EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
2025, Vol. 18, Issue 1, Article Number 5503 2
ISSN  1307-5543 — ejpam.com

Published by New York Business Global

More on the Order of Aragéon Artacho—Campoy Algorithr;w
Operators With the Help of Douglas—-Rachford Operators

Salihah Thabet Alwadani

Mathematics, Yanbu Industrial College, The Royal Comission for Jubail and Yanbu, Yanbu,
Saudi Arabia

Abstract. The Aragén Artacho—Campoy algorithm (AACA) is a new method for finding zeros
of sums of monotone operators. In this paper we complete the analysis of their algorithm by
defining their operator using Douglas Rachford operator and then study the effects of the order
of the two possible Aragén Artacho—Campoy operators.
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1. Introduction

Throughout, we assume that

X is a real Hilbert space with inner product (-,-) : X x X - R, (1)
and induced norm || - ||: X — R:x — /{(x,x). We also assume that A : X =2 X

and B : X = X are maximally monotone operators. For more details about maximally
monotone operators, we refer the reader to [3], [4], [9], [10], [11], [12], [14], [15], and the
references therein. In [3], Auslender and Teboulle provide essential tools used to study
monotone graphs. They focus on the behavior of a given subset of R" at infinity. By
using real analysis and geometric concepts, they develop a mathematical treatment to
study the asymptotic behavior of sets. Moreover, the book by Bauschke and Combettes
[4] is one of the best sources to learn about non-linear analysis, namely, convex analy-
sis, monotone operators, and fixed point theory of operators. Additionally, [9] highlights
the importance of maximal monotone operators and describes the progress that has been
made in the field of monotone operators over the past decade. Furthermore, [10] pro-
vides a survey that discusses the developments in the theory of monotone operators. It
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is well known that a prominent example of maximal monotone operators is the subd-
ifferential operator, which was investigated in section 5.1.6 of [11]. Moreover, Burachik
and Svaiter establish new connections between maximal monotone operators and convex
functions. They demonstrate that each maximal monotone operator is associated with a
family of convex functions. Their study focuses on this family, determining its extremal
elements using the concept of convex functions (see [12]). Following this, Patrick reviews
the properties of subdifferential operators as maximally monotone operators in [14], and
examines proximity operators as resolvents of these operators. Additionally, in [15], a
comprehensive treatment of monotone set-valued operators is presented, utilizing math-
ematical programming in detail. The resolvent and the reflected resolvent associated with
A are:

Ja=(Id+A)"! and Ry =2J4 —1d, ()

respectively. Suppose that

A and B are maximally monotone on X, w € X, and y € ]0,1]. 3)

Fact 1. The resolvent averages between A, B and N, are

Ay H=H:x— A(’y’l(x— (1— 'y)w)> +y M1 =) (x—w), (4)
and
B, H=H:x— B(’y’l(x— (1— fy)w)> +9 1 =) (x —w). 5)
Fact 2. A, and B, are maximally monotone and their resolvents are given by
Ja, =7vJa+ (1—9)w and Jp, =9Jp+ (1—7)w, (6)
respectively. Moreover, reflected resolvents are
Ra, =2yJa+2(1—7)w—1d, and Rp, =27Jp+2(1—7)w—1d, @)

respectively. Then Aragén Artacho—-Campoy operator [1] associated with the ordered
pair of operators (A, By) is

TAWB’Y = (1 — /\) Id +/\RBWRAW- (8)

Fact 3. (Definition of the Douglas—Rachford splitting operator) The Douglas—Rachford split-
ting operator [19] associated with the ordered pair of operators (A, B) is

1
TA,BZE(Id—i—RBRA) =1Id —J4 + JsRa. 9)
Through straightforward calculations, we can determine that
Tga =1d+JaRp — Js. (10)

In this paper, we explore the relationship between the Aragén Artacho-Campoy opera-
tors Ta, g, and Tp, 4. The key findings are summarized as follows:
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* Key properties of 4, and A, are presented in Proposition 1. These properties will
be valuable for our analysis.

* We provide formulas for the Aragén Artacho—Campoy operators utilizing the Dou-
glas—Rachford splitting operator (refer to Lemma 1). For additional details on the
Douglas-Rachford splitting algorithm, see [17], [5], [8], [13], [16], and [18]. [5], [8],
[13], and [18] help to understand more about the behaviour of DRS. Paper [5] stud-
ies the range of the DRS systematically. Under the assumption that the operators
are 3* monotone operators. While the second one helps to understand the behav-
ior of the shadow sequence when the given functions have disjoint domains. The
main result of this paper is proving the weak and value convergence of the shadow
sequence generated by the Douglas—Rachford algorithm. Paper [13] aims to solve
convex feasibility problems by using new algorithmic structures with DRS opera-
tors. Paper [18] gives a comprehensive survey about the developments of the DRS
methods. Additionally, [17] shows an amazing connection between the alternat-
ing direction multiplier method (ADMM) and Douglas Rachford Splitting method
(DRS) for convex problems. Finally, the paper [16] shows that the proximal point
algorithm encompasses the DRS method as a specific instance, which is employed
for locating a zero of the combined sum of two monotone operators.

* With the assumption A is affine relation, we prove that R4, Th. s, = T5 a,Ra, (see
Theorem 1).

* We demonstrate the results by providing two examples (refer to Example 1 and
Proposition 2).

¢ We established that the equality does not hold when substituting A, with B, in the
previous result (see Proposition 2, (vii), (viii), and (ix)).

The notation employed in this paper is standard and closely aligns with that in [2], [1],
and [4].

2. New Results

All the results in this section are new, highlighting the main ones, which are the rela-
tionships between the Aragén Artacho-Campoy operators Ty, p, and Tp, 4,. Key find-
ings include the important properties of J4, and A, outlined in Proposition 1, which
support our analysis. We provide formulas for the Aragén Artacho—-Campoy operators
using the Douglas—Rachford splitting operator, as detailed in Lemma 1. Under the as-
sumption that A is an affine relation, we establish the equality R4, TZ,,,& = Tg’m AvR A,
(see Theorem 1). Our findings are further illustrated with two examples (refer to Exam-
ple 1 and Proposition 2). Additionally, we demonstrate that replacing A, with B, in this
result leads to a failure of the equality (see Proposition 2, (vii), (viii), and (ix)).
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Proposition 1. Let v € ]0,1] and assume that A is an affine relation. The following
statements are true:

(i) Ja, is affine.
(ii) A, is an affine relation.

Proof. (i): From [7, Lemma 2.3] or [6, Theorem 2.1(xix)], it follows that ], is affine. Utiliz-
ing (6), we can conclude that ] 4. is also affine. Thus, ], is affine. (ii): From (i), we have
that J4, is affine if and only if (Id +A,) ! is an affine relation, which in turn is equiva-
lent to (Id + A, ) being an affine relation, and this is also equivalent to A, being an affine
relation. |

Lemma 1. Let y € ]0,1[ and A € |0, 1]. We derive:

RBWRA'Y :Id‘f’z]BWRAv_z]AW (11)
=1d +27JgRa, —27]a (12)
=Tap+ (1—=27)Ja — JpRa +27]pRa,. (13)

Additionally,
Ry, Rp, =1d+2]a, Rp, —2J5, (14)
=1d +27JaRp, —27]p (15)
= Tp,a+ (1—=27)]p — JaRp +27JaRp, . (16)

Moreover,

TA’WB’Y =1Id +2/\]B“YRA’Y — 2/\]./17 (17)
=1d +2Ay(JgRa, — Ja) (19)
= Tap+ (1 —=2A7)Ja — JsRa +2A7]BR4, (20)
=T+ Jp — JaRp +2AyJgRa, — 2A7] 4. (21)

Furthermore,

Ty, 4, = 1d+2A]4 R, —2MJg, (
= 1d +2A7]aRp, — 2A7]p (23)
=1d 4+2Ay(JaRp, — J3) (
= Tpa+(1—2A7)Jp — JaRp +2A7]aRp, . (

Proof. From (7), we can conclude:

RBYRAV = (2]Bw —1Id ) RAW
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=2Jp,Ra, — Ra,
=2Jp,Ra, — (2]a, —1d)
=1d +2Jp, R4, —2]a,,
This establishes (11). Additionally, from (6) and (11), we have:
Rp,Ra, =1d+2(7]p + (1 = v)w)Ra, = 2(v]a + (1 = 7)w)
=1d+27/pRa, +2(1 = v)w —27]a —2(1 = 7)w
=1d+27JpRa, —27]a,
This confirms (12). Furthermore, from Fact 3, we have:
Rp,Ra, = Tap+Ja—JsRa+27]sRa, —27]a
=Tap+ (1—=27)Ja — JpRa +27]Ra,.

50f 16

This confirms (13). The proof for Rs, Rp, follows similarly to that of R, R4,. From (8),

we find:
TA’Y/B'Y = (1 — /\) Id —|—)\R37RA7
=(1-A)Id+A(Id +2Jp,Ra, — 2]A7) (from(11))
=1Id +2A]BWRA“Y — ZA]AM
This confirms (17). Utilizing (6) and (17), we derive:
Ta, B, = 1d+2A(vJp + (1 = 7)w)Ra, —2A(v]a + (1 — 7)w)
= Id +2AyJpRa, +2A(1 = 7)w — 2A9Ja — 2A(1 = y)w
=1d +2A’)’]BRA7 — 2)\’)/]A.
=1d +2A(JsRa, — Ja)
This confirms (18) and (19). Finally, from (18) and (9), we derive:
Ta,B, = Tap+]Ja—JsRa+2A7]pRa, —2A7]a
=Tap+ (1—=2A7)]Ja — JpRa +2A7]pRa, .

By merging (10) and (18), we obtain (21). The proof for Tp_ 4, follows a similar approach

to that of T4_ 5, -

Example 1. Let w € H, U be a closed linear subspace, y € |0,1], and A € ]0,1]. Assume

A =1d —v, where v € U+, and B = P,y for some a € H. From (9), we have
Tap=1d—Ja+ JpRa,
and from (8), it follows that
Ta,p, = (1—A)Id —l—A(RBWRAW).

The following statements hold:
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(i) Ja = ((Id+v)/2) and R4 = v.
(ii) Ja, = v((Ad+v)/2) + (1 — )w. Moreover,
Ra, =70~ (1—9)Id+2(1 - 7)w.
(iii) Js = (Id—3Py) —Pyia and Rp= (Id—Py)—2Py. a
(iv) We have
Js, = 7((1d —%Pu) —Pya) +(1- 7w,

and

Rp, = (2y —1)Id =y Py =2y Py a+2(1 — y)w.

(V) Tap = ((Id+v)/2) — Py a.
(Vl) TB,A = ((Id +U) /2)
(Vii) ]BRA =0 — Pul a.

(viii) JoRp = ((Id+0)/2) — (Py /2) — Py a.
(9 JsRa, =70+ (1—=7)((3Pu—1d) = (Pu—21d)w) — Py 0

(x) JaRp, = %((27— 1)Id —y Py —29 Py a+2(1 —'y)w—H)).

(xi) Suppose k := A7y [(27 —1Do+4(1—y)w—-2(1—v)Pyuw —2P,. a} . Then

Ta,p,(x) = (1=A7v(3=27))x+Ay(1—9)Pyx+k.

(xii) Suppose! := Ay |2(1 —v)Pyra+v+2(1 —vy)w|. Then
pp u

Ts, ,(x) = (1=A9(3 = 27))x + Ay(1 = y) Pux+1.

60f 16

(26)

(27)

Proof. (i): Let y € H and define x = J4y. Then, we have y € (Id +A)x if and only if y =
2x — v, which implies x = ((y 4+ v)/2). This leads to J4 = ((Id 4+v)/2). Consequently,

we find that
Ry = 2((Id+v)/2) —Id< Rg=v

by (2).
(ii): Combine (i) and (6) yields:

Ra, (x) =27((x+0)/2) +2(1 —v)w —x
=y(x+0)+2(1—7y)w—x
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=qv—(1—79)x+2(1—7y)w.
(iii): Let y € H and define x = Jgy. Our goal is to determine x. We have:

y€ (Id+Puy)x & y=x+a+Py(x—a)
@y:x—i—(ld—Pu)a%—Pux
S y=x+Pypa+Pyx.
Hence,
y=x+PyLa+x*, where x* =Py x.

Applying Py to (28) results in:

1
Puy:Pux—i—PuPuLﬂ-i—x* @Puy:2x* & xt = EPuy

Inserting (29) back into (28) results in:

1 1
y= x+PuLa+§Puy<:>x: (Id—EPu>y—PULa.
Therefore,
1

]B = (Id_i Pu) —PuL a,

and
Rg=2 (Id—%Pu) —2Ppa—1Id = (Id—Py) — 2P, L a,

by (2).

(iv): From (6) and (iii), it can be concluded that:

J, =7 +2(1—7)w

1
= 7<<Id—§Pu) — Py a) +(1—y)w.
According to (7), we obtain:
1
Rp, = 27<(Id—§Pu> — P a) +2(1—9)w-Id

=2y —-1)Id—yPy—2yPyra+2(1—y)w.
(v): Utilizing (iii), (i), and (9) yields:
xX+0v

2
X v 1
:§—§+RAX—§PURAX_PuLa

TA,B(x):x—( )+(Id—%Pu—Pu¢a)RAx

7 of 16

(28)

(29)
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(4 R

(vi): Based on (iii), (ii), and (9), we find:
1 1
TB,A(X) = Ex + ERARBx
1 1
=5x+ E(U) ((x —Pyx) —2Py. a)
= %(x +v).
(vii): By employing (iii) and (i), we derive:
1
]BRAX = (Id _E Pu - PuJ_ IZ)RAX
= RAX— %PuRAx—PULH
=v—Pyia.
(viii): Applying (i) and (iii) results in:
Id +o

]ARBX = ( )RBX

1 1
— ERBX"’E’U

1 1
= E(x—Pux—ZPula) —1—50

= <x—;—v) —%Pux—Pula.

(ix): Through the application of (ii) and (iii), we obtain:
1
]BRAWX = (Id _E Pu - PuL H)RAWX

1
= RAWJC — EPU RAWX —Pul a

8of 16

= 70— (L= 7)x+2(1 ~ w2 Py (201~ 1w — (1 - 7)x) ~ Py a

=w+(1—y)(<1Pu—1d>x— (Pu—21d)w) Py a.

2
(x): Based on (i) and (iv), we derive:

Id +v

JaRp,x = (
1
2

)((2')/— 1)x —9yPyx—2yPa+2(1 —')/)w>

((2')/—1)x—'yPux—2'yPuLa—|—2(1 —'y)w—l—v>.
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(xi): Merging (vii), (ix), (v), and (20) results in:
Ta,p,x=Tap+ (1 —2A7)]a — JpRa+2A7]pRa,
X+0 x+ov
= (53°) =Py a+ (1207 (5°) — JsRa +2A7]5Ra,
= (x+v) = Pyra—Ay(x +v) — JpRa +2A7]pR4,
= (x+0) = Ay(x +0) v+ 207]sRa,
=x — Ay(x+0) +2A7JpR4,

(1-7)
2

= (1= A9(3 = 27)x + Ay(1 = 1) Pux+A7((2y - 1)o

41— )w—2(1 —’y)Puw—ZPuia).

:x—/\fy(x+v)+2)vy[fyv+

(xii): Using (iii), (vi), (viii), and (x), we derive:
Tp, a,x = Tgax + (1 —2A7)Jpx — JaRpx + 2A7]aRp, x
x+v x+v 1
= ( > ) + (1 =2A7)Jpx — ( 5 ) + 5 Pux + Py a+2A7]aRp,x

1 1
= (1—2A'y)<x— EPUX_PLILH) +§Pux+PuLﬂ+2)\')/IARB,yx
= (1 —2)&’)’)X+2/\’YPULﬂ+)\’YPuX+2)\’)’]AR37x

90f 16

Pux—(1—’)/)(x—|—Puw—2w)—PuLa]

= (1—A7(3—2'y))x+/\'y(1—y)Pux+)\'y[2(1—v)PuLa+v+2(l—’7)w}r

which verifies (xii).

Lemma 2. Let A : H = H be a maximally monotone and 7 € ]0, 1[. If ] is affine, then:

Ja,Ra, = Ra,Ja,-
Proof. Combine Proposition 1(i) and [7, Lemma 2.4 (i)].

Lemma 3. Assuming that A is an affine relation, we can conclude:

Ra,Ta,, — T, a,Ra, =2(Ja,Ta, B, — (1 =A)Ja, —AJa,Rp,Ra,).
=27(JaTap — (1= A)Ja — AJaRp,Ra,).

(30)
|

(31)
(32)

Proof. From Proposition 1(ii), it follows that A, is an affine relation. Therefore, applying

(7) and (17), we derive:

RA7 TA"Y/BY - TB’Y/AWRA"Y = (2]AW —1Id ) TA"Y'BW - TBY/AVRAY

=2Ja,Ta, B, —Ta,B, — Tp,A,Ra,

- 2]A7TA7,BW — TAWIBW — (Id +2/\]A7RB7 — 2)\]&7)1{47
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=2Ja,Ta, B, — Ta, B, — Ra, —2A(Ja,Rp,Ra, — Jp,Ra,)
= ZIA'VTAWB'Y - (Id +2A]BWRA7 - 2A1A7) - RAW

—2A(Ja,Rp,Ra, — J5,Ra,)
= 2]A’YTA7/B'Y —1Id +2/\]A7 — RA’Y — ZA]A7R37RA7
=2Ja,Ta, B, —2(1 = A)Ja, —2A]Ja,Rp,Ra,,

this confirms (31). Subsequently, utilizing (6) and (31) gives

Ra,Ta, B, — Tp,A,Ra, =2]a,Ta,, —2(1 = A)Ja, —2A]a,Rp, Ra,
=2(vJa+ Q= 7)w)Ta,p, —2(1 = A)(7vJa+ (1 - 7)w)
—2A(vJa+ (1 —7)w)Rp Ra,
=27JaTa, B, —27(L = A)Ja —2A7]aRp,Ra,.

n
Theorem 1. Lety € |0,1[ and A € |0, 1], and suppose that A is an affine realtion. Then:
Ra,Tx B, = Tg a4 Ra, (33)

Proof. We will demonstrate by induction that R4, Tg% B, = Tg,y’ AwR A, Starting withn =1,
we can use (32) to derive:

Ra,Ta, B, — Tp,a,Ra, =27]aTa, B, —27(1 = A)Ja —2A7]aRp, Ra,
= Ja(27(Ta,p, = (1=A)1d) ) = 2A9J4Rp, Ra,
— I (27((1 —A)Id+ARp Ry, ) —29(1—A) Id) —2A9JaRp,Ra,
= 2AyJaRp,Ra, —2AyJaRp,Ra, = 0.

Hypothesis assumption: when n = k;

Ra,Th 5 — Tf a,Ra, =0. (34)

’Y’B’Y
For n = k+ 1, and utilizing (34), we obtain:
k+1 k+1 _ k k
RA"Y TA7,BW B TB7,A7 RA'Y - RA'Y TAmBy TA7r37 o TBV,AW TB'Y'A“/RAW
_ k k
- RA’Y TA7r37 TA'Y'B"/ - TBwAy RA’Y TA'Y'B'Y
_ k k
- RA“Y TA7,37 TA7/37 - RA'Y TA'yrB'y TAV/BW
=0.
Therefore, (33) has been verified. |

Lemma 4. Suppose both A and B are affine relations. Then the following holds:
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(i) The operators Ta,p, and Tp 4, are affine.
(ii) The equation T4, p, Rp, Ra, = Rp Ra, T4, p, is satisfied.
(iii) We have

/\72 (TAW'B’Y TB'Y'A"Y - TB?/A'Y TA"Y'B”I) = RB’Y R%‘\y RB’Y - RAW R%'y RA’Y .

(iv) The equality
Ta,5,T8,4, = TB,4,TA,B,

holds if and only if RBWR%WRB,, = RAWR%WRA”I'
(v) If Ri‘“r = R%v, then it follows that TA'Y'BW TBW,AW = TBW,A7 TAW,B«Y-
Proof. (i): Clear. (ii): From (i), we conclude that:
Ta, 8, Re,Ra, =Ta, 5, (A" Ta, 5, — A7 (1—A)Id)
= AT 5y — AT (1= A)Ta, s,
= (A_lTAW,BW - /\_1(1 - )\) Id ) TA7,37

= Rp,Ra,Ta, B,
(iii): Utilizing (8), we find that:
A"2(Ta,B,Tp,a,) = A >((1=A)Id+ARp Ra ) ((1—A)Id+AR4 Rp,)
Hence,

A"%(Ta, 8, Ts,4,) = A 2((1 = A)*Id +A(1 — A)Ra,Rp, + A(1 = A)Rp Ry,
+A’Rg,R% Rp,). (35)

Moreover,
A"2(Tp,a,Ta,p) =A">((1=A)Id+AR4 Rp ) ((1—A)Id+ARp Ry,)
Hence,

A72(Tp,4,Ta,B,) = A" *((1=A)*Id+A(1 — A)Rp, Ra, + A(1 — A)Ra, Rp,
+ A%R AWR%WRAW). (36)

Taking the difference of (35) and (36) yields:
-2 _ 2 2
A (TAWB'Y TB%AW B TBW'A"Y TA“I’B’Y) - RBWRAy RBW - RA'YRB'YRA'Y'

(iv) and (v): They are derived from (iii). |
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Proposition 2. Let U be a closed linear subspace, and define A = 1d +v with v € U*. Further-
more, let B = Py, where a € U+ and a # v. The following statements are true:

(i) We have
Ta, B, (x) = (1—Ay(B—=27))x+Ay(1—9)Pux+k,

where
k=Ay((2y—1)v+4(1—7)w—2(1—7v)Pyw — 2a).

(ii) We have
Tp,a,(x) = (1=Ay(3=27))x+Ay(1 =) Pux+1,
where
I=Ay(21—y)a+ov+2(1—7)w).
(iii) We have
Ra,Ta, B, (x) = Tp, 4 Ra (x)
= (1=7)((Ar(38=27) = 1)x = Ay(1 =) Pux) +h,
where

h=v9Ay(2y=3)+1+Alo+2(1—7)[(1-2Ay(1—7))w
+ Ay (1 =) Puw] +2Ay(1 —7)a.

(iv) We have
Ry, Ta p = (1—27) ((/\’)/(3 —29)—1)x— Ay(1—7)Py x) +m,
where

m=(1-27)Ay[(1-27)v+2(1—7)Pyuw —4(1 —7)w]
+2[(1—y)w+y(A —1—2Av)a].

(v) We have
Ty, 4, Rz, = (1-27) ((M(3—27) —1)x —y(1+A —Ay(5—-37)) Pux+s,
where
5= )vyv—|—2<)vyZ - (2/\+1)'y+1)w

~29(A(3y+4) +1)a+219(1-1)  Puw.



S. Th. Alwadani / Eur. J. Pure Appl. Math, 18 (1) (2025), 5503 13 of 16
(?Jl) RBn, TAW,BW 75 TBW,AWRBy
(vii) We have

Rg, T, 4, = (27 1) (1= Ay(3=27) )x+7(My(5-37) = A= 1) Pux+5,
where

b= —27()\7(27—3) —I—A—I—l)a —2(7(/\7(2’)/—3) —|—1> — 1)w+/\'y(2'y— 1)v
—2A9%(1 = 7) Py w.

(viii) We have
T, 5 Rp, = (27 —1) (1 —Ay(3- 27))x n 7(/\7(5 —3y)—A-— 1) Pux+oc

where

= —27()\7(27—3) +A+1>a —2(7(;\7(27—3) +/\+1> - 1)w—|—)vy(27— 1)o
—2A9*(1 =) Py w.

(ix) Ry, Ty, A, # Ta. b Rp,.
Proof. (i): This is derived from Example 1 (xi). (ii) : This is derived from Example 1 (xii).
(iiii) : Utilizing (i), (ii), and Example 1(ii), we find that:
Ra,Ta, B (x) = ('yv —(1—9y)ld+2(1- 'y)w> Ta, B, (x)
=70+2(1=7)w— (1-17)T4,5,(x)
=y — (1=7)Ay2y—-1)v+2(1 —y)w—4Ay(1 - 'y)zw
~ (1= ((1=M(B=27))x+ A1 =) Pux+2ay( —2(1—7) Pyw—2a))
=(1-7) (()vy(3 —2y) —1)x —Ay(1—7) Py x)
+y[Ar(2y=3)+1+ Ao +2(1—79)[(1 —2Ay(1—7))w
+ Ay (1 =) Puw] +2Ay(1 —v)a.
Moreover,
Tp,a,Ra,(x) = (1= Av(3—27))Ra,(x) + Av(1—7) PuRa,(x)
+Ay(2(1—7)a+0v+2(1—7)w).
= (1=7) (A (3-27) = 1)x = Ay(1 - 7) Pux)
+y[Av(2y=3)+1+AJv+2(1—7)[(1—2Ay(1—7))w
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+ Ay(1—9) Puw] +2Ay(1 - 7)a.

Therefore,

RA7 TA’WB'Y (x) = TB?/A'YRA’Y (x)
and (iii) is verified.
(iv): Using Example 1(iv) and (i) gives

Ry, Ta p, (x) = ((27 —1)Id —y Py —2ya+2(1— 'y)w> Ta 5. (x)
=2(1—-7)w—2ya— (1-27)Ta,5,(x) = 7PuTa,z,(x)
=2(1-y)w-27a~ (1-27)[(1-27(3=27) )x +A7(1 = 7) Pux +K|
= (1—-27) {()\7(3—27) - 1)x—/\'y(1 -7) Pux}
+A7(1=27)[(1=27)o+2(1—7) Puw — 4(1 — 7)w]
+2[(1=y)w+7(A —=1-2)y)al.

(v): Utilizing (ii) and Example 1(iv), we obtain

Ty, 4 Rp, = ((1 —Ay(3—27) Id) +Ay(1—7) Py +Z)R37(x)

= (1= 27(3=27)Ra, (x) + A7 (1= 7) Pu (Rg, (%)) +(Rg, (%))

= (1-27(3-27)) @1 = D)x =1 (1+ 2= A7(5-37) ) Pux
+229(1=7) (a+w) + (1-27(3-27) ) (2(1 = 7)w - 274)
+2Ay(1—7)*Puw + Ayo

= (1-29) ((M(3=27) =1)x = 7(1+A = A7(5-37)) Pu x
+A0+2(A? = A+ 1)y +1)w
—29(A(3y+4) +1)a+2A7(1—1) Py w.

(vi): This is derived from (iv) and (v).
(vii): By using Example 1(iv) and (ii) we have

Rg, T, a,(x) = (27 = 1) 1d =y Py —270+2(1 = 7)) Ty, 4, (x)
= (2y—1)Tp, 4, (x) = yPu (Tp,,a,(x)) —2ya+2(1 —y)w
= @y=1)[(1-M(3-27))x+Ar(1—7) Pux+]

— 4Py [(1 — (3 —27)>x—|—)vy(1 —7) Pux+l} —29a+2(1—7)w



S. Th. Alwadani / Eur. J. Pure Appl. Math, 18 (1) (2025), 5503 15 0f 16

= (2y—-1) [(1 —Afy(3—2fy))x+)vy(l -7) Pux}
—7[(1 —)vy(3—2')/)> Py x+Ay(1—7) Pux]
+ 2y 1)l =Pyl —2ya+2(1—y)w
= 2y =1 (1-A7(3-27))x+7(A7(5-37) =2~ 1) Pux

—2’)/(/\7(27—3) +/\+1)a —2(’)/()\’)/(27—3) —}—1) — 1>w+)\’y(2fy— 1)v
—2A9*(1—7) Py w.

(viii): Utilizing Example 1(iv) and (ii) yields

Ta,,Rp, (x) = (1= Ay(3 = 29) 1d+A7 (1 - 7) Py +k) R, (x)
(1—)\7 27) )R,
(1 — (3 ) ((27 —1)x— 7Pux> + (1 — Ay (3 27)) (2(1 —)w —2’)/51)
+Ay(1—9)Py ((27—1 x—'yPux> +Ay(1—7) Py (2(1 —’y)w—Z’ya) +k
= 2y =1)(1-A7(3-27) )x+7(A7(5-37) =2 —1) Pux

—27(/\7(27—3) +A+l)a —2(7()\7(2')/—3) +A+1) - 1>w
+ Ay (2y —1)o —2A9*(1 — 7)) Py w.

RB —|—/\’)/ 1—’)/)PuR37(x)+k

(ix): It follows from (vii) and (viii). |
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