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Abstract. The present study proposes an approximate analytical solution to a nonlinear system
of time-fractional partial differential equations. The Sadik residual power series method, which
integrates the two-part Sadik integral transform with the residual power series technique, is em-
ployed to solve the fractional differential equation in the Caputo sense. Nonlinear problems with
known and unknown solutions are examined to demonstrate the capacity of the technique. Nu-
merical simulations and 3D visualizations are conducted for various values of the fractional order
to further understand the solution’s behavior. Additionally, the results are validated against exact
solutions or existing methodologies to ensure their reliability and accuracy. A key advantage of
the proposed method is its ability to generate results without the need for Adomian polynomials,
perturbation techniques, discretization, or linearization, enabling a more efficient.
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1. Introduction

A fractional differential equation is a generalization of an integer-order differential
equation that appears in various scientific frameworks [18]. The study of this sort of
equation has gained increasing interest among scholars because it can describe real-world
physical phenomena in greater detail and accuracy than integer differential equations offer,
especially in the physical processes involving memory and heritability properties. Ana-
lyzing non-linear fractional differential equations has become an essential challenge for a
century. Scientists have attempted to devise and enhance novel approaches, whether ana-
lytical or numerical, for conquering such circumstances. Among these intriguing methods
are the Adomian decomposition method [15], [24], [30], homotopy-perturbation method [1],
the homotopy analysis method [16], the differential transform method [12], the Chebyshev
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Wavelets method [19]. Although the procedures described above are reliable and verifi-
able, they come with practical constraints and require a long time to generate results.
As a result, establishing a strategy for effectively addressing issues, reducing determining
time, and making it advantageous is challenging for researchers.

Sadik integral transformation is one of the most vital tools used to address the issues
dealing with fractional calculus in science and engineering [25], [28], [26]. The transform is
considered to generalize other important integral transformations since this transformation
can be reduced to others by assigning the parameter. Due to their straightforward use,
the Sadik transformation has continued to gain popularity among academics since it was
first introduced in 2018 [27]. The advancement of the transform in solving fractional
differential equations is found in much literature and references therein, such as Alabdala
et al. [2] used the Sadik transform to solve the Caputo delayed fractional differential
equation; Derakhshan [9] employed the Sadik transform to obtain the solution for the equal
width fractional differential equation; Pue-on [20] utilized the Sadik decomposition method
to generate the solution for a system of nonlinear fractional Volterra Integro differential
equations of convolution type; Pue-on [21], [22] also obtained the solution of the space and
time fractional telegraph equation and well-known fractional partial differential equation
by double Sadik transform.

The residual power series approach is a highly effective semi-analytic procedure for
handling scientific challenges. The aforementioned strategy is based on the generalized
Taylor series expansion. The concept is to view the solution as a fractional power series
with unknown coefficients and establish a residual function. A traditional residual power
series method and an improved version have been widely utilized in literature to address
a system of fractional differential equations, both linear and non-linear. Recently, some of
these developments in non-linear system can be observed in [3], [5], [13], [14] and [23].

The inspiration for this work was to devise an analytical method that leveraged two
widely recognized mathematical tools, the Sadik integral transform and the residual power
series technique, to solve a nonlinear system of fractional order differential equations.
The primary objective of the current study is to deploy the Sadik residual power series
approach to solve the initial value problem for a system of nonlinear Caputo fractional
partial differential equations with the form

Dγ
t ui(x, t) = Ni(uj(x, t),x, t) + fi(x, t), i = 1, . . . , n (1)

ui(x, 0) = gi(x). (2)

0 < γ ⩽ 1. Here Dγ
t (·) denotes the Caputo partial fractional derivative of order γ, Ni

represents the general nonlinear differential operator and fi is the source term. This
system is highly significant in the fields of science and technology.

The structure of the manuscript is designed as follows: Section 2 presents fundamen-
tal definitions and theorems of fractional calculus, the Sadik transform, and the residual
power series method. These theoretical foundations support the methodology employed
in this study. Section 3 describes the implementation of the Sadik residual power se-
ries method to nonlinear systems of fractional partial differential equations. This section
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also comprises illustrative examples that serve to demonstrate and validate the proposed
technique. Section 4 shows a comprehensive discussion of the findings and presents the
conclusions from this research.

2. Basic Definitions and Theorems of Fractional Calculus, Sadik
Integral Transform and Residual Power Series Method

This section reviews the basic notions and essential properties of fractional calculus.
Furthermore, the definitions and theorems of the Sadik integral transform and residual
power series technique are discussed.

2.1. Fractional Calculus

Definition 1. [18] The fractional integral operator of order γ(γ ⩾ 0) of ϕ(t) of Riemann-
Liouville type is defined as

Iγϕ(t) =

 1
Γ(γ)

∫ t

0

ϕ(τ)

(t− τ)1−γ
dτ, γ > 0, t > 0,

ϕ(t), γ = 0

Definition 2. The Caputo fractional derivative operator Dγ of order γ, (n − 1 < γ ⩽
n, n ∈ N) is defined in the following form,

Dγϕ(t) =
1

Γ(n− γ)

∫ t

0
(t− τ)−γ+n−1ϕ(n)(τ)dτ, (3)

γ > 0, t > 0, where the function ϕ(t) has absolutely continuous derivatives up to order
n− 1.

Moreover, the following basic properties can be proved

1.) DγC = 0, C is a constant

2.) For p ∈ N0 = {0, 1, 2, . . .} and the ceiling function ⌈γ⌉ refers to the smallest integer
greater than or equal to γ

Dγxp =

 0, for p < ⌈γ⌉
Γ(p+ 1)

Γ(p+ 1− γ)
xp−γ , for p ⩾ ⌈γ⌉

3.) DγIγϕ(t) = ϕ(t),

4.) IγDγϕ(t) = ϕ(t)−
n−1∑
k=1

ϕ(k)(0)

k!
tk.
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Definition 3. [7] The fractional derivative of order γ > 0 in the Caputo sense is stated
as

Dγ
t u(x, t) =

∂γu(x, t)

∂tγ
=


1

Γ(n−γ)

∫ t
0 (t− τ)n−γ−1 ∂

nu(x,τ)
∂τn dτ, n− 1 < γ < n

∂nu(x,t)
∂tn , γ = n ∈ N.

Definition 4. [17] The Mittag-Leffler function Ep(z) with p > 0 is defined as

Ep(z) =

∞∑
n=0

zn

Γ(pn+ 1)
.

2.2. The Sadik Transform

Definition 5. [27] If f(t) is piecewise continuous function on the interval 0 ⩽ t ⩽ A for
any A > 0 and |f(t)| ⩽ KeBt when t ⩾ M, for any real constant B and some positive
constant K and M . Then Sadik transform of f(t) is defined by

S [f(t)] =
1

vβ

∫ ∞

0
f(t)e−tvαdt = F (vα, β) (4)

where v is complex variable, α is any non zero real number, and β is any real number.
Here S is called the Sadik transform operator.

Remark 1. The Sadik transform can be evolved to the other intrgral transform by assign-
ing the parameter α and β as follows : α = 1, β = 0 (Laplace Transform ), α = 1, β = 1
(Aboodh Transform ), α = 1, β = −1 (Laplace–Carson transform ), α = −1, β = 0 ( Kamal
TransformX, α = −1, β = 1 (Sumudu Transform), α = −1, β = −1 (Elzaki Transform),
α = −2, β = 1 (Tarig Transform).

Remark 2. The basic property of Sadik transform and its transform of elemetary functions
are shown in [27].

Theorem 1. [25] Let F (vα, β) denote the Sadik transform of f(t) and f ′(t), f ′′(t), f ′′′(t), . . . ,
f (n−1)(t) are continuous on [0,∞.) Then the Sadik transform of f (n)(t) is

S
[
f (n)(t)

]
= vnαF (vα, β)−

n−1∑
k=0

vkα−βf (n−1−k)(0). (5)

Theorem 2. [25] Let n − 1 < γ < n, (n = [γ] + 1) and f(t), f ′(t), . . . , f (n−1)(t) are
continuous on [0,∞) and of exponential order, while Dγf(t) is piecewise continuous on
[0,∞). Then Sadik transform of Caputo fractional derivative of order γ of function f is
given by

S[Dγf(t)] = vγαF (vα, β)−
n−1∑
k=0

v(γ−n+k)α−βf (n−1−k)(0+).
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2.3. The Residual Power Series Method

Definition 6. [10, 11] If n ∈ N where n − 1 < γ ⩽ n. A power series expansion of the
form

∞∑
n=0

an(t− t0)
nγ = a0 + a1(t− t0)

γ + a2(t− t0)
2γ + . . . , t ⩾ t0

is called fractional power series about t0.

Theorem 3. [10, 11] Suppose that u(t) has a fractional power series representation at
t = t0 of the form

u(t) =
∞∑
n=0

an(t− t0)
nγ , 0 ⩽ m− 1 < γ ⩽ m, t0 ⩽ t < t0 +R.

If u(t) ∈ C[t0, t0 +R) and Dnγu(t) ∈ C(t0, t0 +R), n = 0, 1, 2, . . . , then an = Dnγu(t)
Γ(nγ+1) .

Definition 7. [10, 11] A power series of the form

∞∑
n=0

fn(x)(t− t0)
nγ = f0(x) + f1(x)(t− t0)

γ + f2(x)(t− t0)
2γ + . . .

is called multiple fractional power series about t = t0, where t is a variable and fm’s are
functions of x called the coefficients of the series.

Theorem 4. [10, 11] Suppose that u(x, t) has a multiple fractional power series represen-
tation at t = t0 of the form

u(x, t) =
∞∑
n=0

un(x, t) =
∞∑
n=0

fn(x)(t− t0)
nγ ,

0 ⩽ m − 1 < γ ⩽ m, x ∈ I, t0 ⩽ t < t0 + R. If Dnγ
t u(x, t), n = 0, 1, 2, . . . are continuous

on I × (t0, t0 +R), then

fn(x) =
Dnγ

t u(x, t)

Γ(nγ + 1)
, n = 0, 1, 2, . . . .

Here Dnγ
t (·) = ∂nγ

∂tnγ (·) = ∂γ

∂tγ (
∂γ

∂tγ (. . . (
∂γ

∂tγ (·)))) (n − times), and R = minc∈I Rc, in which
Rc is the radius of convergence of the fractional power series

∑∞
k=0 fn(c)(t− t0)

nγ .

According to the convergence of the classic residual power series method, there is a
real number 0 < λ < 1, such that ||un+1(x, t)|| ⩽ λ||un(x, t)||, t ∈ (t0, t0 +R).

3. Main Results

This section explains the Sadik residual power series method and presents revealed
examples that support its suggested concept.
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3.1. Implementation of the Sadik residual power series method in a sys-
tem of time-fractional PDEs

Consider the nonlinear system of time-fractional partial differential equation (1)

Dγ
t ui(x, t) = Ni(uj(x, t),x, t) + fi(x, t), i = 1, . . . , n

with initial conditions ui(x, 0) = gi(x). Applying the Sadik transform and along with the
initial condition yields

vγαUi(x, v
α, β)− v(γ−1)α−βgi(x) = S

[
Ni(uj(x, t),x, t)

]
+ Fi(x, v

α, β).

Rearranging the equation obtained

Ui(x, v
α, β) =

1

vα+β
gi(x) +

1

vγα
S
[
Ni(uj(x, t),x, t)

]
+

1

vγα
Fi(x, v

α, β).

Performing the inverse Sadik transform results in

ui(x, t) = gi(x) + S−1
[ 1

vγα
S
[
Ni(uj(x, t),x, t)

]]
+ S−1

[ 1

vγα
Fi(x, v

α, β)
]
.

Assume the solution to (1) is provided within the infinite series

ui(x, t) =
∞∑
n=0

ai,n(x)
tnγ

Γ(nγ + 1)
. (6)

According to the residual power series strategy, we define the residual function as follows

Resi(x, t) = ui(x, t)− gi(x)− S−1
[ 1

vγα
S
[
Ni(uj(x, t),x, t)

]]
− S−1

[ 1

vγα
Fi(x, v

α, β)
]
,

and the kth truncated series of (6) is stated as

uk(x, t) =
k∑

n=0

ai,n(x)
tnγ

Γ(nγ + 1)
.

Since the solution satisfies the initial condition, ai,0(x) = gi(x). Hence, the k- order ap-
proximated solution turns into

ui,k(x, t) = gi(x) +
k∑

n=1

ai,n(x)
tnγ

Γ(nγ + 1)
. (7)

Furthermore, the k- residual function is expressed as

Resi,k(x, t) = ui,k(x, t)− gi(x)− S−1
[ 1

vγα
S
[
Ni(uj,k(x, t),x, t)

]]
− S−1

[ 1

vγα
Fi(x, v

α, β)
]
.
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For the calculation of the coefficients ai,n(x), n = 1, 2, 3, . . . in equation (7), construct
the relation for recurrence ui,0(x, t) = gi(x)

Resi,k(x, t) = ui,k(x, t)− gi(x)− S−1
[ 1

vγα
S
[
Ni(uj,k(x, t),x, t)

]]
− S−1

[ 1

vγα
Fi(x, v

α, β)
]

(8)
and and afterward follow the condition [29]

t−kα · Resi,k(x, t)
∣∣∣
t=0

= 0. (9)

Convergence criteria for Sadik residual power series method

Theorem 5. [8] Let the Banach space B ≡ C(X × [0, T ]) is defined on X × [0, T ], where
X = [a1, b1]× [a2, b2]× . . .× [an, bn], then Eq. (6) as u(x, t) =

∑k
n=0 uk(x, t) is convergent

series, if u0 ∈ B is bounded and ∀uk ∈ B, ∥uk+1∥ ⩽ λ∥uk∥, where 0 < λ < 1 and
∥u∥ = supx∈X,t∈[0,T ] |u(x, t)|.

Theorem 6. [8] The maximum absolute error for (6) is defined by

∥u(x, t)−
k∑

n=0

un(x, t)∥ ⩽
λk+1

1− λ
∥u0(x, t)∥.

Remark 3. The procedure for proving the aforementioned theorems is the same as that
used in the reference, which will not be examined further here.

3.2. Illustrative Examples

Example 1. [4] Consider the nonlinear system of fractional partial differential equation

Dγ
t u(x, t) + w2(x, t)u2x(x, t) + u(x, t) = 1,

Dγ
t w(x, t) + u2(x, t)w2

x(x, t)− w(x, t) = 1,

with initial conditions

u(x, 0) = ex, w(x, 0) = e−x.

The exact solution to the problem when γ = 1 is u(x, t) = ex−t, w(x, t) = e−x+t.

Here N1(u,w) = −w2u2x − u,N2(u,w) = −u2w2
x + w, f1(x, t) = f2(x, t) = 1, g1(x) =

ex, g2(x) = e−x. The kth− truncated term series solution for this problem is

uk(x, t) =

k∑
n=0

an(x)
tnγ

Γ(nγ + 1)
,
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wk(x, t) =

k∑
n=0

bn(x)
tnγ

Γ(nγ + 1)
.

The recurrence relation to the above issue is

u0(x, t) = ex, w0(x, t) = e−x,

Res1,k(x, t) = uk(x, t)− ex − S−1
[ 1

vγα
S
[
− w2

k−1(uk−1)
2
x − uk−1

]]
− tγ

Γ(γ + 1)
,

Res2,k(x, t) = wk(x, t)− e−x + S−1
[ 1

vγα
S
[
(uk−1)

2(wk−1)
2
x − wk−1

]]
− tγ

Γ(γ + 1)
, k ⩾ 1.

For k = 1. The first-order approximate solution is assumed

u1(x, t) = ex + a1(x)
tγ

Γ(γ + 1)
, w1(x, t) = e−x + b1(x)

tγ

Γ(γ + 1)
.

Substituting into the above iteration yields

Res1,1(x, t) = u1(x, t)− ex − S−1
[ 1

vγα
S
[
− w2

0(u0)
2
x − u0

]]
− tγ

Γ(γ + 1)
,

= a1(x)
tγ

Γ(γ + 1)
+ ex

tγ

Γ(γ + 1)
,

Res2,1(x, t) = w1(x, t)− e−x + S−1
[ 1

vγα
S
[
(u0)

2(w0)
2
x − w0

]]
− tγ

Γ(γ + 1)
,

= b1(x)
tγ

Γ(γ + 1)
− ex

tγ

Γ(γ + 1)
.

Figure 1: Subplot (a) displays the approximate solution u5(x, t), and subplot (b) presents the approximate
solution w5(x, t) for Example 1 with different γ values at x = 0.5.
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Figure 2: The graphics represent the approximate solution u5(x, t) with different γ values: (a) γ = 0.6, (b)
γ = 0.8, (c) γ = 1, and (d) the exact solution for Example 1.

Figure 3: The graphics represent the approximate solution w5(x, t) with different γ values: (a) γ = 0.6, (b)
γ = 0.8, (c) γ = 1, and (d) the exact solution for Example 1.
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Using the condition (9) with k = 1, t−γRes1,1(x, t)
∣∣
t=0

= 0, t−γRes2,1(x, t)
∣∣
t=0

= 0,
produces the coefficients that are a1(x) = −e−x and b1(x) = ex. As a result, the first-
order truncated series solution is

u1(x, t) = ex − ex
tγ

Γ(γ + 1)
, w1(x, t) = e−x + e−x tγ

Γ(γ + 1)
.

Table 1: Comparison of the approximate solution u5(x, t) for γ = 1 and error analysis in Example 1 using
different t, x values.

t x u5(x, t) Exact Soln. Abs.Error (SRPSM) Abs.Error (LRPSM) [4]

0.2 1.105170916 1.105170918 2× 10−9 2× 10−9

0.4 1.349858806 1.349858808 2× 10−9 2× 10−9

0.1 0.6 1.648721268 1.648721271 3× 10−9 3× 10−9

0.8 2.013752704 2.013752707 3× 10−9 3× 10−9

1.0 2.459603107 2.459603111 4× 10−9 4× 10−9

0.2 0.9512290245 0.9512294245 4× 10−7 4× 10−7

0.4 1.161833755 1.161834243 4.88× 10−7 4.88× 10−7

0.25 0.6 1.419066952 1.419067549 5.97× 10−7 5.97× 10−7

0.8 1.733252289 1.733253018 7.29× 10−7 7.29× 10−7

1.0 2.116999126 2.117000017 8.90× 10−7 8.90× 10−7

Table 2: Comparison of the approximate solution w5(x, t) for γ = 1 and error analysis in Example 1 using
different x, t values.

t x w5(x, t) Exact Soln. Abs.Error (SRPSM) Abs.Error (LRPSM) [4]

0.2 0.9048374172 0.9048374180 8× 10−10 8× 10−10

0.4 0.7408182199 0.7408182207 8× 10−10 8× 10−10

0.1 0.6 0.6065306591 0.6065306597 6× 10−10 6× 10−10

0.8 0.4965853033 0.4965853038 5× 10−10 5× 10−10

1.0 0.4065696594 0.4065696597 3× 10−10 3× 10−10

0.2 1.051270808 1.051271096 2.88× 10−7 2.88× 10−7

0.4 0.8607077406 0.8607079764 2.358× 10−7 2.358× 10−7

0.25 0.6 0.7046878967 0.7046880897 1.93× 10−7 1.93× 10−7

0.8 0.5769496523 0.5769498104 1.581× 10−7 1.581× 10−7

1.0 0.4723664234 0.4723665527 1.293× 10−7 1.293× 10−7

For k ⩾ 2. By employing the offered procedure and condition (9), the coefficients of
the series solution are

ak(x) = (−1)kex, bk(x) = e−x.

Hence, the k-truncated series solution is

uk(x, t) =

k∑
n=0

(−1)nex
tnγ

Γ(nγ + 1)
= ex

k∑
n=0

(−tγ)n

Γ(nγ + 1)
,
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wk(x, t) =

k∑
n=0

e−x tnγ

Γ(nγ + 1)
= e−x

k∑
n=0

tnγ

Γ(nγ + 1)
.

It is important to note that when k → ∞, the approximate solution converges on the
exact solution

u(x, t) = ex
∞∑
n=0

(−tγ)n

Γ(nγ + 1)
= exE(−tγ),

w(x, t) = e−x
k∑

n=0

tnγ

Γ(nγ + 1)
= e−xE(tγ).

If γ = 1, the solutions is the exact solution of first-order nonlinear PDEs system

u(x, t) = ex−t, w(x, t) = e−x+t.

The approximate solution for Example 1 are shown in Figure 1. Figures 2 and 3 compare
the visualizations to the approximate and exact solutions.

Figure 4: subplot (a) depicts the approximate solution u5(x, y, t) and subplot (b) presents the approximate
solution w5(x, y, t) for Example 2 at different γ values for x = y = 0.2.

Example 2. [6] Consider the Fractional Reaction-Diffusion Brusselator System

Dγ
t u(x, y, t) = −2u(x, y, t) + u2(x, y, t)w(x, y, t) +

1

4

[
uxx(x, y, t) + uyy(x, y, t)

]
,

Dγ
t w(x, y, t) = u(x, y, t)− u2(x, y, t)w(x, y, t) +

1

4
[wxx(x, y, t) + wyy(x, y, t)],

subject to the initial conditions

u(x, y, 0) = e−x−y, w(x, y, 0) = ex+y.

The exact solution when γ = 1 is u(x, y, t) = e−x−y− 1
2
t, w(x, y, t) = ex+y+ 1

2
t.
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Figure 5: The graphics represent the approximate solution u5(x, y, t) when t = 1, 0 ⩽ x, y ⩽ 1, with different
γ values: (a) γ = 0.6, (b) γ = 0.8, (c) γ = 1, and (d) the exact solution for Example 2.

Note that N1(u,w) = −2u + u2w + 1
4(uxx + uyy), N2(u,w) = u − u2w2

x + 1
4(wxx +

wyy), f1(x, t) = f2(x, t) = 0, g1(x, y) = e−x−y, g2(x, y) = ex+y. The kth− truncated term
series solution to the problem is

uk(x, y, t) =
k∑

n=0

an(x, y)
tnγ

Γ(nγ + 1)
and wk(x, y, t) =

k∑
n=0

bn(x, y)
tnγ

Γ(nγ + 1)
.

The recursive relation for this problem is

u0(x, y, t) = e−x−y, w0(x, y, t) = ex+y,

Res1,k(x, y, t) = uk(x, y, t)− e−x−y + 2S−1
[ 1

vγα
S
[
uk−1

]]
− S−1

[ 1

vγα
S
[
u2k−1wk−1

]]
− 1

4
S−1

[ 1

vγα
S
[
(uk−1)xx + (uk−1)yy

]]
, k ⩾ 1

Res2,k(x, y, t) = wk(x, y, t)− ex+y − S−1
[ 1

vγα
S
[
uk−1

]]
+ S−1

[ 1

vγα
S
[
(uk−1)

2wk−1

]]
− 1

4
S−1

[ 1

vγα
S
[
(wk−1)xx + (wk−1)yy

]]
, k ⩾ 1.

Proceed to continue the recurrence to obtain the coefficients,

a1(x, y) = −1

2
e−x−y, a2(x, y) =

1

4
e−x−y, . . . , ak(x, y) =

1

(−2)k
e−x−y
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Figure 6: The graphics represent the approximate solution w5(x, y, t) when t = 1, 0 ⩽ x, y ⩽ 1, with different
γ values: (a) γ = 0.6, (b) γ = 0.8, (c) γ = 1, and (d) the exact solution for Example 2.

b1(x, y) =
1

2
ex+y, b2(x, y) =

1

4
ex+y, . . . , bk(x, y) =

1

2k
ex+y.

Hence, the k-order approximate series solution is

uk(x, y, t) = e−x−y
[
1− 1

2

tγ

Γ(γ + 1)
+

1

4

t2γ

Γ(2γ + 1)
+ . . .+

1

(−2)k
tkγ

Γ(kγ + 1)

]
wk(x, y, t) = ex+y

[
1 +

1

2

tγ

Γ(γ + 1)
+

1

4

t2γ

Γ(2γ + 1)
+ . . .+

1

2k
tkγ

Γ(kγ + 1)

]
.

When k → ∞, the approximate solution converges to

u(x, y, t) = e−x−y
∞∑
n=0

(− tγ

2 )
n

Γ(nγ + 1)
= e−x−yE(

−tγ

2
)

w(x, y, t) = ex+y
∞∑
n=0

( t
γ

2 )
n

Γ(nγ + 1)
= ex+yE(

tγ

2
).

If γ = 1, the result is reduced to the solution of the first-order equation

u(x, y, t) = e−x−y− 1
2
t and w(x, y, t) = ex+y+ 1

2
t.

The approximate solution for Example 2 are shown in Figure 4. Figures 5 and 6 compare
the visualizations to the approximate and exact solutions.
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Table 3: Comparison of the approximate solution u5(x, y, t) for x = y = 0.2 in Example 2 using different γ
values.

t γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1 Exact Soln.

0.2 0.477488627 0.512326854 0.547063183 0.579385607 0.606530658 0.606530659
0.4 0.456444828 0.474696013 0.496237125 0.521635809 0.548811578 0.548811636
0.6 0.443011054 0.449925766 0.460073110 0.475641940 0.496584653 0.496585303
0.8 0.432811651 0.430960053 0.431579433 0.437159809 0.449325358 0.449328964
1.0 0.424420175 0.415283298 0.407895963 0.404110210 0.406556090 0.406569659

Table 4: Comparison of the approximate solution w5(x, y, t)for x = y = 0.2 in Example 2 using different γ
values.

t γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1 Exact soln.

0.2 2.417846010 2.074372749 1.865586354 1.734071972 1.648721268 1.648721271
0.4 2.646725351 2.342078614 2.111643502 1.944446048 1.822118665 1.822118800
0.6 2.816085119 2.572130993 2.344840870 2.160190740 2.013751129 2.013752707
0.8 2.956794558 2.785737340 2.577721089 2.387602322 2.225531932 2.225540928
1.0 3.079989436 2.990722585 2.815404246 2.630080531 2.459568271 2.459603111

Table 5: Comparison of the absolute error for u2(x, y, t) when x = y = 0.2 and x = y = 0.5 in Example 2
using different t values.

(x,y) t u2(x, y, t) Exact Soln. Abs. Error (SRPSM) Abs. Error (CRPS)[6]

0.2 0.6066396416 0.6065306597 1.089819× 10−4 1.0898× 10−4

(0.2, 0.2) 0.4 0.5496624377 0.5488116361 8.508016× 10−4 8.5080× 10−4

0.6 0.4993884343 0.4965853038 2.8031305× 10−3 2.8031× 10−3

0.8 0.4558176313 0.4493289641 6.4886672× 10−3 6.4886× 10−3

0.2 0.3329308943 0.3328710837 5.98106× 10−5 5.9810× 10−5

(0.5, 0.5) 0.4 0.3016611418 0.3011942119 4.669299× 10−4 4.6692× 10−4

0.6 0.2740701836 0.2725317930 1.5383906× 10−3 1.5383× 10−3

0.8 0.2501580200 0.2465969639 3.5610561× 10−3 3.5610× 10−3

Table 6: Comparison of the absolute error for w2(x, y, t) when x = y = 0.2 and x = y = 0.5 in Example 2
using different t values.

(x, y) t w2(x, y, t) Exact Soln. Abs. Error (SRPSM) Abs. Error (CRPS)[6]

0.2 1.648466291 1.648721271 2.54980× 10−4 2.5497× 10−4

(0.2, 0.2) 0.4 1.820026132 1.822118800 2.092668× 10−3 2.0926× 10−3

0.6 2.006504218 2.013752707 7.248489× 10−3 7.2484× 10−3

0.8 2.207900553 2.225540928 1.7640375× 10−2 1.7640× 10−2

0.2 3.003701420 3.004166024 4.64604× 10−4 4.6460× 10−4

(0.5, 0.5) 0.4 3.316303831 3.320116923 3.813092× 10−3 3.8130× 10−3

0.6 3.656089058 3.669296668 1.3207610× 10−2 1.3207× 10−3

0.8 4.023057105 4.055199967 3.2142862× 10−2 3.2142× 10−2
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Figure 7: subplot (a) depicts the approximate solution u2(x, t) and subplot (b) presents the approximate solution
w2(x, t) for Example 3 at different γ values for x = 0.5.

Example 3. Consider the coupled system of reaction-diffusion equations

Dγ
t u(x, t) = u(x, t)− u2(x, t)− u(x, t)w(x, t) + uxx(x, t),

Dγ
t w(x, t) = wxx(x, t)− u(x, t)w(x, t),

subject to the initial conditions

u(x, 0) =
epx

(1 + e0.5px)2
, w(x, 0) =

1

1 + e0.5px

where p is constant.

Here N1(u,w) = u−u2−uw+ux, N2(u,w) = wxx−uw, f1(x, t) = f2(x, t) = 0, g1(x) =
epx

(1+e0.5px)2
, g2(x) =

1
1+e0.5px

. The kth− truncated term series solution to the problem is

uk(x, t) =
k∑

n=0

an(x)
tnγ

Γ(nγ + 1)
and wk(x, t) =

k∑
n=0

bn(x)
tnγ

Γ(nγ + 1)
.

The iteration for this problem is

u0(x, t) =
epx

(1 + e0.5px)2
, w0(x, t) =

1

1 + e0.5px
,

Res1,k(x, t) = uk(x, t)−
epx

(1 + e0.5px)2
− S−1

[ 1

vγα
S
[
uk−1

]]
+ S−1

[ 1

vγα
S
[
u2k−1

]]
+ S−1

[ 1

vγα
S
[
uk−1wk−1

]]
− S−1

[ 1

vγα
S
[
(uk−1)xx

]]
, k ⩾ 1

Res2,k(x, t) = wk(x, t)−
1

1 + e0.5px
− S−1

[ 1

vγα
S
[
(wk−1)xx

]]
+ S−1

[ 1

vγα
S
[
uk−1wk−1

]]
k ⩾ 1.

After a few iterations, the coefficients are obtained:

a1(x) =
epx

(1 + e0.5px)4
[
e0.5px − 0.5p2e0.5px + p2

]
,
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b1(x) =
0.25

(1 + e0.5px)3
[
p2epx − 4epx − p2e0.5px

]
,

and

a2(x) =
1

8(1 + e0.5px)6
[
− 32p2e2px + 16e2px + 28p2e1.5px − 33p4e1.5px + 4p2e2.5px

+ 18p4e2px − p4e2.5px + 8p4epx
]
,

b2(x) =
1

16(1 + e0.5px)5
[
p4e2px + 16e2px − 8p2e2px + 11p4epx − 11p4e1.5px + 40p2e1.5px

− p4e0.5px − 32p2epx − 16e1.5px
]
,

Hence, the 2-nd order approximate solution is

Table 7: Comparison of the approximate solution u2(x, t) in Example 3 using different γ values.

t x γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1

0.2 0.3346368216 0.3075765318 0.2909673743 0.2809869555 0.2750395108
0.4 0.3545182352 0.3265194339 0.3093155911 0.2989687897 0.2927994540

0.1 0.6 0.3747087628 0.3458387005 0.3280801409 0.3173903381 0.3110127944
0.8 0.3951398996 0.3654736576 0.3472053559 0.3361990391 0.3296288598
1.0 0.4157415419 0.3853612031 0.3666326584 0.3553391449 0.3485936321

Table 8: Comparison of the approximate solution w2(x, t) in Example 3 using different γ values.

t x γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1

0.2 0.3968241630 0.4264368572 0.4475212727 0.4616009993 0.4705466352
0.4 0.3798767149 0.4091653431 0.4303163383 0.4445647827 0.4536616511

0.1 0.6 0.3632965320 0.3921407562 0.4132861957 0.4276608484 0.4368839467
0.8 0.3471168287 0.3754019837 0.3964705401 0.4109280813 0.4202514134
1.0 0.3313660940 0.3589848110 0.3799068930 0.3944037158 0.4038005919

u2(x, t) =
epx

(1 + e0.5px)2
+

epx(e0.5px − 0.5p2e0.5px + p2)

(1 + e0.5px)4
· tγ

Γ(γ + 1)
+

(18p4e2px − 32p2e2px + 16e2px + 28p2e1.5px − 33p4e1.5px + 4p2e2.5px − p4e2.5px + 8p4epx)

8(1 + e0.5px)6

× t2γ

Γ(2γ + 1)
,

w2(x, t) =
1

1 + e0.5px
+

0.25(p2epx − 4epx − p2e0.5px)

(1 + e0.5px)3
· tγ

Γ(γ + 1)
+

(p4e2px + 16e2px − 8p2e2px + 11p4epx − 11p4e1.5px + 40p2e1.5px − p4e0.5px − 32p2epx − 16e1.5px)

16(1 + e0.5px)5

× t2γ

Γ(2γ + 1)
.
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The approximate solution for Example 3 where p = 2/3 are shown in Figure 7. Figures
8 and 9 provide the visualizations to the approximate solutions.

Figure 8: The graphics represent the approximate solution u2(x, t) with different γ values: (a) γ = 0.4, (b)
γ = 0.6, (c) γ = 0.8, and (d) γ = 1.0 for Example 3.

4. Discussion

Based on the findings in Example 1, the suggested method provides a solution in
the form of an infinite series that converges to exact solutions. Figure 1 compares the
approximate solutions at different γ values with the exact solutions when x = 0.5. Figures
2 and 3 compare the visualizations to the approximate and exact solutions. These graphs
show how the solution shapes will approach the precise solution as gamma approaches 1.
Tables 1 and 2 deliver a comparison of numerical solutions derived with accurate solutions.
Furthermore, an error analysis of the Sadik residual power series method (SRPSM) and
the Laplace residual power series method (LRPSM) is carried out, demonstrating that
both performed similarly.

In Example 2, the approximate solution in the form of an infinite convergent series is
found. Figure 4. provides the outcome at different values of γ when x = y = 0.2 and the 3D
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Figure 9: The graphics represent the approximate solution w2(x, t) with different γ values: (a) γ = 0.4, (b)
γ = 0.6, (c) γ = 0.8, and (d) γ = 1.0 for Example 3.

graphic of solutions are displayed in Figures 5 and 6. Moreover, the numerical simulation
when x = y = 0.2 at different values of γ is shown in Tables 3 and 4. The Sadik residual
power series method and conformable residual power series method (CRPS) [6] errors are
analyzed at the corresponding points shown in Tables 5 and 6. This demonstrates that
both have equivalent potential.

In Example 3, the graph of approximate solutions at different values of γ when x = 0.5
are indicated in Figure 7 and the 3D graphics of approximate solutions are manifested in
Figures 8 and 9. In addition, Tables 7 and 8 present the numerical solution at different
values of γ.

5. Conclusion

This investigation successfully addressed the system of nonlinear fractional partial
differential equations by using the Sadik residual power series method. The employed
methodology offers a solution to the nonlinear problem without necessitating the utiliza-
tion of Adomian polynomials, linearization techniques, or perturbation processes. The
ease of use of the technique due to condition (9) is an advantage compared to traditional
power series approaches, which involve differentiation to obtain the series solution coef-
ficients. Therefore, the recommended approach requires less time for computation. The
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obtained results are expressed as a power series that converges to the closed form via
Mittag-Leffler functions, as shown in Example 1 and Example 2, while in Example 3, the
outcome is written in the form of a truncated power series. Numerical simulation results
and 3D graphics confirm that the method is an efficient, reliable, and accurate method for
solving non-linear problems.

Based on the information above, the Sadik residual power series approach is an efficient,
dependable, and practical method for solving nonlinear fractional order partial differential
equation systems. It is suitable for tackling other types of non-linear fractional calculus
issues.
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