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Abstract. The time-delayed (TD) of velocity and position are employed throughout this investi-
gation to lessen the nonlinear vibration of an exciting Van der Pol-Duffing oscillator (VdPD). The
issue encompasses multiple real-world elements such as feedback lags, signal transmission delays,
and delayed responses in mechanical, electrical, or biological systems. Examining this oscillator
facilitates the investigation of complex dynamics, including chaos, bifurcations, and stability alter-
ations, making it essential for disciplines like control theory, engineering, and neuroscience. The
current oscillator is analyzed using using the non-perturbative approach (NPA). This methodology
is based mainly on the He’s frequency formula (HFF). Simply, this approach transforms the nonlin-
ear ordinary differential equation (ODE) into a linear one. Accordingly, the stability standards are
constructed, depicted, and sketched. The analytical solution (AS) with the associated numerical
data that reveals high nonlinearity, and the numerical estimation is validated via the Mathemat-
ica Software (MS). In contrast to other traditional perturbation methods, the NPA exhibits high
convenience, accessibility, and great precision in analyzing the behavior of strong nonlinear oscil-
lators. Subsequently, this technique enables the analysis of issues related to other oscillators in
the dynamical systems. It is an effective and promising method for addressing similar dynamic
system challenges, providing a qualitative assessment of theoretical outcomes. The study describes
time histories of solutions for different natural frequencies and TD parameters and discusses the
main findings based on displayed curves. It also examines how various regulatory limits impact
the vibrating system. The performance is applicable in engineering and other domains owing to
its flexibility in various nonlinear systems. Consequently, the NPA can be considered significant,
effective, and intriguing, with potential for use in more categories within the domain of coupled
dynamical systems.
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1. Introduction

Most equipment, cars, structures, buildings, and dynamical systems are fundamen-
tally vibrating, which is a negative phenomenon because of the occurrence of undesirable
vibrations. Damaging dynamical stresses may cause a breakdown of the framework or ma-
chine, energy losses, performance degradation due to vibrations, and the resultant noise. A
combination of analytical, computational, and experimental methods is employed to inves-
tigate nonlinear oscillations and their applications in construction, physics, and chemistry
[19, 45, 54, 58]. The nonlinear oscillators are inherently self-excited, making their dynamics
potentially difficult to comprehended. Since a classical nonlinear oscillator is well-known
as VdPD, several researchers examined this oscillator. It is frequently employed to confirm
the effectiveness and correctness of these phenomena and has significant scientific merit
and a long-standing history of application. Lately, there has been a lot of interest in
studying these oscillators’ structures in depth. The feedback controller is used to reduce
the VdPD from vibrating when it is simultaneously exposed to fundamental parametric
resonances and external parametric excitation forces [53]. The nonlinearity of an excited
VdPD is prevented by using TD position and velocity. The TD is deemed appropriate as
a supplemental safeguard against the nonlinearly oscillating model that is being studied.
Because machinery with a TD has recently been the subject of many examinations, this
topic is of particular interest. The technique of numerous scales was used to examine two
various forms of different resonances [34]. The quasi-periodic movements and frequency-
response curves were illustrated. It is demonstrated that the forced oscillator’s differential
resonance response displayed quasi-periodic movements on a three-dimensional. The in-
fluence of linear-plus-nonlinear location feedback dominance incorporation was conducted
[37]. For resolving chaotic behaviors in periodically self-excited oscillators, a numerical
solution (NS) in a backward difference form was put forth [47]. The focus of this research
was on VdPD chaotic motions.

As common knowledge, the TDs are regularly necessary for effective control systems
because of the time needed of the system status measurements, online storage process-
ing, computing and implementing the control forces, etc. Due to the disruption in the
application of the control force transported about by this TD, the controlled systems are
frequently performed poorly or became unstable. Numerous studies were conducted on
systems with temporal delays during stochastic excitation [29, 30, 33, 36, 59]. The fun-
damental and 1/3 subharmonic resonances of a harmonically induced Duffing oscillator
(DO) below the state feedback control with a TD were studied analytically and numeri-
cally. The resonances’ first-order approximations were obtained by applying the multiple
scales method [14], and the impact of TD on the resonances was also examined. The vibra-
tion controller perspective was suggested the concept of comparable damping associated
with delay feedback, and it examined the appropriate selection of feedback gains and TD.
Investigations of the TD mechanism of effect in a non-autonomous system were conducted
[29]. A VdPD with excitation was the first mathematical model that was considered. In-
cluding both linear and nonlinear TD position feedback in the initial structure, a delaying
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system was created. Much work was done on the nonlinear dynamics of a VdPD under the
state feedback TD controller with linear and nonlinearity [59]. Two slow-flow equations
were developed for the amplitude and phase of the principal resonance response using the
averaging approach and Taylor expansion. When the TD in the feedback exceeds cer-
tain thresholds, the stability of a VdPD under linear-plus-nonlinear feedback dominance
could change, potentially leading to single or double Hopf bifurcations [36]. Analytical
conclusions were validated through comparison with direct numerical integration results.
Exploring a Duffing oscillator with TD feedback control, we examined its asymptotic
Lyapunov stabiliExploring a DO with TD feedback control, we examined its asymptotic
Lyapunov stability under parametric stimulation with constrained noise [33]. The approx-
imate solutions of several dynamical systems were obtained [14]. The solvability criteria
and the adjusted equations were achieved. The stability zones for several parameters were
analyzed and examined. The instability of linear TD systems was developed, where a gen-
eralized vector of several integral inequalities was outlined to interpret a variety of initial
circumstances [18]. Secondly, the TD system stability criteria were developed using these
multiples. A linear time-varying delay system was expected to undergo a delay-dependent
stability analysis [56]. They provided support for the claim that their strategy is more
effective at addressing time-varying delay structures. A numerical instance was provided
to demonstrate the efficiency of the model.

The nonlinear ODEs can be used to analyze a variety of technical problems. The
small factor and the averaging technique are two examples of low nonlinear ODEs [35, 57].
Research on the dynamics of a pendulum, devoted to a stiff rotational structure through
a uniform angular velocity along the vertical axis, was transient through the pendulum’s
pivot point [57]. The controlling equation of movement was derived analytically at this
frequency. Investigation into Lyapunov exponents and their moments involved analyzing
linear systems with two degrees of freedom subjected to a parametric excitation [35]. Ex-
plicit approximate equations for such exponents were computed utilizing the Homotopy
perturbation method (HPM), while considering the presence of low-intensity sounds. Ad-
ditionally, the solutions of vibratory systems were derived using the multiple time-scales
method and the Lindstedt-Poincaré technique. These techniques, however, were depen-
dent on a small factor, and the selection of this factor produced false results [32]. The
iterative methods with the HPM were shown to be crucial lately for generating approx-
imations of various nonlinear ODEs that are reasonably near to their solutions. These
methods rely on the initial conditions of the response. Therefore, if the initial assump-
tion does not correspond to the actual way the problem is resolved, it will be diverged,
preventing the process from leading to the indicated result. One of the challenging issues
that arise in the nonlinear oscillation difficulties has drawn the attention of numerous aca-
demics. Because of the nature of nonlinearity, it has been challenging for researchers and
physicists to develop an exact or roughly accurate solution to various nonlinear ODEs.
The HPM was used to analyze approximate analytical solution (AS) of a magnetic spher-
ical pendulum [21]. The frequency formula was created by Prof. He, who also came up
with an inventive method to approach linearity in a nonlinear ODE [22, 27]. There was
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a description of some recent asymptotic approach advancements that were said to be rel-
evant to both strong and weak nonlinear ODEs. The derived approximate AS were valid
across the entire solution domain. To address the limitations of conventional methods of
perturbation, numerous modified techniques, along with other mathematical tools such as
variation theory, HPM, and iterative approaches, were proposed. The HFF, the max-min
technique, and the HPM were three proposals of the NOs in light of the simplest methods
[22]. The weighted average was added to the mathematical description of his frequency
construction to enhance the accuracy of frequency. Strongly nonlinear oscillators were ad-
vised to be treated straightforwardly and exclusively [27]. In a packaging system as well as
an experimental micro-electro-mechanical system, the nonlinear relationship between the
amplitude and frequency of a nonlinear vibration system was employed [46]. An effective
approach utilizing an adaption of the conventional differential transform method was in-
troduced [12]. The findings collected indicated that the proposed strategy was a potential
method for solving the Van der Pol oscillator, providing identical information on the phase
portrait and proving the system’s stability efficiently. A unique two-dimensional oscillator
featuring an asymmetric design and its steady vibration characteristics were presented
[48]. A nonlinear oscillator equation featuring two dominant linear terms was introduced
[1]. An approximate solution was derived with the power series method. Additionally, by
incorporating a parameter into the original equation, the fixed points of the new nonlin-
ear oscillator equation were identified, and a stability analysis of these fixed points was
conducted.

The precise solutions of the intricate nonlinear ODEs that dictate the dynamic laws
commonly observed in engineering and physics are frequently unknown. The intricate
dynamics of systems can be comprehensively analyzed with these methodologies, facili-
tating an in-depth exploration of both quantitative and qualitative dimensions of system
behavior. A substantial number of researches were undertaken on the efficacy and wide
applicability of this methodology [2, 9, 10, 17]. The HFF played a significant role in deriv-
ing closed-form analytical solutions for oscillators, particularly the Duffing oscillator (DO)
[11]. The HFF formula was developed into as a powerful mathematical tool for analyz-
ing nonlinear oscillators with periodic solutions. Prof. He delivered a pioneering review
article and was the inaugural presenter of it [23]. The precision and empirical validation
of this HFF rendered it a preferred choice among engineers [7, 8, 13, 16, 24, 25, 49, 51].
The HFF has been meticulously refined over the years, resulting in enhanced accuracy, as
previously demonstrated [6, 26, 28]. Moreover, as previously stated, the applicability of
this frequency approach has broadened to encompass fractal oscillators [55]. In HFF, the
correlation between frequency and amplitude of a nonlinear oscillator was derived from the
residuals of two trial solutions [50]. Despite achieving a highly precise result, this method
offers potential for further enhancement. The HFF originating from an ancient Chinese
algorithm is an efficient method for approximating solutions of a nonlinear oscillator. A
simpler formulation was presented based on HFF [52]. The basic HFF for nonlinear os-
cillators was presented and validated, with a proposed change [20]. A fractal vibration in
a porous media was presented, and its low-frequency characteristics were clarified by the
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HFF. In the examination of nonlinear oscillatory systems, the NPA distinctly contrasts
with conventional perturbation methods. This approach is a robust mathematical tool ca-
pable of addressing many parameter regimes, especially those characterized by significant
nonlinearity. A significant technique for deriving analytical approximations in the study
of nonlinear oscillators was utilized. The principal objective of the NPA is to simplify
the nonlinear model to a more tractable form, hence enabling precise specification of the
solutions. This will provide a more precise estimation of the original system’s behavior
[3–5, 15, 31, 38–44]. The objective of this simplification is to diminish the average dispar-
ity between the two systems by converting the equation from a nonlinear ODE to a linear
one. Consequently, moving away from the iterative refinement of perturbation approaches,
the NPA presented a novel perspective. The objective of the NPA is to comprehend the
intricacies of nonlinear systems independently, without depending on minor perturbations
from a known solution.

Considering above-mentioned features, the evaluation of preventing nonlinear exciting
VdPD with TD control is a major difficulty to given its understanding to dynamic loading,
geometrical changes, and dissipating challenges. Examining this subject is the aim of
this work. According to traditional mechanics, the fundamental equation of motion is
controlled as an ODE with extremely nonlinear terms. The subsequent points should be
highlighted in relation to the unique methodology or noteworthy outcomes:

(i) In simple terms, the distinctive approach generates a second identical linear ODE
that is comparable to the current nonlinear one.

(ii) A strong matching between these two equations is achieved via the MS.

(iii) All traditional methods employ the Taylor expansion to reduce the problem’s com-
plexity. Under the current approach, this limitation has been disregarded.

(iv) The present approach enables us to examine the problem’s stability analysis, which
was not possible with some of the earlier traditional perturbation methodologies.

(v) In conclusion, the unusual strategy seems to be a simple, effective, and appealing
tool. It can be utilized to analyze various classes of nonlinear oscillators.

It is simple to follow how the paper is set up as: A NPA that yields the equivalent linear
equation is introduced in § 2. This Section displays a strong agreement between the AS
and the NS. The graphical plots in § 3 are presented along with their interpretations
based on the outcomes, including temporal history, stability, and polar study. Finally, the
concluding remarks are presented through § 4.

2. Methodology of the Prototype

Given the importance of the above-mentioned components, the study of the VdPD
has imaginable uses in manufacturing, theory of communications, and biology. It has
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Figure 1: Sketches the model being examined.

been featured in several topics. Consequently, the current work conducts the following
analysis of the excited VdPD with location and velocity delays:

z̈ + ω2z − µ(1− z2) ż + λz3 = F cos(Ωt) + α z(t− τ) + β ż(t− τ), (1)

with the initial conditions (ICs):

z(0) = A, and ż(0) = 0, (2)

where all elements considered in Eq. (1) are listed in the following:

Symbol Clarification Symbol Clarification
Z Displacement F External excited force
· Derivative with time α Coefficient of position TD
ω Natural frequency β Coefficient of velocity TD
µ Damping coefficient A Initial amplitude
λ Third-order nonlinear Duffing τ Time-decay controller

coefficients,λ > 0,λ < are hardening
and softening spring, respectively

The VdPD incorporating the TDs in position and velocity characterizes intricate dy-
namical systems, including mechanical oscillators and electronic circuits, where nonlinear-
ity and memory effects are pivotal. The TDs illustrate the impact of previous states on the
present behavior of the system, interpretation it valuable for analyzing phenomena such
as chaotic motion, signal processing, and control systems, where delayed feedback affects
stability, oscillations, and bifurcations. This equation is specifically utilized in situations
necessitating the examination of delayed response effects in actual physical systems. The
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VdPD has reasonable uses in various domains such as:
i. Mechanical Systems: Employed to model and analyze vibrations in mechanical sys-
tems, including beams and bridges, where nonlinear damping and stiffness are substantial.
ii. Electrical Circuits: Utilized in the construction of oscillatory circuits, such as vac-
uum tubes and transistor circuits, for the examination of non-linear resonance and signal
modulation.
iii. Biological Systems: Simulates heart rhythms and cerebral activity, encapsulating
the nonlinear dynamics of biological oscillations.
iv. Seismology: Facilitates the simulation and comprehension of the non-linear reaction
of structures during seismic events.
v. Control Systems: Employed in nonlinear control analysis to devise resilient con-
trollers for systems exhibiting intricate, nonlinear dynamics.
These applications control the oscillator’s capacity to record intricate, nonlinear dynamics
and forecast system reactions under diverse conditions. The usefulness of the TD in nu-
merous fields has was emphasized in the introductory section; hence, the next evaluation
will be founded on the TD of the location and velocity, i.e., the last two terms in Eq (1).
Recently, this issue was approached by leveraging the properties of special functions. The
following trial solution was proposed [46]:

ζ = A cos(∆t), ζ̇ = −A∆sin(∆t), (3)

where the initial vibration amplitude is denoted by A , and ∆ is the total frequency of the
TD as indicated in Eq. (1).
Appropriately, the shift of the independent time may be expressed as:

ζ(t− τ) = A cos∆(t− τ)

= A[cos∆t cos(∆τ) + sin∆t sin(∆τ)]

= ζ(t) cos(∆τ)− 1

∆
ζ̇(t) sin(∆τ).

(4)

Consequently,

ζ̇(t− τ) = ζ̇(t) cos∆τ +∆ζ(t) sin(∆τ). (5)

At this stage, Eq. (1) may be written as follows:

z̈ + f1(z, ż) + f2(z) = F cos(Ωt), (6)

where

f1(z, ż) = −µ(1− z2)ż +
α

∆
ż sin(∆τ)− βż cos(∆τ),

f2(z) = ω2z + λz3 − α z cos(∆τ)− zβ∆sin(∆τ).
(7)
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Now, an equivalent frequency can be evaluated as shown previously by Moatimid et
al. [45-47] in the following manner:

ω2
eqv =

2π/∆∫
0

ζf2(ζ)dt/

2π/∆∫
0

ζ2dt =ω2 +
3

4
λA2 − α cos(∆τ)− β∆sin(∆τ). (8)

Additionally, the equivalent damping term may be determined as shown below:

Γ =

2π/∆∫
0

ζ̇f1(ζ, ζ̇)dt/

2π/∆∫
0

ζ̇2dt =
1

4
µ(A2 − 4)− β cos(∆τ) +

α

∆
sin(∆τ). (9)

The equivalent ODE can now be constructed as follows:

ζ̈ + Γζ̇ + ω2
eqvζ = F cos(Ωt). (10)

For simplicity, the stability condition will be evaluated without the external excitation
force . Therefore, the nonhomogeneous differential equation as given in Eq. (10) becomes
a homogeneous one. Furthermore, the standard normal form may be attained through the
transformation ζ(t) = f(t)Exp(−Γ t/2). Elementary, the unknown function satisfies the
following simple harmonic differential equation:

f̈ +∆2f = 0, (11)

where ∆2 = ω2
eqv−Γ2/4. In other words, the total frequency can be obtained by combining

the results in Eqs. (8) and (9) with the previous relation to produce:

∆2 = ω2 +
3

4
λA2 − α cos(∆τ)− β∆sin(∆τ)− 1

4
[
1

4
µ(A2 − 4)− β cos(∆τ) +

α

∆
sin(∆τ)]2.

(12)
The stability standard requires

∆2 > 0 , and Γ > 0. (13)

As seen, Eq. (12) is a transcendental equation in ∆ . For an ease, Taylor expansion may
be employed to approximate the values of the trigonometric functions in Γ as sin ϵ ≈ ϵ
and cos ϵ ≈ 1 . In this simplification, the total frequency can be written as

∆ =

√
−α+ 3

4λA
2 − 1

64(−4β + (A2 − 4)µ+ 4ατ)2 + ω2

1 + βτ
. (14)

As seen, Eq. (12) is a transcendental equation in the total frequency ∆ . To obtain the
value of the equivalent frequency, consider the following data sample: µ = −1.0, τ =
0.1, ω = 4, α = 0.1, β = 0.3, λ = 0.5, andA = 0.2. Using MS through the command of
FindRoot, the value of the total frequency becomes ∆ = 3.90514 . For more convenience,
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along with the MS with the commend NDsolve, the graph of the original nonlinear ODE
as given in Eq. (1) is graphed with the LODE as shown in Eq. (10). For this purpose, it
is required to supplement the values of the external excited force F as well as its external
frequency σ as F = 2 and Ω = 2.5. The comparison reveals that the two solutions have
a high degree of consistency with each other, as seen in Fig. (1), where the solutions
are portrayed. Additionally, the MS reported that, up to a time of 100 units, the total
variance between the AS and NS is 0.0056.
In what follows, an excellent agreement between the linear as well as the nonlinear ODEs
is seen. This agreement comes from: The strong concordance between the two planar
curves, one originating from a nonlinear ODE as given in Eq. (1) and the other from
a linear approximation as given in Eq. (10), demonstrates that the linear model well
encapsulates the fundamental dynamics of the nonlinear system under certain conditions.
Despite the intrinsic complexity of the nonlinear ODE, the strong correlation between the
curves indicates that, within a specific range or under particular simplifying assumptions,
the linear representation serves as a robust and dependable approximation of the system’s
behavior, underscoring the efficacy of linearization in modelling intricate phenomena.

3. Discussions and Results

This Section is devoted to presenting and discussing the time histories of the obtained
outcomes as well as their phase planes and the stability/instability regions in focus on the
various values of the relevant factors. Returning to the TD as shown in Eq. (1), the NPA
enables us to determine the solution of the basic Eq. (1) that is identical as those used
by the concluding linear Eq. (10). As was previously said, every parameter affects the
related frequency ∆ , which is determined by Eq. (12).
The curves in Figs. (2)-(6) are calculated according to the considered data above and when
the parameters α, β, λ, µ, and ω have the values (0.1, 0.4, 1.8), (0.3, 0.6, 1.1), (0.5, 4, 8), (−1,−3,−6),
and (1, 1.5, 4), respectively. As displayed in Fig. (2a), when α(= 0.1, 0.4, 1.8) , the ampli-
tudes of the periodic waves somewhat rise, indicating stable motion under the impact of
these values. To support this conclusion, the phase plane curves for the represented solu-
tions in Fig. (2a) are illustrated as closed curves in Fig. (2b), i.e. in a plane that combines
the solutions versus their first derivatives. Segments (c), (d), and (e) in Fig. (2) show the
stabilities areas of the obtained solution using the NAP at α = 0.1, α = 0.4 and α = 1.8,
respectively.The examination of these sections indicates that the values of α increase, the
green-colored stable regions decrease, while the white-colored unstable regions expand.

The influence of the variation of the parameter β on the performance of the NPA
was graphed, as indicated in Fig. (3). The drawn curves in Fig. (3a) have the forms of
quasi-periodic waves. It is noted that this variation produces an increase in the wave’s
amplitudes. As shown in Fig. (3b), nearly symmetric closed curves in the plane ζζ̇are
observed, resembling a grid where the density of capture points increases with increasing
β. The stabilities zones of the solution produced using the NAP at β = 0.3, β = 0.6,
and β = 1.1 are depicted, respectively, in Figs. (2c), (2d), and (2e). An analysis of these
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sections shows that the white-colored unstable regions grow and the green-colored stable
parts shrink as the β values.

The study of the change in various values of λ(= 0.5, 4, 8) on the behavior of the
achieved solution using NPA, phase plane plots, and stability/instability areas are ex-
plored in the portions of Fig. (4). The graphed wave in Fig. (4a) has a periodic manner
over time and, therefore, the plotted phase plane curve in Fig. (4b) have closed form,
which asserts the stability of the represented wave in Fig. (4a). Moreover, there is not
any visible impact of λ values on the solution’s behavior, at which the variation becomes
very slight. The reason for the weak effect of this parameter is attributed to the minimal
magnitude of its term. Based on this analysis, one can conclude that there is no variation
in stability/instability area can be observed, as explored in Figs. (4c), (4d), and (4e).

Figure 2: Explores the comparison connecting the AS and NS.
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It must be noted that, the values of the parameter µ(= −1,−3,−6) have a good im-
pact on the obtained solution behavior, as seen in Fig. (5). Periodic waves are represented
in Fig. (5a), where the amplitudes of the waves rise as the values of µ grow. Moreover,
semi-closed curves are seen in the plane ζζ̇ i.e. Fig. (5b). The stability/instability areas
are drawn in Figs. (5c)-(5e), for the aforementioned values of this parameter.
Examining the parts in Fig. (6) reveals that the impact of the different values of a param-
eter ω(= 1, 1.5, 4) on the solution’s behavior, phase plane curves, and stability areas, as
indicated in Figs. (6a), (6b), and (6c)-(6e). The amplitude of the drawn waves in portion
(a) of this figure decreases with the increase of this parameter, while the curves in the
plane ζζ̇ is presented in portion (b). The associated stability/instability areas are shown
in portions (c)-(e) of this figure.

Moreover, the behavior of ∆ via A has been graphed in parts of Fig. (7) in view of the
explicit mathematical expression of ∆ , as in Eq. (14). This figure has been calculated
when α = 0.1, β = 0.3, λ = 0.5, µ = −1, ω = 1 and τ = 0.1 , besides the variation
of each one of these parameters when the others become fixed. An inspection of Figs
(7a, b, c, d, e) shows, they are graphed when α(= 0.1, 0.4, 0.7), β(= 0.3, 0.6, 1.1), λ(=
0.5, 0.7, 0.9), ω(= 1.0, 1.3, 1.6) and τ(= 0.1, 0.4, 0.8), respectively. It is obvious that when
α, β and τ increases, the stability regions above the drawn curves increase, while the
instability ones that lie down the curves decrease, as seen in Figs (7a), (7b), and (7e),
respectively. These regions must satisfy Eq. (14). On the other hand, when the values of
the parameters Λ and ω are increase, the stability regions decrease while the instability
ones increase, as explored in Figs. (7c) and (7d), respectively.



A. Alanazy et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5495 12 of 21

Figure 3: (a) Explores curves of at different amounts of θ(t), and (b) Reveals the phase plane trajectories in
(a).
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Figure 4: (a) Demonstrates curves of θ(t) at different amounts of a, and (b) Shows the phase plane diagrams
in (a).
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Figure 5: (a) Shows curves of θ(t) at different amounts of b, and (b) Presents the phase plane paths in (a).
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Figure 6: Show the stability/instability areas in the plane (τ − Ω) at a = b = 0.01 when (a) A = 0.4, (b)
A = 0.7, and (c) A = 1.
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Figure 7: Presents the stability/instability zones in the plane (τ − Ω) at a = b = 1 when (a) A = 0.4, and (b)
A = 0.7.

4. Conclusions

In this study, the TDs in velocity and position were employed to lessen the nonlinearity
vibration of an excited VdPD. Therefore, the TD idea is a protection against nonlinear
oscillation of the structure under examination. The current study aimed to investigate
the impact of TD, which has recently been the subject of many examinations. The NPA
was used to analyze the present oscillator. The main concept of this methodology was
to transform the nonlinear ODE into a linear one. Consequently, the stability constraint
was built, examined, and established. The AS was numerically confirmed by comparing
it to the related numerical data, which showed a remarkably high similarity. The NPA
was distinguished by its convenience, accessibility, and excellent accuracy in studying the
behavior of strong nonlinear oscillators in contrast to conventional perturbation methods.
Accordingly, we have been able to address a variety of problems with the usage of oscilla-
tors in mechanical systems thanks to the present NPA. It was a successful, powerful, and
encouraging method for examining problems related to dynamic systems. The realistic
study approximation of the analytical methodology was enabled a qualitative evaluation
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of the results. The temporal changes of the discovered solutions were shown for various
properties of the affected parameters. A description of the outcomes was provided in view
of the depicted figures through a set of curves. It has investigated the impact of various
regulatory thresholds on the vibrating system. Regarding the original methodology or
significant findings, the subsequent outcomes warrant emphasis:
i. The technique presented simply created an equivalent linear ODE to the current non-
linear one. These two equations matched each other quite well.
ii. All conventional methods employ the Taylor expansion to make the given problem
simpler in the existence of restoring forces. Under the present strategy, this weakness has
been eliminated.
iii. Unlike prior traditional techniques, the current approach allows us to investigate the
stability analysis of the problem.
iv. To sum up, it appears that the novel method was a simple, practical, and entertaining
instrument. It applies to the analysis of numerous nonlinear oscillation categories.
v. Considering the stability criteria, and in light of the numerical calculations of the pa-
rameters, it was found that the parameters α, β, µ and ω have a destabilizing influence.
By contrast, the factor λ has a slightly stabilizing effect.

As well-known, coupled dynamical systems are systems wherein two or more dynamical
entities interact through a coupling mechanism, hence affecting one another’s behavior.
This contact may occur via physical, chemical, biological, or mathematical linkages. The
state and evolution of each system are contingent not only upon its own dynamics but also
on the state and dynamics of other systems. Comprehending linked dynamical systems is
crucial for examining how interrelated components affect the overall behavior of complex
systems. Therefore, as a future work, the novel methodology, referred to as the NPA will
be used to inspect the coupled system in the field of dynamical topics.
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