II methods have proposed
an elicitation of criteria weights as showed in Table 13 and Table 14. This is an advantage
in a decision-making process, as the process of weighting criteria is generally tedious for
decision-makers. Of course, applying the Lon-Zo and MACASP methods assumes that you
have previously determined the weights of all the criteria.

With regard to the execution times of the KEMIRA G-I and KEMIRA G-II methods
on the one hand, and Lon-Zo and MACASP on the other, we note that the latter two are
faster. This is also an advantage to use Lon-Zo or MACAP methods in case where all the
criteria can be considered as homogenous.

The relatively long runtimes of the KEMIRA G-I and KEMIRA G-II methods can
be explained by the fact that, due to incomplete information on criteria weights, more
iterations are needed to stabilize the corresponding algorithms, as the search space for
suitable weights that allow an alternative to be selected as the best is too large.

6. Conclusion

By solving two multi-criteria choice problems, we were able to demonstrate the effec-
tiveness of the two new methods, KEMIRA G-I and KEMIRA G-II, when the criteria are
heterogeneous. However, when the criteria can be considered as homogeneous, the Lon-Zo
and MACASP methods seem to be better suited, given their speed. Another advantage
of the two new methods, KEMIRA G-I and KEMIRA G-II, is the elicitation of criteria
weights based on incomplete information, which is not the case with Lon-Zo and MACASP
methods. In our future work, we intend to implement a user friendly computer system that
integrates these four decision group methods to better handle multi-criteria group prob-
lems. On the other, we want to see how we can reinforce the process of eliciting the weights
of the criteria proposed by the new KEMIRA G-I and KEMIRA G-II methods by adding
information on the intensity between criteria in their respective algorithms.
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