
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 17, No. 4, 2024, 3945-3972
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

A New Method of Generating Truncated Bivariate
Families of Distributions

Eftekhar Alsulami1,2,∗, Lutfiah Al-Turk1, Muhammad Qaiser Shahbaz1

1 Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589,
Saudi Arabia
2 Department of Mathematics, Faculty of Science, University of Jeddah, Jeddah,
Saudi Arabia

Abstract. The modeling of complex data has attracted several researchers for the quest of gener-
ating new probability distributions. The joint modeling of two variables asks for some additional
complexities as a bivariate distribution is needed. The field of research in developing bivariate
families of distributions is somewhat new. In certain situations, the domain of data is restricted
and some truncated distribution is required. Several univariate truncated families of distributions
are available for modeling of a single variable but the bivariate truncated families of distributions
has not been studied and in this paper, we have proposed a new bivariate truncated families of
distributions. A specific sub-family has been proposed by using the bivariate Burr as a base-
line distribution, resulting in a bivariate truncated Burr family of distributions. Some important
statistical properties of the proposed family has been studied, which include the marginal and
conditional distributions, bivariate reliability, and bivariate hazard rate functions. The maximum
likelihood estimation for the parameters of the family is also carried out. The proposed bivariate
truncated Burr family of distributions is studied for the Burr baseline distributions, giving rise
to the bivariate truncated Burr-Burr distribution. The new bivariate truncated Burr-Burr distri-
bution is explored in detail and several statistical properties of the new distribution are studied,
which include the marginal and conditional distributions, product, ratio, and conditional moments.
The maximum likelihood estimation for the parameters of the proposed distribution is done. The
proposed bivariate truncated Burr-Burr distribution is used to model some real data sets. It is
found that the proposed distribution performs better than the other distributions considered in
this study.
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1. Introduction

Probability distributions are an important tool in statistical sciences. There are sit-
uations when complex data behavior is beyond the scope of the standard probability
models and hence some extensions are needed. Several practical situations arise where
one is interested in the simultaneous modeling of two or more phenomena. In these sit-
uations, the univariate distributions are not applicable, rather, some suitable bivariate
or multivariate distributions are required. Investigation of the bivariate and multivariate
distributions is not widespread as compared with the univariate probability distributions,
but in the last few decades, various researchers have proposed a significant number of
bivariate distributions from their marginals. Over the last few decades, various techniques
for generating new probability distributions have been proposed. One of these techniques
is the transformed-transformer approach, which was first introduced by [7], as an extensive
family of univariate distributions. This family of distributions provides several families
as special cases. The beta-generated family of distributions, proposed by [15], is another
popular family of distributions. This family has attracted various authors to propose new
probability distributions. Some of these are the beta-normal distribution, introduced by
[15], the beta-exponential distribution by [23], the beta-Weibull distribution by [16], and
the beta-Pareto distribution by [3], among others.
Recently, [6] have introduced a new method of generating truncated T − X families of
distributions including the right-truncated and left-truncated families of distributions.
These families are used to construct new generalized families of continuous distributions.
In comparison of the univariate distributions, the bivariate distributions have attracted a
less number of researchers. The bivariate distribution is defined as the joint distribution
of two random variables.
Various approaches are available to generate a bivariate distribution from the univariate
marginals. A simple method has been proposed by [17] to generate a bivariate distribu-
tion from given univariate marginals. The joint cumulative distribution function of this
bivariate distribution is

F (x1, x2) = G(x1)G(x2) [1 + α {1−G(x1)} {1−G(x2)}] , (1)

where G(x1) and G(x2) are any marginal cdf ′s and α is some parameters. A bivariate beta
family of distributions has been proposed by [28] by using the bivariate beta distribution
of [26]. The bivariate Gamma distribution is a popular bivariate distribution. The joint
density function is proposed by [22] as

fX1 ,X2 (x1, x2) =
a
b+c

Γ(b)Γ(c)
xb−1
1 (x2 − x1)

c−1e−ax2 ; 0 < x1 < x2 (2)

where a, b, c > 0. The marginal distributions of X1 and X2 are gamma distributions, with
shape parameters b and b+ c, respectively, and the scale a.
Over the past years, the truncated family of distributions has received attention from
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researchers. A truncated Fréchet family of distributions was proposed by [1] by using the
truncated Fréchet distribution over (0, 1). A truncated inverted Kumaraswamy generated
family was obtained by [9]. A truncated Burr-G family of distribution was obtained by
[19] by using the truncated Burr distribution on (0,1). A Truncated Weibull-G (TW-G)
family of distributions was obtained by [24] as an alternative to beta-G (B-G) family of
distributions with more flexible hazard rate and greater reliability. The family of life-time
models using a truncated negative binomial distribution was introduced by [23]. A trun-
cated Lomax distribution was proposed by [18] by using a truncated Lomax distribution
on [0, 1]. A truncated Cauchy power-G family of distributions was proposed by [4] and
some important properties of the proposed family were studied. The moment estimation
for the parameters of the truncated Weibull distribution was studied by [20]. Estimation
of the parameters of truncated Gamma distribution was studied by [12] . The truncated
Birnbaum-Saunders distribution was studied by [2]. An Erlang-Truncated Exponential
distribution was proposed by [14] as an extension of the standard one parameter exponen-
tial distribution, this distribution results from the mixture of Erlang distribution and the
left-truncated one-parameter exponential distribution. The transmuted Erlang truncated
exponential distribution was proposed by [25]. This new distribution extends the two-
parameter Erlang truncated exponential distribution. A half-logistic inverted Topp–Leone
family of distributions was proposed by [8].

In this paper, we have proposed a new method of generating bivariate truncated fami-
lies of distributions. The proposed method will be used to generate a bivariate truncated
Burr family of distributions. The outline for the paper follows. The bivariate truncated
family of distributions is introduced in the following section. The bivariate truncated Burr
family of distribution is proposed in section 3. The various statistical properties of the pro-
posed bivariate truncated Burr family of distributions are explored in Section 4 alongside
the maximum likelihood estimation for the parameters. A bivariate truncated Burr-Burr
distribution is proposed in Section 5 and some useful properties of the proposed distribu-
tion are given in Section 6. In Section 7, three real datasets have been used to study the
suitability of the the proposed bivariate Burr-Burr distribution. Finally, conclusions are
given in Section 8.

2. Bivariate Truncated Family of Distribution

A truncated distribution represents a conditional distribution that is confined to the do-
main of a random variable under specific circumstances. Recently, [6] have proposed some
univariate truncated families of distributions. They have proposed two right-truncated
families of distributions with cumulative distribution functions

FR1T−X (x) =
1

RT (a)

∫ W1[G(x)]

0
r (t) dt (3)

and

FR2T−X (x) =
1

RT (a)

∫ a

W2[G(x)]
r (t) dt, (4)
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where r (t) is density function of some random variable defined on R+, RT (a) is cumulative
distribution function of T at a, W1 [G (x)] and W2 [G (x)] are any real valued functions of
G (x) such that W1 (0) → 0,W1 (1) → a,W2 (0) → a and W2 (1) → 0. It has been shown
by [6] that W1 (x) = ax and W2 (x) = a (1− x) can be some suitable choices to propose
the new families of distributions.

Recently, [5] have proposed a bivariate extension of the truncated family of distributions.
The joint cdf of the proposed bivariate family of distributions is

FR1T1T2−X1X2 (x1, x2) =
1

R (a1, a2)

∫ W11[G1(x1)]

0

∫ W21[G2(x2)]

0
r (t1, t2) dt1dt2, (5)

where r (t1, t2) is some bivariate distribution with domain on R2
+, R (a1, a2) is joint distri-

bution function of (T1, T2) at (a1, a2), W11 [G1 (x1)] and W21 [G2 (x2)] are some functions
of G (x1) and G (x2) such that W11 (0) = W21 (0) → 0,W11 (1) → a1 and W21 (1) → a2.

A simpler version is also proposed by [5] and the joint distribution function of this version
is given as

FR1T1T2−X1X2 (x1, x2) =
1

R (a1, a2)

∫ a1G1(x1)

0

∫ a2G2(x2)

0
r (t1, t2) dt1dt2. (6)

The density function corresponding to above joint distribution function is

fR1 (x1, x2) = a1a2g1 (x1) g2 (x2)
r [a1G1 (x1) , a2G2 (x2)]

R (a1, a2)
, (7)

where g1 (x1) and g2 (x2) are density functions corresponding to G1 (x1) and G2 (x2) .

A bivariate truncated Burr family of distributions has been proposed by [5] by using

r(t1, t2) =
α(α+ 1)β1β2x

(β1−1)
1 x

(β2−1)
2

(1 + xβ1
1 + xβ2

2 )α+2
(8)

in 6.

In the next section, we will propose the bivariate truncated Burr family(BTBF ) of
distributions by using the Burr distribution as a generating distribution in the bivariate
truncated family of distributions. Various characteristics of the new family of distribu-
tions will be studied. The maximum likelihood estimation (MLE) of the new family of
distributions will also be discussed.



E. Alsulami, L. Al-Turk, M. Q. Shahbaz / Eur. J. Pure Appl. Math, 17 (4) (2024), 3945-3972 3949

3. Bivariate Truncated Burr Family of Distribution

In this section, we have proposed the BTBF of distributions by using the Burr distri-
bution as a generator. Suppose X1 and X2 are two random variables having a bivariate
Burr distribution with the joint probability density function (pdfs)

f(x1, x2) =
α(α+ 1)β1β2x

(β1−1)
1 x

(β2−1)
2

(1 + xβ1
1 + xβ2

2 )α+2
(9)

where α ≥ 0 is the scale parameter,(β1, β2) ≥ 0 are the shape parameters. The distribution
function corresponding to 9 is

F (x1, x2) = 1− (1 + xβ1
1 )−α − (1 + xβ2

2 )−α + (1 + xβ1
1 + xβ2

2 )−α (10)

The joint cumulative distribution function (cdf) of the proposed right BTBF of distribu-
tion is obtained by using 9 in 6 which on simplifying becomes

FR(x1, x2) =
1− (1 + (a1G1(x1))

β1)−α − (1 + (a2G2(x2))
β2)−α + (∆1(x1, x2))

−α

γ
, (11)

where γ = 1− (1 + aβ1
1 )−α − (1 + aβ2

2 )−α + (1 + aβ1
1 + aβ2

2 )−α and

∆1(x1, x2) = 1 + [a1G1(x1i)]
β1 + [a2G2(x2i)]

β2 .

The pdf of the right BTBF of distribution corresponding to 11 is

fR(x1, x2) =
1

γ
α(α+ 1)β1β2a

β1
1 aβ2

2 g1 (x1) g2 (x2)G1 (x1)
β1−1G2 (x2)

β2−1 (∆1(x1, x2))
−(α+2)

(12)

In the following section, some characteristics of the BTBF distribution will be presented.

4. Statistical Properties of Bivariate Truncated Burr Family of
Distributions

This section discusses several statistical properties of the BTBF . These include, the
marginal distributions, the conditional distributions, the bivariate reliability ad hazard
rate functions, etc..

4.1. The Marginal Distributions

The marginal pdf of X1 can be readily obtain from 12 as

fTB(x1) =

∫ ∞

0
fR(T1T2−X1X2)(x1, x2)dx2



E. Alsulami, L. Al-Turk, M. Q. Shahbaz / Eur. J. Pure Appl. Math, 17 (4) (2024), 3945-3972 3950

fTB(x1) =
αβ1a

β1
1 g1 (x1)G1 (x1)

β1−1

γ

[
[1 + (a1G1(x1))

β1 ]−(α+1) − [1 + (a1G1(x1))
β1 + aβ2

2 ]−(α+1)

]
.

(13)

Similarly, the marginal pdf of the random variable X2 is

fTB(x2) =
αβ2a

β2
2 g2 (x2)G2 (x2)

β2−1

γ

[
[1 + (a2G2(x2))

β2 ]−(α+1) − [1 + (a2G2(x2))
β2 + aβ1

1 ]−(α+1)

]
,

(14)

where g1(x1) and g2(x2) are the density function of any baseline distribution correspond-
ing to G1(x1) and G2(x2).

The marginal cdf of X1 of the BTBF of distributions is

FTB(x1) =
1−

[
1 + (a1G1(x1))

β1
]−α −

[
1 + aβ2

2

]−α
+
[
1 + (a1G1(x1))

β1 + aβ2
2

]−α

γ
. (15)

Similarly, the marginal cdf of the second random variable X2 is

FTB(x2) =
1−

[
1 + (a2G2(x2))

β2
]−α −

[
1 + aβ1

1

]−α
+
[
1 + (a2G2(x2))

β2 + aβ1
1

]−α

γ
, (16)

where G1(x1) and G2(x2) are the cdf ′s of any baseline distributions.

4.2. The Conditional Distributions

The conditional distribution of X1 given X2 = x2 is

f(x1|x2) =
(α+ 1)β1a

β1
1 g1(x1)G1(x1)

β1−1[∆1(x1, x2)]
−(α+2)

[1 + (a2G2(x2))β2 ]
−(α+1) − [1 + (a2G2(x2))β2 + aβ1

1 ]−(α+1)
. (17)

Similarly,the conditional distribution of X2 given X1 = x1 is obtained as

f(x2|x1) =
(α+ 1)β2a

β2
2 g2(x2)G2(x2)

β2−1[∆1(x1, x2)]
−(α+2)

[1 + (a1G1(x1))β1 ]
−(α+1) − [1 + (a1G1(x1))β1 + aβ2

2 ]−(α+1)
. (18)

The conditional distributions can be studied for any baseline distribution.

4.3. The Bivariate Reliability and Hazard Rate Function

The reliability function provides the chance that an item or system will function at
any time t (for more details see [27]). The bivariate reliability function (BRF ) of X1 and
X2 is defined as

R(x1, x2) = 1− [FX1(x1) + FX2(x2)− FX1,X2(x1, x2)]
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Using Eqs. 15, 16, and 11 in the above equation, the BRF for the BTBF of distributions
is

R(x1, x2) =1−
1− (1 + aβ1

1 )−α − (1 + aβ2
2 )−α +

(
1 + (a1G1(x1))

β1 + aβ2
2

)−α

γ

+
[∆1(x1, x2)]

−α − [1 + (a2G2(x2))
β2 + aβ1

1 ]−α

γ

(19)

where G1(x1) and G2(x2) any baseline cdf ′s.

The hazard rate function provides the instantaneous rate at which an item or system
will fail, given that it has already survived a specific length of time. The bivariate hazard
rate function(BHRF ) (see [10])is

H(x1, x2) =
f(x1, x2)

R(x1, x2)

By using the pdf and BRF of the BTBF of distribution from Eqs.12 and 19, the BHRF
for the BTBF of distribution is

H(x1, x2) =
1

γ
α(α+ 1)β1β2a

β1
1 aβ2

2 g1 (x1) g2 (x2)G1 (x1)
β1−1G2 (x2)

β2−1 [∆1(x1, x2)]
−(α+2)

÷
[
1−

1− (1 + aβ1
1 )−α − (1 + aβ2

2 )−α +
(
1 + (a1G1(x1))

β1 + aβ2
2

)−α

γ

+
[∆1(x1, x2)]

−α − [1 + [a2G2(x2)]
β2 + aβ1

1 ]−α

γ

]
(20)

The BHRF can be calculated for any baseline distribution.

4.4. Maximum Likelihood Estimation

This section discusses the maximum likelihood estimation for the parameters of the
BTBF of distributions. The likelihood function for the proposed BTBF of distributions
is

LF =αn(α+ 1)nanβ1
1 anβ2

2 βn
1 β

n
2

[
1− (1 + aβ1

1 )−α − (1 + aβ2
2 )−α + (1 + aβ1

1 + aβ2
2 )−α

]−n

×
n∏

i=1

g1(x1)

n∏
i=1

g2(x2)

n∏
i=1

G1(x1)
β1−1

n∏
i=1

G2(x2)
β2−1

n∏
i=1

[
1 + [a1G1(x1)]

β1 + [a2G2(x2)]
β2

]−(α+2)
.
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The log of likelihood function is

ℓ =n ln(α) + n ln(α+ 1) + nβ1 ln(a1) + nβ2 ln(a2) + n ln(β1) + n ln(β2)

+
n∑

i=1

ln[g1(x1i)] +
n∑

i=1

ln[g2(x2i)] + (β1 − 1)
n∑

i=1

ln[G1(x1i)] + (β2 − 1)
n∑

i=1

ln[G2(x2i)]

− (α+ 2)
n∑

i=1

ln(∆1(x1, x2))− n ln(γ),

(21)

where γ and ∆1(x1, x2) are earlier defined.

The derivatives of log of likelihood function w.r.t α,a1,a2,β1 and β2 are

∂ℓ

∂α
=
n

α
+

n

α+ 1
−

n∑
i=1

ln [∆1(x1, x2)]−
n

γ

[
(1 + aβ1

1 )−α ln(1 + aβ1
1 ) + (1 + aβ2

2 )−α ln(1 + aβ2
2 )

−(1 + aβ1
1 + aβ2

2 )−α ln(1 + aβ1
1 + aβ2

2 )

]
(22)

∂ℓ

∂a1
=
nβ1
a1

− (α+ 2)

n∑
i=1

β1a
β1−1
1 G1(x1i)

β1

∆1(x1, x2)
− nαβ1a

β1−1
1

γ
−
[
(1 + aβ1

1 )−(α+1) − (1 + aβ1
1 + aβ2

2 )−(α+1)
]

(23)

∂ℓ

∂a2
=
nβ2
a2

− (α+ 2)
n∑

i=1

β2a
β2−1
2 G2(x2i)

β2

∆1(x1, x2)
− nαβ2a

β2−1
2

γ
−
[
(1 + aβ2

2 )−(α+1) − (1 + aβ1
1 + aβ2

2 )−(α+1)
]

(24)

∂ℓ

∂β1
=n ln(a1) +

n

β1
+

n∑
i=1

ln(G1(x1i))− (α+ 2)
n∑

i=1

[a1G1(x1i)]
β1 ln[a1G1(x1i)]

∆1(x1, x2)
− nαaβ1

1 ln a1
γ[

(1 + aβ1
1 )−(α+1) − (1 + aβ1

1 + aβ2
2 )−(α+1)

]
(25)

and

∂ℓ

∂β2
=n ln(a2) +

n

β2
+

n∑
i=1

ln(G2(x2i))− (α+ 2)
n∑

i=1

[a2G2(x2i)]
β2 ln[a2G2(x2i)]

∆1(x1, x2)
− nαaβ2

2 ln a2
γ[

(1 + aβ2
2 )−(α+1) − (1 + aβ1

1 + aβ2
2 )−(α+1)

]
(26)

The maximum likelihood estimators of α, a1, a2, β1 and β2 are obtained by equating the
derivatives in (22), (23), (24), (25), and (26) to zero and solving the resulting equations.
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The solution is done by using some numerical method. In the next section we will study
the bivariate truncated Burr family of distributions for baseline Burr distribution. The
resulting distribution is is called bivariate truncated Burr-Burr distribution.

5. The Bivariate Truncated Burr-Burr Distribution

A family of twelve cumulative distribution functions have been proposed by [11] and
the Burr distribution is one of these. Several distributions are related with the Burr dis-
tribution; including the Lomax, the logistic, the log-logistic, the exponential, and Weibull
distributions. In this section, we have introduced the Bivariate Truncated Burr-Burr
(BTBB) distribution, by using the Burr distribution as a baseline distribution in the pro-
posed BTBF of distributions. We have given some desirable statistical properties of this
new distribution. The maximum likelihood estimation for the parameters of the proposed
BTBB distribution is also discussed.
The BTBB distribution is proposed by using the following cdf of the Burr distribution in
Eq. 11.

F (x1) = 1− 1

(1 + xβ1
2 )α

and F (x2) = 1− 1

(1 + xβ2
2 )α

. (27)

The cdf of the BTBB is

FBTBB(x1, x2) =
1

γ

[
1− [1 + (a1(1− (1 + xβ1

1 )−α))β1 ]−α − [1 + (a2(1− (1 + xβ2
2 )−α))β2 ]−α

+ [∆2(x1, x2)]
−α

]
,

(28)

where

∆2(x1, x2) = [1 + (a1(1− (1 + xβ1
1 )−α))β1 + (a2(1− (1 + xβ2

2 )−α))β2 ]

The pdf for the bivariate truncated Burr-Burr distribution corresponding to Eq. 28 is

fBTBB(x1, x2) =
α3(α+ 1)aβ1

1 aβ2
2 β2

1β
2
2x

β1−1
1 xβ2−1

2 (1 + xβ1
1 )−(α+1)(1 + xβ2

2 )−(α+1)

γ

×
[
[1− (1 + xβ1

1 )−α]β1−1[1− (1 + xβ2
2 )−α]β2−1[∆2(x1, x2)]

−(α+2)

]
,

(29)

where γ and ∆2(x1, x2) are defined earlier. In the following section, we have discussed
some properties of the BTBB distribution.

6. Properties of the Bivariate Truncated Burr-Burr Distribution

In this section, some statistical properties of the BTBB distribution are discussed.
The include marginal and conditional distributions, joint and ratio moments, marginal
and inverse moments, conditional moments, bivariate reliability and hazard rate function
and maximum likleihood estimation of the parameters.
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6.1. The Marginal and Conditional Distributions

The marginal distributions of X1 and X2 are readily written from Eq. (28) as

FTBB(x1) =
1− [1 + a1(1− (1 + xβ1

1 )−α))β1 ]−α − [1 + aβ2
2 ]−α + [∆1(x1)]

−α

γ
, (30)

and

FTBB(x2) =
1− [1 + a2(1− (1 + xβ2

2 )−α))β2 ]−α − [1 + aβ1
1 ]−α + [∆1(x2)]

−α

γ
, (31)

where ∆1(x1) = 1+(a1(1−(1+xβ1
1 )−α))β1+aβ2

2 and ∆1(x2) = 1+(a2(1−(1+xβ2
2 )−α))β2+

aβ1
1

The marginal density function for X1 and X2 are determined from Eq. (29) as

fTBB(x1) =
α2β2

1a
β1
1 xβ1−1

1 (1 + xβ1
1 )−(α+1)[1− (1 + xβ1

1 )−α]β1−1

γ

×
[
[1 + (a1(1− (1 + xβ1

1 )−α))β1 ]−(α+1) − [∆1(x1)]
−(α+1)

] (32)

and

fTBB(x2) =
α2β2

2a
β2
2 xβ2−1

2 (1 + xβ2
2 )−(α+1)[1− (1 + xβ2

2 )−α]β2−1

γ

×
[
[1 + (a2(1− (1 + xβ2

2 )−α))β2 ]−(α+1) − [∆1(x2)]
−(α+1)

] (33)

Using the density and distribution functions of the Burr distribution in Eq.17, the condi-
tional distribution of X1 given X2 = x2 for the BTBB distribution is

fBTBB(x1|x2) =
α(α+ 1)aβ1

1 β2
1x

β1−1
1 (1 + xβ1

1 )−(α+1)[1− (1 + xβ1
1 )−α]β1−1∆2(x1, x2)

−(α+2)

[1 + (a2(1− (1 + xβ2
2 )−α))β2 ]−(α+1) − [∆1(x2)]−(α+1)

.

(34)

Again using the density and distribution functions of Burr distribution in Eq.18, the
conditional distribution of X2 given X1 = x1 is

fBTBB(x2|x1) =
α(α+ 1)aβ2

2 β2
2x

β2−1
2 (1 + xβ2

2 )−(α+1)[1− (1 + xβ2
2 )−α]β2−1∆2(x1, x2)

−(α+2)

[1 + (a1(1− (1 + xβ1
1 )−α))β1 ]−(α+1) − [∆1(x1)]−(α+1)

(35)
where ∆2(x1, x2) is earlier defined.
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6.2. The Joint and Ratio Moments

The (r, s)th joint moment of X1 and X2 for the BTBB distribution is obtained as

E(Xr
1 Xs

2) =

∫ ∞

0

∫ ∞

0
xr1 x

s
2 f(x1, x2)dx1dx2

Using the joint density function ofBTBB distribution, the joint moment is

E(Xr
1 Xs

2) =

∫ ∞

0

∫ ∞

0

α3(α+ 1)aβ1
1 aβ2

2 β2
1β

2
2x

r+β1−1
1 xs+β2−1

2 (1 + xβ1
1 )−(α+1)(1 + xβ2

2 )−(α+1)

γ

×
[
[1− (1 + xβ1

1 )−α]β1−1[1− (1 + xβ2
2 )−α]β2−1[∆2(x1, x2)]

−(α+2)

]
dx1dx2

Let u = 1− (1 + xβ1
1 )−α and v = 1− (1 + xβ2

2 )−α, then

E(Xr
1 Xs

2) =
α(α+ 1)aβ1

1 aβ2
2 β1β2

γ

∫ 1

0

∫ 1

0
uβ1−1 vβ2−1

[
(1− u)

−( 1
αβ1

) − 1

]r
[
(1− v)

−( 1
αβ2

) − 1

]s[
1 + (a1 u)

β1 + (a2 v)
β2

]−(α+2)

dudv

Simplifying above, the joint moments for the BTBB distribution is

E(Xr
1X

s
2) =

α(α+ 1)aβ1
1 aβ2

2 β1β2
γ

∞∑
n=0

(
−(α+ 2)

n

)
a
β2[−(α+2)−n]
2

[ ∞∑
n,k=0

(−1)naβ1k
1

(
r

n

)(
n

k

)

B

(
β1(k + 1),

n− r

αβ1
+ 1

) ∞∑
n=0

(−1)n
(
s

n

)
B

(
β2[−(α+ 2)− n+ 1],

n− s

αβ2
+ 1

)]
(36)

where B(a, b) is the complete Beta function. The correlation coefficient between X1 and
X2 can be computed for the BTBB distribution. The correlation coefficients are given in
Table 1 below for α = 1. It is easy to see that the correlation coefficient increases with an
increase in the values of the parameters.

The (r, s)th ratio moment of X1 and X2 for the BTBB distribution is

E

(
Xr

1

Xs
2

)
=

∫ ∞

0

∫ ∞

0

α3(α+ 1)aβ1
1 aβ2

2 β2
1β

2
2x

r+β1−1
1 x−s+β2−1

2 (1 + xβ1
1 )−(α+1)(1 + xβ2

2 )−(α+1)

γ

×
[
[1− (1 + xβ1

1 )−α]β1−1[1− (1 + xβ2
2 )−α]β2−1[∆2(x1, x2)]

−(α+2)

]
dx1dx2
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=
α(α+ 1)aβ1

1 aβ2
2 β1β2

γ

∫ 1

0

∫ 1

0
uβ1−1 vβ2−1

[
(1− u)

−( 1
αβ1

) − 1

]r
[
(1− v)

−( 1
αβ2

) − 1

]−s[
1 + (a1 u)

β1 + (a2 v)
β2

]−(α+2)

dudv

After simplify, the ratio moment for the BTBB distribution is

E

(
Xr

1

Xs
2

)
=
α(α+ 1)aβ1

1 aβ2
2 β1β2

γ

∞∑
n=0

(
−(α+ 2)

n

)
a
β2[−(α+2)−n]
2

[ ∞∑
n,k=0

(−1)naβ1k
1

(
r

n

)(
n

k

)

×B

(
β1(k + 1),

n− r

αβ1
+ 1

) ∞∑
n=0

(−1)n
(
−s

n

)
B

(
β2[−(α+ 2)− n+ 1],

n+ s

αβ2
+ 1

)]
.

(37)

The marginal and inverse moments for the BTBB distribution are discussed in the next
subsection.

Table 1: Correlation Coefficient for the BTBB Distribution.

β1 = 3 β2 = 3

a2
a1 2 3 4 5

2 0.189 0.238 0.259 0.272
3 0.238 0.314 0.350 0.369
4 0.259 0.350 0.396 0.421
5 0.272 0.369 0.421 0.451

β1 = 4 β2 = 5

a2
a1 2 3 4 5

2 0.352 0.379 0.377 0.374
3 0.429 0.493 0.489 0.479
4 0.446 0.535 0.535 0.533
5 0.448 0.546 0.563 0.557

β1 = 6 β2 = 6

a2
a1 2 3 4 5

2 0.472 0.495 0.486 0.479
3 0.495 0.566 0.561 0.552
4 0.486 0.561 0.566 0.563
5 0.479 0.552 0.563 0.563
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6.3. The Marginal and Inverse Moments

The rth marginal moment of X1 for the BTBB distribution is obtained by using Eq.32
as

E(Xr
1) =

∫ ∞

0
xr1

α2β2
1a

β1
1 xβ1−1

1 (1 + xβ1
1 )−(α+1)[1− (1 + xβ1

1 )−α]β1−1

γ

×
[
[1 + (a1(1− (1 + xβ1

1 )−α))β1 ]−(α+1) − [1 + (a1(1− (1 + xβ1
1 )−α))β1 + aβ2

2 ]−(α+1)

]
dx1

=
α β1 a

β1
1

γ

∫ 1

0
uβ1−1

[
(1− u)

−1
αβ1 − 1

]r
−
[
[1 + (a1u)

β1 ]−(α+1)[1 + (a1u)
β1 + aβ2

2 ]−(α+1)

]
du

Simplifying above, the rth marginal moment is

E(Xr
1) =

α β1 a
β1
1

γ

∞∑
n=0

(−1)n a
β1[−(α+1)−n]
1

(
−(α+ 1)

n

)(
r

n

)
B

(
β1[−(α+ 2)− n+ 1],

n− r

αβ1
+ 1

)
×
[
1− [1 + aβ2

2 ]n
]
.

(38)

Similarly, the marginal distribution in Eq.33 can be used to obtained the sth marginal
moment of the random variable X2 for the BTBB distribution as

E(Xs
2) =

∫ ∞

0
xs2

α2β2
2a

β2
2 xβ2−1

2 (1 + xβ2
2 )−(α+1)[1− (1 + xβ2

2 )−α]β2−1

γ

×
[
[1 + (a2(1− (1 + xβ2

2 )−α))β2 ]−(α+1) − [1 + (a2(1− (1 + xβ2
2 )−α))β2 + aβ1

1 ]−(α+1)

]
dx2.

Solving the integral, the sth marginal moment is

E(Xs
2) =

α β2 a
β2
2

γ

∞∑
n=0

(−1)n a
β2[−(α+1)−n]
2

(
−(α+ 1)

n

)(
s

n

)
B

(
β2[−(α+ 2)− n+ 1],

n− s

αβ2
+ 1

)
×
[
1− [1 + aβ1

1 ]n
]
.

(39)

The rth and sth inverse moments can be readily written from the marginal moments by
replacing r with −r and s with −s.
The conditional moments for the BTBB distribution are obtained in the following sub-
section.
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6.4. The Conditional Moments

The rth conditional moment of X1 given X2 = x2 for the BTBB distribution is ob-
tained by using Eq.34 as

E(Xr
1 |X2) =

∫ ∞

0

α(α+ 1)aβ1
1 β2

1x
r+β1−1
1 (1 + xβ1

1 )−(α+1)[1− (1 + xβ1
1 )−α]β1−1

[1 + (a2(1− (1 + xβ2
2 )−α))β2 ]−(α+1) − [∆1(x2)]−(α+1)

[
∆2(x1, x2)

]−(α+2)

dx1

=
(α+ 1)aβ1

1 β1

[1 + (a2(1− (1 + xβ2
2 )−α))β2 ]−(α+1) − [∆1(x2)]−(α+1)

×
∫ 1

0
uβ1−1[(1− u)

−1
αβ1 − 1]r[

1 + (a1u)
β1 + [a2(1− (1 + xβ2

2 )−α)]β2

]−(α+2)

du

After simplification, we have

E(Xr
1 |X2) =

(α+ 1) aβ1
1 β1

[1 + (a2(1− (1 + xβ2
2 )−α))β2 ]−(α+1) − [∆1(x2)]−(α+1)

∞∑
n=0

(−1)na
β1[−(α+2)−n]
1[

1 + [a2(1− (1 + xβ2
2 )−α)]β2

]n(−(α+ 2)

n

)(
r

n

)
B

(
β1[−(α+ 2)− n+ 1],

n− r

αβ1
+ 1

)
.

(40)

Again, the sth conditional moment X2 given X1 = x1 for the BTBB distribution is
obtained by using Eq.35 as

E(Xs
2 |X1) =

∫ ∞

0

α(α+ 1)aβ2
2 β2

2x
s+β2−1
2 (1 + xβ2

2 )−(α+1)[1− (1 + xβ2
2 )−α]β2−1

[1 + (a1(1− (1 + xβ1
1 )−α))β1 ]−(α+1) − [∆1(x1)]−(α+1)

[
∆2(x1, x2)

]−(α+2)

dx2

=
(α+ 1)aβ2

2 β2

[1 + (a1(1− (1 + xβ1
1 )−α))β1 ]−(α+1) − [∆1(x1)]−(α+1)

∫ 1

0
vβ2−1[(1− v)

−1
αβ2 − 1]s[

1 + (a2v)
β2 + [a1(1− (1 + xβ1

1 )−α)]β1

]−(α+2)

dv

Simplifying, the sth conditional moment of X2 given X1 = x1 is

E(Xs
2 |X1) =

(α+ 1) aβ2
2 β2

[1 + (a1(1− (1 + xβ1
1 )−α))β1 ]−(α+1) − [∆1(x1)]−(α+1)

∞∑
n=0

(−1)na
β2[−(α+2)−n]
2[

1 + [a1(1− (1 + xβ1
1 )−α)]β1

]n(−(α+ 2)

n

)(
s

n

)
B

(
β2[−(α+ 2)− n+ 1],

n− s

αβ2
+ 1

)
.

(41)

The conditional moments are functions of random variables..
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6.5. The Bivariate Reliability Characteristics and Hazard Rate Function

Using Eq.19, the BRF of BTBB distribution is

RBTBB(x1, x2) =1−

[
1− (1 + aβ1

1 )−α − (1 + aβ2
2 )−α

γ

]
−
[
[∆1(x1)]

−α + [∆1(x2)]
−α − [∆2(x1, x2)]

−α

γ

]
(42)

Now using Eqs.(29) and 42 in Eq.20, the BHRF for the BTBB distribution is obtained
as

HBTBB(x1, x2) =

[
α3(α+ 1)aβ1

1 aβ2
2 β2

1β
2
2x

β1−1
1 xβ2−1

2 (1 + xβ1
1 )−(α+1)(1 + xβ2

2 )−(α+1)

γ

]
×
[
1− (1 + xβ1

1 )−α]β1−1[1− (1 + xβ2
2 )−α]β2−1∆2(x1, x2)

−(α+2)

]
×
[
1−

[
1− (1 + aβ1

1 )−α − (1 + aβ2
2 )−α

γ

]
−
[
[∆1(x1)]

−α + [∆1(x2)]
−α − [∆2(x1, x2)]

−α

γ

]]−1

.

(43)

where γ , ∆1(x1) ,∆1(x2) and ∆2(x1, x2) are defined earlier. Table 2 contains graphs of the
hazard rate function for different values of the parameters. The graph indicate that the
HRF diminishes with decreases in α, a1, and a2. Conversely, increasing these parameters
results in an elevation of the HRF .
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Table 2: Bivariate Hazard Rate Function for BTBB Distribution

α=0.25 ,β1=2, β2=2.5, a1=2, a2=3 α=0.25 , β1=2, β2=2.5 ,a1=5, a2=6

α=0.5 ,β1=3,β2=3,a1=2, a2=3 α=0.5 ,β1=3,β2=3,a1=5, a2=6

α=0.75 ,β1=1.5,β2=2,a1=2, a2=3 α=0.75 ,β1=1.5,β2=2,a1=5, a2=6
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6.6. Maximum Likelihood Estimation

This subsection contains the maximum likelihood estimation for the parameters of the
BTBB distribution. Let X1, X2, ..., Xn represent a size-n random sample from the BTBB
distribution. The likelihood function is

LH =αn(α+ 1)nanβ1
1 anβ2

2 βn
1 β

n
2

[
1− (1 + aβ1

1 )−α − (1 + aβ2
2 )−α + (1 + aβ1

1 + aβ2
2 )−α

]−n

×
n∏

i=1

[
αβ1x

(β1−1)
1 (1 + xβ1

1 )−(α+1)
] n∏
i=1

[
αβ2x

(β2−1)
2 (1 + xβ2

2 )−(α+1)
]

×
n∏

i=1

[
1− (1 + xβ1

1 )−α
]β1−1

n∏
i=1

[
1− (1 + xβ2

2 )−α
]β2−1

×
n∏

i=1

[
1 + (a1(1− (1 + xβ1

1 )−α)β1 + (a2(1− (1 + xβ2
2 )−α)β2

]−(α+2)
.

(44)

The log of likelihood function is

l =3n ln(α) + n ln(α+ 1) + nβ1 ln(a1) + nβ2 ln(a2) + 2n ln(β1) + 2n ln(β2)

−n ln

[
1− (1 + aβ1

1 )−α − (1 + aβ2
2 )−α + (1 + aβ1

1 + aβ2
2 )−α

]
+(β1 − 1)

n∑
i=1

ln(x1i) + (β2 − 1)
n∑

i=1

ln(x2i)− (α+ 1)
n∑

i=1

ln(1 + xβ1
1i )

−(α+ 1)
n∑

i=1

ln(1 + xβ2
2i ) + (β1 − 1)

n∑
i=1

ln(1− (1 + xβ1
1i )

−α)

+(β2 − 1)
n∑

i=1

ln(1− (1 + xβ2
2i )

−α)− (α+ 2)
n∑

i=1

ln

[
∆(x1, x2)

]
(45)

By maximizing the log-likelihood function in Eq. (45), the MLEs of α, a1, a2, β1, and β2
are found. The derivatives of the log-likelihood function with respect to the unknown
parameters are

∂l

∂α
=
3n

α
+

n

α+ 1
−

n∑
i=1

ln(1 + xβ1
1i )−

n∑
i=1

ln(1 + xβ2
2i )−

n∑
i=1

ln(∆2(x1, x2))− n

n∑
i=1

λ

γ

+(β1 − 1)
n∑

i=1

ln(1 + xβ1
1i )(1 + xβ1

1i )
−α

1− (1 + xβ1
1i )

−α
+ (β2 − 1)

n∑
i=1

ln(1 + xβ2
2i )(1 + xβ2

2i )
−α

1− (1 + xβ2
2i )

−α

+(α+ 2)β1

n∑
i=1

ln(1 + xβ1
1i )(1 + xβ1

1i )
−α(a1(1− (1 + xβ1

1i )
−α))β1−1

∆2(x1, x2)

+(α+ 2)β2

n∑
i=1

ln(1 + xβ2
2i )(1 + xβ2

2i )
−α(a2(1− (1 + xβ2

2i )
−α))β2−1

∆2(x1, x2)

(46)
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where ∆2(x1, x2) and γ earlier defined and

λ = (1 + aβ1
1 )−α ln(1 + aβ1

1 ) + (1 + aβ2
2 )−α ln(1 + aβ2

2 )− (1 + aβ1
1 + aβ2

2 )−α ln(1 + aβ1
1 + aβ2

2 )

∂l

∂a1
=
nβ1
a1

− (α+ 2)

n∑
i=1

β1(a1(1− (1 + xβ1
1i )

−α))β1−1(1− (1 + xβ1
1i )

−α)

∆2(x1, x2)

−n α aβ1−1
1 β1
γ

[
(1 + aβ1

1 )−(α+1) − (1 + aβ1
1 + aβ2

2 )−(α+1)
] (47)

∂l

∂a2
=
nβ2
a2

− (α+ 2)
n∑

i=1

β2(a2(1− (1 + xβ2
2i )

−α))β2−1(1− (1 + xβ2
2i )

−α)

∆2(x1, x2)

−n α aβ2−1
2 β2
γ

[
(1 + aβ2

2 )−(α+1) − (1 + aβ1
1 + aβ2

2 )−(α+1)
] (48)

∂l

∂β1
=n ln(a1) +

2n

β1
+

n∑
i=1

ln(x1i)− (α+ 1)
n∑

i=1

xβ1
1i ln(x1i))

1 + xβ1
1i

+

n∑
i=1

ln(1− (1 + xβ1
1i )

−α) + α(β1 − 1)

n∑
i=1

(1 + xβ1
1i ) ln(x1i)

1− (1 + xβ1
1i )

−α

−(α+ 2) aβ1
1

n∑
i=1

[
1− (1 + xβ1

1i )
−α)β1−1

]
[∆3(x1) + ∆2(x1)]

∆2(x1, x2)

−n α aβ1
1 ln(a1)

γ

[
(1 + aβ1

1 )−(α+1) − (1 + aβ1
1 + aβ2

2 )−(α+1)
]

(49)

where ∆2(x1) = aβ1
1 (1− (1 + xβ1

1i )
−α) ln(a1(1− (1 + xβ1

1i )
−α)) and

∆3(x1) = αβ1x
β1
1i ln(x1i)(1 + xβ1

1i )
−(α+1).

∂l

∂β2
=n ln(a2) +

2n

β2
+

n∑
i=1

ln(x2i)− (α+ 1)
n∑

i=1

xβ2
2i ln(x2i))

1 + xβ2
2i

+

n∑
i=1

ln(1− (1 + xβ2
2i )

−α) + α(β2 − 1)

n∑
i=1

(1 + xβ2
2i ) ln(x2i)

1− (1 + xβ2
2i )

−α

−(α+ 2) aβ2
2

n∑
i=1

[
1− (1 + xβ2

2i )
−α)β2−1

]
[∆3(x2) + ∆2(x2)]

∆2(x1, x2)

−n α aβ2
2 ln(a2)

γ

[
(1 + aβ2

2 )−(α+1) − (1 + aβ1
1 + aβ2

2 )−(α+1)
]

(50)

where ∆2(x2) = aβ2
2 (1− (1 + xβ2

2i )
−α) ln(a2(1− (1 + xβ2

2i )
−α)) and
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∆3(x2) = αβ2x
β2
2i ln(x2i)(1 + xβ2

2i )
−(α+1).

The MLEs for α, a1, a2, β1, and β2 are obtained by equating the above derivatives to
zero and numerically solving the resulting equations.

7. Real Data Application

In this section, we have checked the suitability of the proposed BTBB distribution by
using three data sets. These data sets have been modeled by using the BTBB distribution
alongside five other distributions. The competing distributions that we have used in
the study are bivariate Burr (BB) distribution by Durling [13],bivariate Lomax (BL),
bivariate log logistic (BL-L), bivariate transmuted Burr (BTB), and bivariate transmuted
Weibull (BTW) distribution. The distributions are fitted by computing the MLEs of the
parameters. To compare the performance of the proposed BTBB distribution with the
competing distributions, we calculated Akaike’s information criteria (AIC) and Bayesian
information criteria (BIC) for each model. The best model has the smallest AIC and
BIC. The application on the real data sets are given in the following.

7.1. Patients Data

This data set refers to 30 patients set from [21]. The first recurrence time is represented
by X1, and the asecond recurrence time is represented by X2. Table 3 contains the MLE
of the parameters while Table 4 provides the computed values of AIC and BIC. It is
easy to see, from Table 4, that The BTBB distribution has the smallest values of AIC
and BIC, and hence is the best fit for this data.

7.2. Gross National Income Data

This data represents the Gross National Income of all countries of the World having
191 observations. In the data set, X1 represents the Gross National Income for year 2016
andX2 represents the Gross National Income for 2017. TheMLEs of various distributions
are given in Table 5 and the computed values of AIC and BIC are given in Table 6. From
Table 6, it is clear that the BTBB distribution is the best fitted distribution as it has the
smallest values of AIC and BIC.

7.3. Breaking Strength of Fluid Data

The third data set is Breaking Strength of Fluid, and its size is 70. In this data, X1

denotes the force while X2 denotes the fluid’s breaking strength. The MLE′s of different
distributions are given in Table 7 while Table 8 contains the computed values of AIC and
BIC. From Table8, it is obvious that the BTBB distribution is the best fit for the third
data also since it has the smallest values of AIC and BIC values.

In order to assess whether the BTBB is an appropriate model, we have given plots of
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original data and the fitted BTBB distribution in Table 9. From these plots, We con-
clude that the BTBB distribution provides a good fit to the three data sets.

Table 3: Maximum Likelihood Estimation and Standard Error for Given Distributions.

Distribution Parameter Estimate Standard Error

BTBB

a1
a2
α
β1
β2

6.099633
1.196423
0.035319
2.942372
17.900089

3.757314
0.079680
0.004062
1.055427
1.115601

BB
α
β1
β1

0.24009
1.01058
1.00785

0.05489
0.14462
0.14352

BL α 0.2437 0.04343

BL-L
β1
β1

0.48789
0.48784

0.05733
0.05713

BTB

c
k
λ1

λ2

λ3

0.61384
0.57343
-0.10532
-0.66142
-0.06115

0.13757
0.16657
4.61707
4.19430
4.32286

BTW

α1

α2

θ1
θ2
λ1

λ2

λ3

0.14116
0.08136
0.09075
0.02337
-0.07125
-0.02464
-0.09762

0.01599
0.01173
0.04044
0.01651
2.46306
2.47251
3.21034

Table 4: Akaike’s and Bayesian Information Criteria for Given Distributions

Distribution Log-Lik AIC BIC

BTBB -352.2676 714.5352 721.5412
BB -367.7602 741.5204 745.724
BL -367.7632 737.5263 738.9276
BL-L -391.7709 787.5418 790.3442
BTB -381.0651 772.1303 779.1362
BTW -455.7447 925.4893 935.2978
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Table 5: Maximum Likelihood Estimation and Standard Error for Given Distributions

Distribution Parameter Estimate Standard Error

BTBB

a1
a2
α
β1
β1

4.451e+03
7.187e+03
3.767e-02
2.855
2.718

1.024
1.274

3.447e-03
5.850e-03
5.607e-02

BB
α
β1
β1

1.02615
1.73827
1.72734

0.07057
0.09080
0.09005

BL α 1.26400 0.07984

BL-L
β1
β1

1.74835
1.73769

0.08739
0.08659

BTB

c
k
λ1

λ2

λ3

1.39380
1.06489
-0.61765
-0.80989
0.65903

0.06815
0.07529
2.97112
2.97112
2.09854

BTW

α1

α2

θ1
θ2
λ1

λ2

λ3

0.63299
0.41041
0.52677
0.32809
-0.92304
-0.28514
0.39789

0.03652
0.02767
0.04261
0.03480
2.89542
2.96639
2.95426

Table 6: Akaike’s and Bayesian Information Criteria for Given Distributions

Distribution Log-Lik AIC BIC

BTBB -427.0594 864.1188 870.2132
BB -505.2134 1016.427 1020.083
BL -567.7754 1137.551 1138.77
BL-L -505.2836 1014.567 1017.005
BTB -610.8848 1231.77 1248.031
BTW -805.9473 1625.895 1634.427
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Table 7: Maximum Likelihood Estimation and Standard Error for Given Distributions

Distribution Parameter Estimate Standard Error

BTBB

a1
a2
α
β1
β1

0.88335
1.14359
0.13561
5.64257
3.11552

0.20265
0.33553
0.02215
0.73521
0.48151

BB
α
β1
β1

0.22861
1.71784
1.41722

0.03475
0.15556
0.16461

BL α 0.36525 0.04217

BL-L
β1
β1

0.78856
0.91949

0.06185
0.07211

BTB

c
k
λ1

λ2

λ3

0.75154
0.70208
-0.12896
-0.80981
-0.07487

0.08629
0.10160
33.69200
27.06451
30.5993

BTW

α1

α2

θ1
θ2
λ1

λ2

λ3

0.116303
0.129937
0.025941
0.021107
-0.115249
0.017064
-0.060330

0.012094
0.012523
0.009192
0.006740
1.896561
1.896561
2.389490

Table 8: Akaike’s and Bayesian Information Criteria for Given Distributions

Distribution Log-Lik AIC BIC

BTBB -616.712 1243.424 1254.666
BB -626.6695 1259.339 1266.084
BL -623.3973 1248.795 1251.043
BL-L -672.6314 1349.263 1353.76
BTB –672.4948 1354.99 1366.232
BTW -873.6064 1761.213 1776.952
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Table 9: Bivariate Histograms and Fitted Distribution for Three Data Sets.

Data Observed Histogram Fitted Distribution

First
Data

Second
Data

Third
Data
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8. Conclusion

In this paper, we have presented a new truncated bivariate families of distributions.
The new families of distributions are explored by using the Burr distribution as a gen-
erator, giving rise to the bivariate truncated Burr family of distributions. The bivariate
truncated Burr family of distributions is further investigated by using the Burr distribu-
tion as a baseline distribution, resulting in a bivariate truncated Burr-Burr distributions.
We have investigated various statistical characteristics of the proposed bivariate Burr-Burr
distribution. Additionally, we have used three real data sets with the bivariate truncated
Burr-Burr distributions. We have found that the proposed bivariate truncated Burr-Burr
distribution performs well for modeling the given data. It is possible to explore the new
BTBF of distributions for various baseline distributions.
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Appendix

Real Data Sets

1- Patients Data

X1

8, 23, 22, 447, 30, 24, 7, 511, 53, 15, 7, 141, 96, 149, 536, 17, 185, 292, 22, 15,
152, 402, 13, 39, 12, 113,132, 34, 2, 130.

X2

16, 13, 28, 318, 12, 245, 9, 30, 196, 154, 333, 8, 38, 70,25, 4, 117, 114, 159, 108,
362, 24, 66, 46, 40, 201, 156, 30, 25, 26.

2- Gross National Income Data

X1

0.1822, 1.1512, 1.3809, 4.6252, 0.5956, 2.0302, 1.7857, 0.8350, 4.3637, 4.4443,
1.5751, 2.6632, 4.1918, 0.3509, 1.5622, 1.5765, 4.1588, 0.7419, 0.2010, 0.7574,
0.6621, 1.1353, 1.5455, 1.3730, 7.6870, 1.7759, 0.1600, 0.0721, 0.5829, 0.3246,
0.3280, 4.2664, 0.0644, 0.1850, 2.1768, 1.4354, 1.3050, 0.1396, 0.6630, 0.0792,
1.4490, 2.1088, 0.7487, 3.0955, 2.9400, 0.3323, 4.7209, 0.3268, 0.8756, 1.3282,
1.0234, 1.0185, 0.7663, 2.1316, 0.1700, 2.7645, 0.7702, 0.1603, 0.8080, 4.0066,
3.8702, 1.6623, 0.1510, 0.8785, 4.5203, 0.3889, 2.4284, 1.2460, 0.7191, 0.1779,
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0.1540, 0.7278, 0.1681, 0.4096, 5.5809, 2.4337, 4.4971, 0.6026, 1.0437, 1.8544,
1.8446, 5.0475, 3.2273, 3.4733, 0.7832, 3.8267, 0.8320, 2.2054, 0.2898, 0.3002,
3.5122, 7.4109, 0.3113, 0.5822, 2.3685, 1.3011, 0.3124, 0.0667, 0.8876, 9.7355,
2.6884, 6.5460, 0.1339, 0.1053, 2.4968, 1.2717, 0.1901, 3.3025, 0.5006, 0.3520,
1.9468, 1.6623, 0.3789, 0.5311, 1.0618, 1.5961, 0.7149, 0.1098, 0.5282, 0.9582,
1.8652, 0.2334, 4.6711, 3.3679, 0.5145, 0.0898, 0.5326, 6.7340, 3.8129, 0.5155,
1.3466, 0.5410, 1.8494, 0.3398, 0.8424, 1.1635, 0.8729, 2.4983, 2.6521, 11.8088,
2.1060, 2.3843, 0.1744, 2.3792, 1.1441, 1.0358, 0.5804, 0.2894, 5.1329, 0.2297,
1.2877, 2.5334, 0.1216, 7.8427, 2.8546, 2.9161, 0.1850, 1.1948, 0.1115, 3.3307,
1.1118, 0.4015, 1.3413, 4.7378, 5.7636, 0.2432, 0.3164, 0.2557, 1.4971, 1.2557,
0.8045, 0.1407, 0.5447, 2.9396, 1.0192, 2.3500, 1.4890, 0.5752, 0.1654, 0.7593,
6.8121, 3.8680, 5.4104, 1.9502, 0.6135, 0.2928, 1.2570, 0.5589, 0.1480, 0.3522,
0.1677.

X2

0.1824, 1.1886, 1.3802, 4.7574, 0.5790, 2.0764, 1.8461, 0.9144, 4.3560, 4.5415,
1.5600, 2.6681, 4.1580, 0.3677, 1.5843, 1.6323, 4.2156, 0.7166, 0.2061, 0.8065,
0.6714, 1.1716, 1.5534, 1.3755, 7.6427, 1.8740, 0.1650, 0.0702, 0.5983, 0.3413,
0.3315, 4.3433, 0.0663, 0.1750, 2.1910, 1.5270, 1.2938, 0.1399, 0.5694, 0.0796,
1.4636, 2.2162, 0.7524, 3.1568, 3.0588, 0.3481, 4.7918, 0.3392, 0.8344, 1.3921,
1.0347, 1.0355, 0.6868, 1.9513, 0.1750, 2.8993, 0.7620, 0.1719, 0.8324, 4.1002,
3.9254, 1.6431, 0.1516, 0.9186, 4.6136, 0.4096, 2.4648, 1.2864, 0.7278, 0.2067,
0.1552, 0.7447, 0.1665, 0.4215, 5.8420, 2.5393, 4.5810, 0.6353, 1.0846, 1.9130,
1.7789, 5.3754, 3.2711, 3.5299, 0.7846, 3.8986, 0.8288, 2.2626, 0.2961, 0.3042,
3.5945, 7.0524, 0.3255, 0.6070, 2.5002, 1.3378, 0.3255, 0.0667, 1.1100, 9.7336,
2.8314, 6.5016, 0.1358, 0.1064, 2.6107, 1.3567, 0.1953, 3.4396, 0.5125, 0.3592,
2.0189, 1.6944, 0.3843, 0.5554, 1.0103, 1.6779, 0.7340, 0.1093, 0.5567, 0.9387,
1.8573, 0.2471, 4.7900, 3.3970, 0.5157, 0.0906, 0.5231, 6.8012, 3.6290, 0.5311,
1.2831, 0.5055, 1.9178, 0.3403, 0.8380, 1.1789, 0.9154, 2.6150, 2.7315, 11.6818,
2.2646, 2.4233, 0.1811, 2.3978, 1.1695, 1.0499, 0.5909, 0.2941, 4.9680, 0.2384,
1.3019, 2.6077, 0.1240, 8.2503, 2.9467, 3.0594, 0.1872, 1.1923, 0.0963, 3.4258,
1.1326, 0.4119, 1.3306, 4.7766, 5.7625, 0.2337, 0.3317, 0.2655, 1.5516, 1.2505,
0.6846, 0.1453, 0.5547, 2.8622, 1.0275, 2.4804, 1.5594, 0.5888, 0.1658, 0.8130,
6.7805, 3.9116, 5.4941, 1.9930, 0.6470, 0.2995, 1.0672, 0.5859, 0.1239, 0.3557,
0.1683.
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3- Breaking Strength of Fluid Data

X1

0.66552, 1.32920, 1.99020, 2.64780, 3.30510, 3.96520, 4.61540, 5.26260, 5.91770,
6.55930, 7.20630, 7.85490, 8.48920, 9.12330, 9.75220, 10.39500, 11.01200, 11.65400,
12.27500, 12.90500, 13.51400, 14.14600, 14.77300, 15.39700, 16.00400, 16.62100,
17.23300, 17.84900, 18.46800, 19.04800, 19.68000, 20.24500, 20.84200, 21.45700,
22.04300, 22.65200, 23.21200, 23.82100, 24.43700, 25.02500, 25.58700, 26.19300,
26.74800, 27.31500, 27.88500, 28.51000, 29.07300, 29.61700, 30.21500, 30.74700,
31.33800, 33.04800, 34.72200, 36.38200, 38.03300, 39.60300, 41.23000, 42.84500,
44.44800, 45.98700, 47.54100, 49.14000, 50.65300, 52.27000, 53.63200, 55.23800,
56.51000, 58.14300, 59.55000, 60.92400.

X2

1.433193, 1.921320, 2.669056, 3.279862, 3.703085, 4.175902, 5.180407, 5.311075,
5.480077, 5.944436, 6.644375, 6.870545, 7.567605, 7.363139, 7.708288, 7.861320,
8.041136, 8.567537, 8.816040, 8.680506, 9.233999, 9.491558, 9.536301, 9.699463,
9.991789, 10.379586, 10.684267, 11.283192, 11.077667, 11.295088, 11.256025,
12.181274, 12.205218, 11.998618, 12.517958, 12.407828, 13.409593, 14.055641,
13.446431, 14.335534, 14.528933, 15.351420, 15.256486, 15.450883, 15.000152,
16.024559, 16.133539, 16.790022, 17.621796, 17.252878, 17.397621, 18.850729,
18.921950, 20.292019, 21.790637, 22.214351, 23.902455, 24.655257, 26.207445,
27.813584, 27.866845, 29.506678, 30.753878, 32.763854, 34.007137, 35.547121,
37.161858,38.220492, 39.666229, 41.468994.


