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Abstract. This paper describes a new study that looks at how a magnetohydrodynamic (MHD)
nanofluid moves and transfers heat over a porous medium with a stretched sheet that moves in a
straight line. This study investigates the effects of heat radiation, viscous dissipation, and convec-
tive boundary conditions (CBCs) on the dynamics of nanofluids, an area that has received insuffi-
cient exploration despite its significance in both commercial and scientific contexts. The research
formulates the fundamental conservation equations for mass, momentum, heat, and nanoparticle
concentration, which are transformed from nonlinear PDEs into a system of ODEs. These equa-
tions are solved numerically using the Hermite collocation method (HCM), with results visualized
to illustrate the impact of key physical parameters. This work has practical applications in fields
such as cooling technologies, energy systems, and materials engineering, where enhanced thermal
management and precise control over nanofluid properties are crucial for performance optimization.
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1. Introduction

It is very important in engineering and other fields of industry to study boundary
BL phenomena that involve fluid flow and heat transfer from surfaces that are moving

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v18i1.5502

Email addresses: m.adel@iu.edu.sa and adel@sci.cu.edu.eg (M. Adel),
mmkhader@imamu.edu.sa (M. M. Khader), mmbabatin@imamu.edu.sa (M. M. Babatin),
ialraddadi@iu.edu.sa (I. Alraddadi), aaaidrous@uqu.edu.sa (A. Alaidrous),
gamalm2010@yahoo.com (G. M. Ismail)

https://www.ejpam.com 1 Copyright: © 2025 The Author(s). (CC BY-NC 4.0)



M. Adel et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5502 2 of 15

or stretching. This study domain has substantial applicability across various industries,
including but not limited to extrusion, wire drawing, and massive metallic plates utilized
in electrolyte systems and cooling. This study is the first to look at how a magnetohydro-
dynamic (MHD) nanofluid flows and transfers heat over porous media with a stretched
sheet that moves in a straight line. This study specifically investigates the effects of heat
radiation, viscous dissipation, and convective CBCs on nanofluid behavior, an area that
has received insufficient research despite its significance in both commercial and scientific
domains [6].

Nanoparticles refer to particulate matter ranging from 1 to 100 nanometers in size.
Nanofluids are generated by scattering nanoparticles inside a base fluid. This category
of fluid exhibits an innovative domain of nanotechnology aimed at enhancing thermal
conductivity. Progress in nanofluid technology has produced materials with markedly en-
hanced thermal conductivity and superior heat transfer properties. Choi [5] undertook a
comprehensive investigation of nanoparticles, leading the inquiry in this domain and es-
tablishing himself as the first contributor to this area of research. Further, nanofluids also
significantly enhance mass transfer, impacting areas like drug delivery, biomedical devices,
and renewable energy ([10], [21]). Customized models accounting for non-Newtonian be-
havior, viscous dissipation, and slip effects provide precise adaptability, proving valuable
in various industrial and technological applications.

Generally considered negligible, viscous dissipation can exert a considerable influence
in instances of exceptionally high fluid viscosity. Variations in temperature distribution
influence the rate of heat transfer ([1], [19], [23]). Viscous dissipation is essential since it
converts mechanical energy into thermal energy in viscous fluids.

The Hermite collocation method is an effective strategy for solving various problems,
as evidenced by its application in numerous studies, including those referenced in papers
such as ([4], [17], [15]). Consequently, we employ this method as a numerical solution to
tackle the presented problem. The Hermite collocation technique is essential in numer-
ical analysis and mathematical modeling due to its accuracy, adaptability in addressing
boundary value problems, and efficacy in dealing with singularities. Its capacity to de-
liver accurate solutions to DEs makes it a versatile tool useful in numerous scientific and
technical fields. Its significance lies in its ability to contribute to the attainment of stable
and precise numerical solutions, particularly in situations involving intricate phenomena
and problems with specified conditions at both ends of the domain ([14], [16]).

As per the author’s current understanding, this specific feature is not covered in the
existing literature. The aim of examining these studies on lubricated Newtonian nanofluids
is to offer a precise portrayal of the nanofluid’s transport properties. The analysis examines
the impact of thermal radiation, viscous dissipation, and CBCs. The HCM is employed
to graphically illustrate the impacts of these features.

2. Methodology

Assume the existence of a continuous, smooth-flowing, and incompressible nanofluid
in the region where y is greater than zero. This fluid originates from a permeable solid
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surface at y = 0, with the reference point clearly marked at x = 0 in Figure 1.

Figure 1. Schematic diagram of the model

A slender solid surface projects from a slit at the origin and experiences extension in
the x-direction. The initial circumstances yield the constitutive equations for the nanofluid
model in this format [22]:

∇.(u, v) = 0, (1)
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All parameters are specified in the Nomenclature section after to the conclusion, and the
following CBCs pertain to this Scenario [22]:

−κ
[
∂T

∂y

]
= h1 (Tw − T ) , −DB

[
∂C

∂y

]
= h2 (Cw − C) , at y = 0, (5)

u = cx+ λ1

[
∂u

∂y

]
, v = −vw, at y = 0, (6)

u→ 0, T → T∞, C → C∞, as y → ∞. (7)

The equations have been made dimensionless with the introduction of particular normal-
ized variables [18]:

ψ =
√
cνxf(η), η =

√
c

ν
y, θ(η) = (T −T∞)(Tw−T∞)−1, ϕ(η) = (C−C∞)(Cw−C∞)−1.

(8)
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In this context, θ(η) represents the non-dimensionalized temperature, and ϕ(η) de-
notes the concentration in dimensionless form. Upon employing these variables (8), the
governing equations for the BL equations (2)-(4) can be given in a non-dimensionalized
form as follows:

d3f

dη3
+ f

d2f

dη2
−
(
df

dη

)2

−M
df

dη
= 0, (9)

1

Pr
(1 +R)

d2θ

dη2
+ f

dθ

dη
+ βb

(
dθ

dη

dϕ

dη

)
+ βt

(
dθ

dη

)2

+ Ec

(
d2f

dη2

)2

= 0, (10)

d2ϕ

dη2
+ Le f

dϕ

dη
+
βt
βb

d2θ

dη2
= 0. (11)

Moreover, Subsequent to the application of the transformation, the CBCs assume the
following formulation:

f(0) = fw, f ′(0) = 1 + λf ′′(0), θ′(0) = −Bi1(1− θ(0)), ϕ′(0) = −Bi2(1− ϕ(0)),
(12)

f ′(∞) → 0, θ(∞) → 0, ϕ(∞) → 0. (13)

All parameters are delineated in the nomenclature section following the conclusion.
The local skin-friction coefficient Cfx, and the local Nusselt numberNux are delineated

as the subsequent physical characteristics of interest:

Re
1
2
xCfx = −f ′′(0), NuxRe

−1
2

x = −θ′(0), ShxRe
−1
2

x = −ϕ′(0),

where Rex = uwx
ν is the local Reynolds number.

3. Procedure solution

3.1. Certain characteristics of the Hermite polynomials

Definition 1.

The Hermite polynomials (HPs) are defined by [11]:

Hn(η) = (−1)neη
2 dn

dηn
e−η2 , H0(η) = 1, H1(η) = 2η, H2(η) = 4η2 − 2.

The m-th derivatives of the HPs can be articulated by the subsequent relation:

H(m)
n (η) = 2mm!

(
n
m

)
Hn−m(η) = ∆m

n Hn−m(η). (14)

Now, to utilize these polynomials for function approximation, we shall define the following:

Jm = span{H0(η), H1(η), ...,Hm(η)}.

The L2
w(η)(R)-orthogonal projection πm : L2

w(η)(R) → Jm with respect to the weight

function w(η) = e−η2 , is given by:
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∀ u(η) ∈ L2
w(η)(R) we have < πm(u(η))− u(η), ψ(η) >= 0, ∀ ψ(η) ∈ Jm.

Utilizing the orthogonality property, we can now present the following approximation:

πm(u) =
m−1∑
i=0

ciHi(η), ci =
1√
π2ii!

< u(η), Hi(η) >L2
w(η)

(R), i = 0, 1, ...,m− 1.

The function πm(u) is referred to as the Hermite expansion of u(η) and serves as an
approximation of u(η) across R in most of the literature concerning spectral approaches.
The HCM is utilized to numerically address various issues, including linear complex DEs
[2] and linear DEs with variable coefficients [4]. For additional information regarding this
procedure, see ([3], [9]).

3.2. Numerical implementation of the Hermite collocation method

To employ the HCM for resolving the proposed system (9)-(13) inside the domain
(0, η∞), where η∞ = 8, we estimate f(η), θ(η), and ϕ(η) as follows:

f(η) ≃
m∑
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aℓHℓ(η), θ(η) ≃
m∑
ℓ=0

bℓHℓ(η), ϕ(η) ≃
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cℓHℓ(η). (15)

Substitution from Eqs.(14), (15) in (9)-(11), we obtain:(
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We collocate Eq.(16) at m − 2 nods ηp, p = 0, 1, ...,m − 3, and collocate Eqs.(17)-(18) at
m− 1 points ηk, k = 0, 1, 2, ...,m− 2 as:(

m∑
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(21)

We utilize the roots of the Hermite polynomial Hm−1(η) as appropriate collocation lo-
cations. Additionally, by putting Equation (15) into the CBCs (12)-(13), the following
equations are derived:

m∑
ℓ=0

Hℓ(0) aℓ = fw,
m∑
ℓ=1

∆1
ℓ Hℓ−1(0) aℓ − λ

(
m∑
ℓ=2

∆2
ℓ Hℓ−2(0) aℓ

)
= 1,

m∑
ℓ=1

∆1
ℓ Hℓ−1(0) bℓ +Bi1

(
1−

m∑
ℓ=0

Hℓ(0) bℓ

)
= 0,

m∑
ℓ=1

∆1
ℓ Hℓ−1(0) cℓ +Bi2

(
1−

m∑
ℓ=0

Hℓ(0) cℓ

)
= 0,

m∑
ℓ=1

∆1
ℓ Hℓ−1(η∞) aℓ = 0,

m∑
ℓ=0

Hℓ(η∞) bℓ = 0,
m∑
ℓ=0

Hℓ(η∞) cℓ = 0.

(22)

Equations (19)-(22) are a system of (3m + 3) nonlinear algebraic equations that may be
solved using Newton iteration to determine coefficients ai, bi, and ci for i = 0, 1, 2, ...,m.
We can use formulas (15) to estimate the solution of the system (11)-(13).
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4. Verification of the HCM

Now, the HCMwas verified by comparing our results for assorted values of βb with those
reported in the prior study by Govardhan et al. [12]. This comparison has been reported
in Table 1 when fw = M = λ = R = Ec = 0, Bi1 → 0, Bi2 → 0 and Pr = 10, βt = 0.1.
This comparison revealed a strong agreement between the findings, affirming the accuracy
and dependability of the HCM in representing the behavior of the studied system. The
close alignment of both results supports the method’s efficacy for this type of problem,
highlighting its robustness for applications involving complex fluid dynamics.

Table 1. Comparison of Re
−1
2

x Nux with the previous findings of Govardhan et al. [12] for
assorted values of βb when fw =M = λ = R = Ec = 0, Bi1 → 0, Bi2 → 0 and

Pr = 10, βt = 0.1.

βb Govardhan et al. [12] Present work

0.1 0.952376800 0.95237677951
0.2 0.693174600 0.69317459803
0.3 0.520079700 0.52007967980
0.4 0.402581500 0.40258149807
0.5 0.321055100 0.32105599085

5. Results and discussion

This section of the research presents the numerical results of the implementation of
HCM. The study examined the effects of concentration, temperature, Eckert number,
magnetic influence, suction, thermal radiation, and Brownian motion. This study exam-
ined their impact on velocity, concentration, and temperature parameters. Figure 2 shows
how M affects f ′(η), ϕ(η), and θ(η). The graph shows how M affects these traits. The
graphs demonstrate that a decrease in M results in a decrease in the velocity BL. Increas-
ing temperature and concentration distributions slightly raises the magnetic parameter.
The Lorentz force, which arises from the interaction of conductive fluids with magnetic
fields, explains this. Our findings show that the Lorentz force reduces flow velocity. In
a magnetic field, fluid particles resist more, raising the fluid’s temperature. Additionally,
previous studies by Dharmaiah and his colleagues ([7], [8]) highlight the impact of mag-
netic fields in fluid dynamics, especially in the context of nanofluid flow. Their findings
reveal that magnetic fields play a critical role in controlling nanofluid movement and sta-
bility, influencing essential parameters such as flow rate, thermal transfer, and particle
orientation within the fluid.

Figure 3 shows how the suction parameter fw affects f ′(η), ϕ(η), and θ(η). This im-
age shows how changes in the suction parameter affect the system’s f ′(η), ϕ(η), and θ(η).
The temperature, concentration, and velocity profiles fall significantly as suction increases.
Suction on a stretching surface allows fluid migration, reducing BL thickness, velocity,
temperature, and concentration distributions.The quantitative HCM results are reported
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in this research section. The study examined concentration, temperature, Eckert num-
ber, magnetic influence, suction, thermal radiation, and Brownian motion as regulating
elements. This study examined their effects on velocity, concentration, and temperature
parameters. Figure 2 shows howM affects f ′(η), ϕ(η), and θ(η). The graph shows howM
changes affect various properties. The graphs show that decreasing M lowers velocity BL.
Increased temperature and concentration distributions increase magnetic parameter. This
is explained by the Lorentz force, which occurs when conductive fluids interact with mag-
netic fields. Our findings show that the Lorentz force reduces flow velocity. In a magnetic
field, fluid particles resist more, raising the fluid’s temperature. The concentration of the
nanofluid decreases as the suction parameter increases, owing to the enhanced removal of
fluid particles from the BL. Through thinning the BL and limiting nanoparticle diffusion
towards the surface, this increased suction lessens nanoparticle accumulation close to the
surface, lowering the concentration profile in the nanofluid.

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

Η

f'
HΗL

Λ=0.2, fw=0.8

M=0.0, 1.0, 2.0

0 2 4 6 8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Η

Βt=0.1, Βb=0.8, Le=1.0

Ec=0.2, R=0.5, Pr=1.0

Bi1=0.2, Bi2=0.2

ΦHΗL
ΘHΗL

M=0.0, 1.0, 2.0

Figure 2. (a) f ′(η) for various M (b) ϕ(η) and θ(η) for various M
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Figure 3. (a) f ′(η) for various fw (b) ϕ(η) and θ(η) for various fw

Figure 4 shows the impact of the slip parameter λ on the profiles of f ′(η), ϕ(η), and θ(η).
Increased slip parameter improves concentration and temperature distributions. Addi-
tionally, the slip parameter is critical for velocity distribution obstruction. Physically,
because a slip at the boundary lowers fluid-surface friction and slows the rate at which
nanoparticles are removed from the BL, the concentration of nanofluid rises as the slip pa-
rameter increases. The total concentration within the BL rises as a result of the increased
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ability of more nanoparticles to gather close to the surface due to the decreased shear.
Further, the significance of the slip velocity phenomenon in fluid dynamics, particularly
within the study of nanofluid flow, is underscored in prior research conducted by Jawad
et al. [13]. Their work illustrates how slip velocity impacts flow behavior at the fluid-solid
interface, influencing factors such as heat transfer efficiency, fluid resistance, and overall
system performance.
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Figure 4. (a) f ′(η) for various λ (b) ϕ(η) and θ(η) for various λ

Figure 5 shows the impact of Ec and R on θ(η). As Ec and R rise, thermal diffusion
accelerates. Increasing both metrics directly affects the temperature profile. Furthermore,
Ramesh and his colleagues’ earlier study [20] emphasizes the role that heat radiation plays
in nanofluid flow. Thermal radiation enhances energy transmission and influences fluid
behavior near heated surfaces by having a considerable impact on the temperature distri-
bution and heat transfer rates within the nanofluid, according to their findings. This effect
is especially significant in applications that need effective thermal management because it
improves stability and control over heat dissipation in systems that are subjected to high
temperatures.
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Figure 5. (a) θ(η) for various R (b) θ(η) for various Ec

See Figure 6 for the impact of temperature and concentration Biot numbers on ϕ(η)
and θ(η). The visualisation shows how Biot numbers affect system temperature and con-
centration spatially. Temperature and concentration dispersion increase proportionally
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with thermal and concentration Biot numbers. An increase in heat transfer coefficient
leads to higher values of Bi1 and Bi2, resulting in higher temperatures. Biot numbers
must increase to improve thermal and concentration effects. Increased heat transfer coeffi-
cients raise system temperatures. A higher thermal Biot number increases convective heat
transfer between the nanofluid and surface, raising its temperature. Improved convective
heat transfer boosts the BL nanofluid temperature by increasing thermal energy transfer
from the fluid’s surface to the fluid.
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Figure 6. (a) ϕ(η) and θ(η) for various Bi1 (b) ϕ(η) and θ(η) for various Bi2

See Figure 7-a for the impact of βt on ϕ(η) and θ(η) profiles. The graph shows how ther-
mophoresis parameter changes affect system concentration and temperature. An increase
in βt broadens the concentration distribution and somewhat raises the temperature field.
Nanoparticles are distributed by thermophoresis. See Figure 7-b for the impact of βb on
ϕ(η) and θ(η) profiles. As the Brownian motion parameter increases, the concentration
distribution decreases and the temperature field barely rises. Physically, changing the
Brownian motion parameter βb can influence the random movement of nanoparticles in
fluid, affecting their distribution and configuration. Higher Brownian motion nanoparti-
cles have more kinetic energy and spread uniformly, whereas lower ones have less dispersive
energy and may cluster or distribute unevenly.
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The drag force concept Cfx
2 Re

1
2
x represents the resistance an item encounters in a fluid,

such as gas or liquid. The object’s speed and energy efficiency decrease as this force resists
its travel through the medium. The Nusselt number Nux√

Rex
is a key statistic for assessing

convective heat transmission over a BL. It measures heat transfer between solid surfaces
to reveal thermal interaction and heat dissipation efficiency. The Sherwood number Shx√

Rex
measures the rate of material flow from a solid border to the surrounding fluid, indi-
cating mass transfer efficiency in fluid flows. Studying molecule diffusion and substance
dispersion in fluid media requires this dimensionless quantity. It evaluates mass transfer
efficiency in industrial mixing, chemical processes, and environmental dispersion. Table 2
shows that increasing suction parameter values significantly increases Nusselt and Sher-
wood numbers. This implies faster heat and mass transmission. Additionally, increasing
the suction parameter increases surface drag. However, as the magnetic field parame-
ter increases, the Nusselt and Sherwood values decrease, indicating lower heat and mass
transfer rates. The surface drag force increases, indicating that a higher magnetic field
slows flow, influencing temperature and concentration BLs and increasing movement re-
sistance. After careful investigation, the heat transfer coefficient falls as radiation, Eckert,
and thermal Biot numbers rise. Increased thermal radiation, energy dissipation (Eckert
number), and thermal BL effects (thermal Biot number) reduce heat transport. However,
the heat transfer coefficient increases with the concentration Biot number, implying that
increased mass transfer effects assist heat transfer. Raising the slip velocity parameter
increases the Nusselt number, indicating better heat transfer efficiency, and reduces the
drag force, showing reduced fluid flow resistance.
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Table 2. Findings of Cfx
2 Re

1
2
x ,

Nux√
Rex

and Shx√
Rex

for various values of some

controlling parameters with Pr = Le = 1.0

fw M λ Ec R βt βb Bi1 Bi2
Cfx
2 Re

1
2
x

Nux√
Rex

Shx√
Rex

0.2 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.1015487 0.5214785 0.1352895
0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.2589301 0.6215874 0.1498520
1.5 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.5002589 0.7855201 0.1602547

0.8 0.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 0.9982018 0.8255202 0.1985412
0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.2589301 0.6215874 0.1498520
0.8 2.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.5974521 0.7105587 0.1299987

0.8 1.0 0.0 0.2 0.5 0.1 0.8 0.2 0.2 1.4587412 0.4559852 0.1658952
0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.2589301 0.6215874 0.1498520
0.8 1.0 0.5 0.2 0.5 0.1 0.8 0.2 0.2 1.1502587 0.7201455 0.1315873

0.8 1.0 0.2 0.0 0.5 0.1 0.8 0.2 0.2 1.2589301 0.6962301 0.1289620
0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.2589301 0.6215874 0.1498520
0.8 1.0 0.2 0.5 0.5 0.1 0.8 0.2 0.2 1.2589301 0.5701852 0.1700369

0.8 1.0 0.2 0.2 0.0 0.1 0.8 0.2 0.2 1.2589301 0.7125896 0.1409852
0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.2589301 0.6215874 0.1498520
0.8 1.0 0.2 0.2 1.0 0.1 0.8 0.2 0.2 1.2589301 0.5420589 0.1599802

0.8 1.0 0.2 0.2 0.5 0.0 0.8 0.2 0.2 1.2589301 0.6125896 0.1509851
0.8 1.0 0.2 0.2 0.5 0.2 0.8 0.2 0.2 1.2589301 0.5998521 0.1488514
0.8 1.0 0.2 0.2 0.5 0.5 0.8 0.2 0.2 1.2589301 0.5214789 0.1412016

0.8 1.0 0.2 0.2 0.5 0.1 0.3 0.2 0.2 1.2589301 0.6320158 0.1308753
0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.2589301 0.6215874 0.1498520
0.8 1.0 0.2 0.2 0.5 0.1 1.5 0.2 0.2 1.2589301 0.6199875 0.1516789

0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.1 0.2 1.2589301 0.5998740 0.1508123
0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.2589301 0.6215874 0.1498520
0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.3 0.2 1.2589301 0.6521092 0.1391572

0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.1 1.2589301 0.6239980 0.1198540
0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.2 1.2589301 0.6215874 0.1498520
0.8 1.0 0.2 0.2 0.5 0.1 0.8 0.2 0.3 1.2589301 0.6201925 0.1615973

Nomenclature
B0 Strength of magnetic field
Bi1, Bi2 Thermal and Concentration Biot numbers
c Constant related to stretching rate
C Fluid concentration
cp Temperature buffering capacity
Cw Nanoparticle density across the sheet
C∞ Nanoparticle density at infinity
DB Random particle dispersal coefficient
DT Thermally induced migration rate
Ec Dissipative heat parameter
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fw The factor at which a fluid is absorbed
H1, H2 Thermal and Concentration convection coefficients
Hn Hermite polynomials
Le Lewis number
M Magnetic field impact measure
qr Radiant heat transfer intensity
R Radiation emission factor
Pr Prandtl number
T Internal fluid temperature
Tw Heat level at the sheet’s edge
Shx Sherwood number
T∞ Heat level away the sheet
vw Proportional suction rate
uw Expansion speed
x, y X − Y coordinate system

Greek symbols
λ Slip parameter
µ Viscosity
ϕ Unitless concentration
κ Thermal transmission capability
θ Unitless temperature
ψ Stream function
βb Brownian motion parameter
ρ Density
βt Thermophoresis parameter
ν Kinematic viscosity

6. Conclusions

This study examines the flow characteristics of MHD nanofluid over a stretched sheet,
incorporating BL conditions. The investigation examined suction velocities, thermal radi-
ation, viscous dissipation, and slip conditions. We applied a similarity transformation to
reduce the problem’s equations to ODEs. We used the Hermite collocation approach to
quantitatively solve the problem. Outcomes of the inquiry.

As suction intensifies, temperature and concentration profiles diminish concurrently
with velocity. An increase in a significant thermophoretic parameter elevates the con-
centration profile and marginally enhances the temperature field. As M increases, the
temperature and concentration profiles elevate while the BL thickness diminishes. Tem-
perature increases due to thermal radiation and viscous dissipation. As the slip velocity
parameter increases, the profiles of ϕ(η) and θ(η) expand while the velocity field associated
with the same value diminishes.
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