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Abstract. The theory of monotone operators is fundamental in modern optimization and various
areas of nonlinear analysis. Key classes of monotone operators include matrices with a positive
semidefinite symmetric component and subdifferential operators. In this paper, we extend our
investigation to displacement mappings. We derive formulas for set-valued and Moore-Penrose
inverses. Additionally, we conduct a thorough examination of the operators (one-half times the
identity plus T) and its inverse, providing a formula for the inverse of the operator. Our results are
illustrated through an analysis of reflected and projection operators onto closed linear subspaces.
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1. Introduction

It is well known that one of important classes of monotone operators are Displace-
ment mappings of nonexpansive mappings. There are many key examples that have
proven how these mappings are highly useful in optimization problems. For example, in
2016 Heinz H. Bauschke, Warren Hare, and Walaa Moursi used displacement mappings
in analyzing the range of the Douglas–Rachford operator to derive valuable duality re-
sults, see [5]. Additionally, the asymptotic regularity results for nonexpansive mappings
were generalized in [8] to the broader context of displacement mappings. Overall, the
displacement mapping framework has emerged as a powerful tool for analyzing the be-
havior of nonexpansive mappings, with a range of important applications in optimiza-
tion and related areas. Throughout, we assume that

X is a real Hilbert space with inner product ⟨·, ·⟩ : X × X → R, (1)
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and induced norm ∥ · ∥ : X → R : x 7→
√
⟨x, x⟩. We also assume that A : X ⇒ X and

B : X ⇒ X are maximally monotone operators. The resolvent and the reflected resolvent
associated with A are

JA = (Id+A)−1 and RA = 2JA − Id, (2)

respectively. An operator T : X ⇒ X is nonexpansive if it is Lipschitz continuous with
constant 1, i.e., (

∀x ∈ X
)(
∀y ∈ X

)
∥Tx − Ty∥ ≤ ∥x − y∥. (3)

Moreover, T : D ⇒ X is firmly nonexpansive if(
∀x ∈ D

)(
∀y ∈ D

)
∥Tx − Ty∥2 + ∥(Id−T)x − (Id−T)y∥2 ≤ ∥x − y∥2. (4)

Fact 1. [4, Definition 4.10] Let D be a nonempty subset of X, let T : D → X, and let β ∈ R++,
where R++ is the set of strictly positive real numbers ]0,+∞[. Then T is β-cocoercive ( or β-
inverse strongly monotone) if βT is firmly nonexpansive, i.e.,(

∀x ∈ D
)(
∀y ∈ D

)
⟨x − y, Tx − Ty⟩ ≥ β∥Tx − Ty∥2.

In optimization, we have seen the importance the displacement mappings of nonexpan-
sive mappings:

Id−R (5)

because of the nice properities that have such as monotonicity which plays a central role
in modern optimization (see [4, 11, 18, 20–23] for more details). A comprehensive anal-
ysis of the displacement mappings of nonexpansive mappings from the point of view of
monotone operator theory under the condition of isometry of finite order of R are given
in [2, Lemma] and [1, Section 3]. We refer the reder to [18, Exercise 12.16], and [4, Example
20.29], [7]. More information is in [10, 15, 17, 19].

Throughout this paper, we assume that

R : X → X is linear and nonexpansive, with D := Fix R = ker
(

Id−R
)
. (6)

In this paper, we study the displacement mapping using the assumption in (6). Our results can
be summarized as follows

• Proposition 1, Lemma 1, and Remark 1 collect some useful properities of the dis-
pdisplacment mapping and its inverse, which will be useful in our study.

• Lemma 2 provides a formula and gives nice properties of the operator T.

• We derive a formula for the inverse of the displacment mapping (see Theorem 2 (i)).
A formula for the Moore-Penrose inverse of the displacement mapping is given in
Theorem 2(ii).
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• Theorem 3 gives a comprehensive study of the the operators
(
1/2

)
Id+T and its

inverse. Additionaly, we derive a formula of
((

1/2
)

Id+T
)−1

and prove that is
equal to the resolvant of the operator 2T.

• We illustrates the reults by giving four examples. The first two examples are re-
lated to the projection operator to a closed linear subspace (see Example 2 and Ex-
ample 3), while the other two are related to the reflected operator to closed linear
subspace (see Example 4 and Example 5).

2. Results

Important properties of the displacement mapping (Id−R) and its inverse are given
in the next proposition.

Proposition 1. Let R be nonexpansive operator, then the following holds:
(i) 1

2 (Id−R) is firmly nonexpansive.
(ii) Id−R is nonexpansive.

(iii) Id−R and (Id−R)−1 are maximally monotone.
(iv) Id−R is 1

2 -cocoercive.
(v) (Id−R)−1 is strongly monotone*with constant 1

2 .
(vi) Id−R is 3∗ monotone.

(vii) (Id−R)−1 is 3∗ monotone
(viii) Id−R is paramonotone.

(ix)
(

Id−R
)−1 − 1

2 Id is maximally monotone.

Proof. (i): We have

R is nonexpansive ⇔ −R = 2
((

Id−R
)
/2
)

is nonexpansive

⇔
(

Id−R
)
/2 is firmly nonexpansive,

by [4, Proposition 4.4]. (ii): It follows from (i) and [4, Proposition 4.2] . (iii): See [4,
Example 25.20(v)] or [2, Theorem 7.1]. (iv): Combine (i) and Fact 1. (v): Take (x, u) ∈
gra(Id−R)−1 and (y, v) ∈ gra(Id−R)−1. Then u ∈ (Id−R)−1x ⇒ x = u − Ru and
v ∈ (Id−R)−1y ⇒ y = v − Rv.

⟨u − v, x − y⟩ ≥ 1
2
∥x − y∥2

⇔ ⟨u − v, (u − Ru)− (v − Rv)⟩ ≥ 1
2
∥(u − Ru)− (v − Rv)∥2,

∗An operator A : X ⇒ X is strongly monotone with constant β ∈ R++ if A − β Id is montone, i.e.,(
∀(x, u) ∈ gra A

)(
∀(y, v) ∈ gra A

)
⟨x − y, u − v⟩ ≥ β∥x − y∥2.
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which deduce from (iv) and Footnote * that (Id−R)−1 is strongly monotone with con-
stant (1/2). (vi) and (vii): It follows from (iv) that Id−R is bounded by (1/2) and
its monotone by (iii). Hence, Id−R and (Id−R)−1 are 3∗ monotone by [4, Proposi-
tion 25.16(i) & (iv)].
(viii): See [4, Example 22.9]. (ix): By (iv) and [4, Example 22.7], (Id−R)−1 is (1/2)-
strongly monotone, i.e., B := (Id−R)−1 − 1

2 Id is still monotone. If B was not maximally
monotone, then neither would be B + 1

2 Id = (Id−R)−1 which would contradict (iii).
■

Lemma 1. Set D := ker
(

Id−R
)
= Fix R. Then the following holds:

(i) D is a closed linear subspace.
(ii) Fix R∗ = D.

(iii) ran
(

Id−R
)
= ran

(
Id−R∗) = D⊥.

Proof. (i): Let x, y ∈ D such that x − Rx = 0 and y − Ry = 0. Let α, β ∈ R. Then(
Id−R

)(
αx + βy

)
=
(

Id−R
)
(αx) +

(
Id−R

)
(βy)

= α(x − Rx) + β(y − Ry)
= 0 + 0 = 0.

Therefore, αx + βy ∈ D and hence D is a linear subspace. To show that D is closed, let
(xn) be a sequence in D such that (xn) converges to x. Then

lim
n→∞

(Id−R)(x − xn) = lim
n→∞

(Id−R)x − lim
n→∞

(Id−R)xn

= (Id−R)x − (Id−R)x = 0.

Therefore, x ∈ D and hence D is closed.
(ii) and (iii): It follows from Proposition 1(iii) & (iv) that Id−R is monotone and bounded.
Hence, Fix R∗ = Fix R = D and ran

(
Id−R

)
= ran

(
Id−R∗) = D⊥ by [4, Proposi-

tion 20.17]. ■

Remark 1. Suppose that X = ℓ2(N) and that

R : X → X : (xn)n∈N 7→
(
((1 − εn)xn)

)
n∈N

, (7)

where (εn)n∈N lies in ]0, 1[ with εn → 0. Then the following holds:
(i) Id−R : (xn)n∈N 7→

(
εnxn

)
n∈N

is a compact operator.
(ii) D = Fix R = {0}.

(iii) ran (Id−R) is not closed.
(iv) ran R is a closed subspace.

Proof. (i) and (ii): See [12, PropositionII.4.6]. (iii): It follows from [16, Proposition 3.4.6]
that ran (Id−R) is closed if and only if ran (Id−R) is finite-dimensional. On the other
hand, X = D⊥ = ran (Id−R), i.e., the range of Id−R is dense in the infinite-dimensional
space X. Altogether,

ran
(

Id−R
)

is not closed.

(iv): See [16, Lemma 3.4.20]. ■
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Lemma 2. Suppose that ran (Id−R) is closed; equivalently,

ran (Id−R) = D⊥.

Set

T := PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥ . (8)

Then,
(i) ran (Id−R)∗ = D⊥.

(ii) T is a linear and continuous.
(iii) T is monotone.
(iv) T is maximally monotone.
(v) ran T ⊆ D⊥, where D = ker(Id−R).

(vi) PD⊥ T = T PD⊥ = T.

Proof. (i): By using the closeness of ran (Id−R) and ...

ran (Id−R)∗ = ran (Id−R∗)

= ran (Id−R)

= D⊥.

(ii): This is clear because T is defined using PD⊥ , which is a linear and continuous oper-
ator. (iii): See [4, Example 20.12]. (iv): Combine (ii), (iii) and [4, Corollary 20.28]. (v): It
follows directly from (8). (vi): Since ran T ⊆ D⊥ by using (v), we obtain

PD⊥ T = T.

Moreover, both T and PD⊥ commute and so

T PD⊥ = PD⊥ T = T.

■

Remark 2. It is well known that ran (Id−R) is closed if and only if there exists α > 0 such that(
∀y ∈ (ker(Id−R))⊥ = D⊥

)
∥y − Ry∥ ≥ α∥y∥; (9)

Proof. See [13, Theorem 8.18]. ■

Proposition 2. Suppose that (9) holds, then the operator

PD⊥(Id−R)−1 : D⊥ → D⊥, (10)

(i) is a linear selection of T−1.
(ii) is continuous and its norm is bounded above by 1/α.
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Proof. (i): It follows from (8) and Lemma 2. (ii): Clear from (9). ■

Theorem 1. Suppose that ran (Id−R) is closed. Set

A := (Id−R)−1 − 1
2

Id, (11)

and defined
QA : dom A → X : y 7→ PAy y. (12)

Set
B := Pdom A QA Pdom A . (13)

Then the following holds;
(i) dom A = D⊥ and is closed.

(ii) A is linear relation.
(iii) A is maximally monotone.
(iv) we have

(∀y ∈ dom A) QAy = PD⊥(Id−R)−1y − 1
2

PD⊥ y.

(v) B is maximally monotone, linear and continuous.
(vi) A = ND⊥ + B.

(vii) B = T.
(viii) B|dom A is a selection of A|dom A.

Proof. (i): From (11) dom A = ran (Id−R) = D⊥, which is closed by the assumption.
(ii): It is clear that A is a linear relation, i.e., gra A is a linear subspace, that A0 = D, and
by (i) the dom A = D⊥ is closed.
(iii): It follows directly from Proposition 1(ix).
(iv): By [9, Proposition 6.2], we have

(
∀y ∈ dom A

)
QAy = P(A0)⊥(Ay) ∈ Ay. Hence,

(
∀y ∈ D⊥) QAy = PD⊥(Ay) = PD⊥

(
(Id−R)−1y − 1

2
y
)

= PD⊥(Id−R)−1y − 1
2

PD⊥ y.

(v): See [9, Example 6.4(i)]. (vi): Combining (i) and [9, Example 6.4(iii)] gives

A = Ndom A + B = ND⊥ + B.

(vii): Using (13), (iv) and (i) gives

B = Pdom A QA Pdom A

= PD⊥

(
PD⊥(Id−R)−1 − 1

2
PD⊥

)
PD⊥

= PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥
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= T (from (8)).

(viii): Using (i) gives

A|dom A = (ND⊥ + B)|D⊥ (from (vi))
= (ND⊥ + T)|D⊥ (from (vii))

=
(

ND⊥ + PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥

)∣∣∣∣
D⊥

(from (8))

≡ D + D⊥ (because ND⊥ |D⊥ ≡ D),

and

B|dom A = T|D⊥ (from (i) and (vii))

=
(

PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥

)∣∣∣∣
D⊥

(from (8))

= D⊥.

Hence, B|dom A is a selection of A|dom A. ■
In the next theorem we derive formulas for the inverse and Moore-Penrose inverse of

the operator (Id−R).

Theorem 2. Recall from (8) and (11) that

T := PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥ ,

and
A := (Id−R)−1 − 1

2
Id,

respectively.Then the following holds;
(i) The set-valued inverse of Id−R is

(Id−R)−1 =
1
2

Id+T + ND⊥ . (14)

(ii) The Moore-Penrose inverse of Id−R is

(Id−R)† = T +
1
2

PD⊥ . (15)

Proof. (i): Combining Theorem 1(vi) & (vii) and (11) gives

(Id−R)−1 − 1
2

Id = A

= ND⊥ + T,
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Hence,

(Id−R)−1 = ND⊥ + T +
1
2

Id .

(ii): By using [6, Proposition 2.1] and we obtain

(Id−R)† = P(Id−R)∗ ◦(Id−R)−1 ◦ Pran (Id−R)

= PD⊥ ◦(Id−R)−1 ◦ PD⊥ (from Lemma 2(i))

= PD⊥ ◦
(1

2
Id+T + ND⊥

)
◦ PD⊥ (from (i))

= PD⊥ ◦
(1

2
PD⊥ +T PD⊥ +D

)
(Because ND⊥ |D⊥ ≡ D)

=
1
2

PD⊥ +PD⊥ T PD⊥ +0

=
1
2

PD⊥ +T (from Lemma 2(vi)),

which verified (15). ■

Proposition 3 (uniqueness of T). Let T◦ : X → X be such that

(Id−R)−1 =
1
2

Id+T◦ + ND⊥ , (16)

and
PD⊥ T◦ PD⊥ = T◦. (17)

Then T◦ = T.

Proof. By using (8), we have

T = PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥

= PD⊥

(1
2

Id+T◦ + ND⊥

)
PD⊥ −

1
2

PD⊥ (from (16))

= PD⊥ T◦ PD⊥

= T◦ (from (17)),

as claimed. ■

Theorem 3. Recall from (8) that

T = PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥ .

Then the following holds;
(i) (1/2) Id+T is 1

2 -strongly monotone.
(ii)

(
(1/2) Id+T

)−1
= 2J2T.
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(iii) 2T + Id = 2 PD⊥(Id−R)−1 PD⊥ +PD.
(iv) J2T = PD + 1

2 (Id−R)PD⊥ .
(v) 2J2T = (Id−R)PD⊥ +2 PD.

(vi) (Id−R)PD⊥ +2 PD = Id−R + 2 PD.
(vii) We have (1

2
Id+T

)−1
= 2J2T = (Id−R)PD⊥ +2 PD = Id−R + 2 PD . (18)

(viii)
(

1
2 Id+T

)−1
∣∣∣∣

D⊥
= Id−R.

Proof. (i): Showing that 1
2 Id+T is (1/2)-strongly monotone ⇔ 1

2 Id+T − 1
2 Id = T

is montone, which is verified by Lemma 2(iii). (ii): From Lemma 2(ii) & (iv) and [14,
Lemma 2], we have (1

2
Id+T

)−1
=
(1

2
(Id+2T)

)−1

= 2
(

Id+2T)−1

= 2J2T.

(iii): By using (8) and Lemma 2(ii), we obtain

2T = 2
(

PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥

)
= 2 PD⊥(Id−R)−1 PD⊥ −PD⊥ ,

hence

2T + Id = 2 PD⊥(Id−R)−1 PD⊥ −PD⊥ + Id

= 2 PD⊥(Id−R)−1 PD⊥ +PD .

(iv): From (iii), we obtain 2T + Id = 2 PD⊥(Id−R)−1 PD⊥ +PD. Put differently,

2T + Id : D ⊕ D⊥ → D ⊕ D⊥ : d ⊕ d⊥ 7→ d + 2 PD⊥(Id−R)−1d⊥.

For two vectors d⊥, e⊥ in D⊥, we have the equivalences,

e⊥ = 2 PD⊥(Id−R)−1d⊥ ⇔ d⊥ =
(

2 PD⊥(Id−R)−1
)−1

e⊥,

and therefore,

d⊥ =
(

2 PD⊥(Id−R)−1
)−1

e⊥

=
(

2
(

PD⊥(Id−R)−1))−1
e⊥
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=
1
2

(
PD⊥(Id−R)−1

)−1
e⊥

=
1
2
(

Id−R
)

P−1
D⊥ e⊥

=
1
2
(

Id−R
)
e⊥.

Hence,

(2T + Id)−1 : D ⊕ D⊥ → D ⊕ D⊥ : d ⊕ d⊥ 7→ d +
1
2
(Id−R)d⊥;

equivalently,

J2T = (2T + Id)−1 : z 7→ PD z +
1
2
(Id−R)PD⊥ z.

(v): It follows directly from (iv). (vi): Because ker(Id−R) = D, we have (Id−R)PD ≡ 0.
Therefore,

(Id−R)PD⊥ +2 PD = Id−R + 2 PD .

(vii): Combine (ii), (v), and (vi). (viii): From (v), we obtain(1
2

Id+T
)−1

∣∣∣∣
D⊥

=
(

Id−R + 2 PD
)∣∣

D⊥ = Id−R.

■

Proposition 4. Let m ∈ {2, 3, . . . } and assume that Rm = Id, i.e., R is an isometry of finite
rank m. Assume that X = Rm and recall from [2, Lemma] that

PD =
1
m

m−1

∑
k=0

Rk and PD⊥ = Id− 1
m

m−1

∑
k=0

Rk, (19)

where D = Fix R. Then

1
2

PD⊥
(

R + R∗)PD⊥ =
1
m

(
− Id−

m−2

∑
k=2

Rk +
max{1, m − 2}

2
(

R + Rm−1)). (20)

Proof. Noted that R is an isometry ⇒ R∗R = RR∗ = Id, so R−1 = R∗. But also R has rank
m, hence Rm−1 = R−1 = R∗. By using these facts, we obtain

PD⊥(R + R∗)PD⊥ = PD⊥
(

R + R−1)PD⊥

= PD⊥
(

R + R−1)( Id− 1
m

m−1

∑
k=0

Rk
)

(from (19))

= PD⊥

((
R + R−1)− 1

m

m−1

∑
k=0

(
R + R−1)Rk

)
= PD⊥

((
R + R−1)− 1

m

m−1

∑
k=0

(
Rk+1 + Rk−1)).
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Since R has rank m, the following holds:

m−1

∑
k=0

Rk+1 =
m−1

∑
k=0

Rk−1 =
m−1

∑
k=0

Rk. (21)

Moreover,

Rl
m−1

∑
k=0

Rk =
m−1

∑
k=0

Rl+k =
m−1

∑
k=0

Rk (22)

Thus, (
R + R−1)( 1

m

m−1

∑
k=0

Rk
)
=

1
m

m−1

∑
k=0

(
Rk+1 + Rk−1) = 2

m

m−1

∑
k=0

Rk. (23)

Therefore,

PD⊥
(

R + R∗)PD⊥ = PD⊥

((
R + R−1)− 1

m

m−1

∑
k=0

(
Rk+1 + Rk−1))

= PD⊥

((
R + R−1)− 2

m

m−1

∑
k=0

Rk

)

=

(
Id− 1

m

m−1

∑
k=0

Rk

)((
R + R−1)− 2

m

m−1

∑
k=0

Rk

)

=

((
R + R−1)− 2

m

m−1

∑
k=0

Rk

)
−
(

1
m

m−1

∑
k=0

Rk

)((
R + R−1)− 2

m

m−1

∑
k=0

Rk

)

=

((
R + R−1)− 2

m

m−1

∑
k=0

Rk

)
−
(

2
m

m−1

∑
k=0

Rk − 2
m2

m−1

∑
l=0

Rl
m−1

∑
k=0

Rk

)

=

((
R + R−1)− 2

m

m−1

∑
k=0

Rk

)
−
(

2
m

m−1

∑
k=0

Rk − 2
m2

m−1

∑
l=0

m−1

∑
k=0

Rk

)

=

((
R + R−1)− 2

m

m−1

∑
k=0

Rk

)
−
(

2
m

m−1

∑
k=0

Rk − 2m
m2

m−1

∑
k=0

Rk

)

=

((
R + R−1)− 2

m

m−1

∑
k=0

Rk

)
−
(

2
m

m−1

∑
k=0

Rk − 2
m

m−1

∑
k=0

Rk

)

=

((
R + R−1)− 2

m

m−1

∑
k=0

Rk

)
.

First: assume that m > 2. Therefore, max{1, m − 2} = m − 2. Then

PD⊥
(

R + R∗)PD⊥ =
(

R + R−1)− 2
m

m−1

∑
k=0

Rk
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=
2
m

(
m
2
(

R + R−1)− m−1

∑
k=0

Rk

)

=
2
m

((
m
2
− 1

)(
R + R−1)− Id−

m−2

∑
k=2

Rk

)

=
2
m

(
− Id+

m − 2
2

(
R + Rm−1)− m−2

∑
k=2

Rk

)
,

which prove (20) when m > 2.
Next, assume that m = 2. Then max{1, m − 1} = 1 and R−1 = R2−1 = R. Therefore,

PD⊥
(

R + R∗)PD⊥ =
(

R + R−1)− 2
m

m−1

∑
k=0

Rk

= 2R − 2
2
(

Id+R
)

= 2R − Id−R
= R − Id .

On the other hand,

2
m

(
− Id+

max{1, m − 2}
2

(
R + Rm−1)− m−2

∑
k=2

Rk

)
=

2
2

(
− Id+

1
2
(

R + R
)
−

0

∑
k=2

Rk

)

= − Id+
1
2
(2R)− 0

= − Id+R,

so equality holds when m = 2. ■

3. Examples

Example 1 (isometry of finite rank). Let m ∈ {2, 3, . . . } and assume that

Rm = Id . (24)

Then the results in Section 2 were derived already in [1]. Moreover, the work there based on
exploiting (24) yielded to (19) and

T =
1

2m

m−1

∑
k=1

(
m − 2k

)
Rk = −T∗, (25)

which is always skew right-shift operator, T is symmetric only when m = 2.
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Example 2. Let U be a closed subspace of X and suppose that

R = PU . (26)

Then
(i) D = U.

(ii) Id−R = PU⊥ .
(iii) ran (Id−R) = D⊥ is closed.
(iv)

(
Id−R

)−1
= Id+NU .

(v) T = 1
2 PU⊥ = T∗.

(vi) T is always symmetric, but skew only when U = X.

Proof. (i): D = Fix R = Fix PU = {x ∈ X | x = PU x} = U. (ii): Id−R = Id−PU = PU⊥ .
(iii): By using (ii), we obtain ran (Id−R) = ran (Id−PU) = U⊥ = D⊥. (iv): From [4,
Example 1], we have

(
Id−R

)−1
=
(

Id−PU
)−1

= P−1
U⊥ = Id+NU⊥ .

(v): By using (8), we have

T = PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥

= PU⊥(Id+NU⊥)PU⊥ −
1
2

PU⊥

=
1
2

PU⊥

= T∗.

(vi): Follows from (v). ■

Example 3. Let U be a closed subspace of X and suppose that

R = −PU . (27)

Then
(i) D = {0}.

(ii) Id−R = Id+PU .
(iii) ran (Id−R) = X .
(iv)

(
Id−R

)−1
= 1

2 Id+ 1
2 PU⊥ .

(v) T = 1
2 PU .

Proof. (i): D = Fix R = Fix(−PU) = {x ∈ X | x = −PU x} = {0}. (ii): Id−R = Id+PU .
(iii): By [4, Minty Theorem], Id + PU has full range D = X. (iv):

(
Id−R

)−1
= JPU =

1
2 PU +PU⊥ = 1

2 Id+ 1
2 PU⊥ . (v): We have

T = PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥

=
1
2

Id+
1
2

Id−1
2

PU⊥ −
1
2

Id
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=
1
2

PU .

■

Example 4. Let U be a closed subspace of X and suppose that

R = RU . (28)

Then
(i) D = U.

(ii) Id−R = 2 PU⊥ .
(iii) ran (Id−R) = D⊥ is closed.
(iv)

(
Id−R

)−1
= 1

2 Id+NU .
(v) T = 0.

Proof. (i): D = Fix R = Fix(RU) = {x ∈ X | x = RUx} = {x ∈ X | 2x = 2 PU} = U.
(ii): Id−R = Id−RU =

(
PU +PU⊥

)
−
(

PU −PU⊥
)

= 2 PU⊥ . (iii): ran (Id−R) =

ran (2 PU⊥) = D⊥ is closed. (iv):
(

Id−R
)−1

=
(
2(Id−PU)

)−1
= 1

2 Id+NU⊥ . (v): We
have

T = PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥

= PD⊥

(1
2

Id+NU⊥

)
PU⊥ −

1
2

PU⊥

=
1
2

PU⊥ −
1
2

PU⊥

= 0.

■

Example 5. Let U be a closed subspace of X and suppose that

R = −RU . (29)

Then
(i) D = Fix

(
− RU

)
= U⊥.

(ii) Id−R = 2 PU .
(iii) ran (Id−R) = U is closed.
(iv)

(
Id−R

)−1
= 1

2 Id+NU .
(v) T = 0.

Proof. (i): Note that −RU = RU⊥ and we learn from Example 4 that D = Fix R = U⊥. (ii):
Id−R = Id−RU⊥ =

(
PU +PU⊥

)
−
(
2 PU⊥ − Id

)
=
(

PU +PU⊥
)
−
(

PU⊥ −PU
)
= 2 PU .

(iii): By using (ii), we have ran
(

Id−R
)
= ran

(
2 PU

)
= D = U. (iv):

(
Id−R

)−1
=
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Id−(RU⊥)

)−1
=
(

Id−(2 PU⊥ − Id)
)−1

=
(
2(Id−PU⊥)

)−1
= 1

2 Id+NU by [4, Exam-
ple]. (v): By using (8), we have

T = PD⊥(Id−R)−1 PD⊥ −
1
2

PD⊥

= PD⊥

(1
2

Id+NU

)
PU⊥ −

1
2

PU⊥

=
1
2

PU⊥ −
1
2

PU⊥

= 0.

■
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