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Abstract. Hepatitis B is a viral infection that primarily targets the liver, potentially leading
to acute or chronic liver diseases with severe complications, such as cirrhosis and liver cancer.
Its persistent prevalence underscores its status as a significant global health issue. This research
constructs a mathematical model for the progression of Hepatitis B using fractional derivatives,
accounting for a two-dose vaccine regimen. The basic concepts of the Caputo-Fabrizio (CF) deriva-
tive are presented for the model’s analysis. The infection-free equilibrium is investigated, and the
endemic indicator of the system, R0, is determined using the next-generation matrix method. The
model exhibits local asymptotic stability at the infection-free equilibrium when R0 < 1, and insta-
bility otherwise. Conditions ensuring the existence and uniqueness of solutions for the proposed
fractional dynamics model are established. A new numerical method for analyzing the time series
of the system is also presented. The study elucidates the impact of input variables on the system’s
dynamic behavior and identifies critical factors within the model, highlighting key parameters that
can be targeted for the control and management of Hepatitis B infection.
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1. Introduction

Several globally significant infectious diseases, including hepatitis B (HB) [22], pose
a threat to human life. Hepatitis B results from an infection instigated by the hepati-
tis B virus (HBV), leading to hepatic impairment and the potential progression of both
acute and chronic infections. Despite the asymptomatic nature in the early phases of
HB infection for many individuals, certain cases may subsequently manifest abrupt clin-
ical symptoms, encompassing nausea, jaundice, fatigue, darkened urine, and abdominal
discomfort [40]. Roughly one-third of the world’s population is estimated to experience
infection at some point in their lives, with 240-350 million individuals afflicted by chronic
infections [40]. In comparison to the extensive global effort directed towards HIV by pub-
lic health planners, it is noteworthy that HBV and HCV, while equally transmissible, are
significantly more infectious-100 times more for HBV and 10 times more for HCV [30]. In
areas with a significant prevalence of HBV, the primary transmission routes involve the
transfer of the virus from mother to child, exposure to contaminated blood or bodily fluids
through percutaneous means, and sexual contact [30]. In the year 2015, there were ap-
proximately 900,000 fatalities attributed to HBV infection, predominantly resulting from
the development of hepatocellular carcinoma (HCC) and cirrhosis [29]. The implemen-
tation of HB birth immunization is pivotal in preventing the transmission of HBV from
mother to child and between individuals. It is imperative for healthcare systems to enhance
their efforts in the treatment and prevention of viral hepatitis [36]. Additionally, current
investigations are exploring the application of antiviral treatments, including tenofovir,
telbivudine, and lamivudine, as prospective approaches to alleviate perinatal transmission
of HBV in expectant women exhibiting elevated HBV DNA levels.

Screening for HBV is crucial due to the highly contagious nature of the disease and
its severe public health implications. Emphasizing vaccination as a preventive measure
against HBV infection and its associated complications is imperative [36, 40]. The primary
objectives of HBV screening encompass the detection of individuals with chronic infections,
who could benefit from treatment or receive education on lifestyle modifications to reduce
transmission risks. Furthermore, it strives to pinpoint close contacts of infected individuals
for vaccination and offer care for chronic HB cases, along with ongoing monitoring of
disease activity and surveillance for HCC [32]. Focused screening of at-risk populations,
such as migrants, could enhance the identification of cases. A cost-effectiveness evaluation
of screening for viral hepatitis among immigrants originating from regions with moderate
to high prevalence emphasizes the significance of screening as a secondary prevention
measure [33]. Numerous scholars have explored the patterns of HB transmission in different
geographical areas, as well as the immune system’s response to infection, through the
application of mathematical models. Anderson and May, in their research, elucidated the
outcomes of HB transmission among carriers by employing a basic mathematical model
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[11]. Anderson and Williams, in their modeling of sexual transmission of HB, integrated
a range of variables encompassing sexual behavior and age [41]. The age of HB infection
and the development of the carrier state were found to be related by Edmunds et al. [21].
Medley et al. introduced a feedback mechanism model that links the probability of carrier-
class formation after infection to factors such as transmission rate, average age of infection,
and infection prevalence [31], whereas Din and Abidin [18] used the Mittag-Leffler kernel
to model an epidemic of HB vaccination.

Transmission dynamics of hepatitis B differ between industrialized nations and de-
veloping countries. In their study, Edmunds et al. [19] primarily considered childhood
HB transmission rates as a key determinant of epidemic levels in developing countries,
complemented by the assessment of sexual contact rates. It is noteworthy that data on
sexual contact rates in developing nations are limited. While Williams et al. [20] provided
a mathematical model for assessing the transmission dynamics of HB in the UK. Coupe
et al. [17] constructed a standard model of immune response to investigate the temporal
aspects of effector cell activation, the course of the disease, the induction of antibodies
by the vaccine, and the role of preexisting conditions in preventing HB. Subsequently,
Gourley et al. later expanded on this model with a time-delayed variation, while Min et
al. used a traditional model function instead of mass action to elucidate susceptibility to
HB infection [23]. In order to improve the precision of the baseline reproduction number
estimations for the HB population, Hews et al. employed a logistic growth model and a
conventional methodology, thereby enhancing the model’s concordance with the available
data [25]. In this study, we will formulate a mathematical model to analyze the trans-
mission dynamics of Hepatitis B (HB), incorporating double-dose vaccination and the
presence of asymptomatic carriers. The model will account for the role of asymptomatic
individuals in disease spread and evaluate the effectiveness of a two-dose vaccination strat-
egy in controlling the infection. By integrating these factors, the proposed model aims
to provide a comprehensive understanding of HB transmission and inform public health
strategies for disease prevention and management.

The application of fractional derivatives extends beyond theoretical mathematics and
finds relevance in various real-world problems across diverse fields [4–7, 10, 14, 26, 34].
These applications highlight the versatility of fractional calculus in addressing real-world
problems across disciplines, offering a powerful tool for modeling complex phenomena and
improving the understanding of intricate dynamic systems [1–3, 8, 9, 15, 37, 39]. The uti-
lization of fractional derivatives in epidemic models represents a sophisticated approach
to capturing non-integer order dynamics inherent in certain biological and epidemiological
systems [27, 35]. Unlike traditional integer-order derivatives, fractional derivatives involve
non-integer orders, allowing for a more nuanced representation of complex behaviors and
long-range dependencies observed in epidemic spread. In the context of epidemic mod-
eling, the fractional derivative is employed to describe the rate of change of infected or
susceptible populations with respect to time, considering fractional orders that may re-
flect memory effects or non-local interactions. This mathematical framework offers a more
accurate portrayal of epidemic dynamics, particularly when conventional models fall short
in capturing the intricate patterns exhibited by real-world epidemics. Therefore, we have
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chosen to model the dynamics of Hepatitis B (HB) using a fractional-order framework to
achieve more accurate and precise results. The fractional approach allows for better rep-
resentation of the memory effects and complex dynamics inherent in disease transmission,
providing enhanced insights into the behavior of the infection and the impact of control
measures.

The present study is organized as follows: Section 2 elucidates definitions and con-
cepts pertinent to fractional theory in the context of this research. Section 3 introduces
the developed HB model. Section 4 employs Caputo-Fabrizio derivatives to portray the
dynamics, computes the threshold parameter R0, and investigates the equilibria. Sec-
tion 5 delves into the uniqueness and existence of solutions, employing fixed point theory.
Finally, Section 6 provides a synthesis of the findings and concludes the research.

2. Theory and concepts

Here, we introduce the fundamental concept of the Caputo-Fabrizio (CF) fractional
operator for the examination of our proposed HB model. The theory and principles un-
derlying the fractional CF derivative are outlined as follows:

Definition 1. Assume a function k ∈ H1(a, b), subject to the condition that a is less than
b. In this case, the CF derivative is given by

Dς
t (k(t)) =

U(ς)
1− ς

∫ t

a
k′(x) exp

(
− ς

t− x

1− ς

)
dx, (1)

with the condition that ς ∈ [0, 1] and U(τ) indicates the normality holding U(0) = U(1) = 1
[16]. Otherwise, if k /∈ H1(a, b), then

Dς
t (k(t)) =

ςU(ς)
1− ς

∫ t

a
(k(t)− k(x)) exp

(
− ς

t− x

1− ς

)
dx. (2)

Remark 1. If α = 1−ς
ς ∈ [0,∞) and ς = 1

1+α ∈ [0, 1], then the above (2) suggest

Dς
t (k(t)) =

M(α)

α

∫ t

a
k′(x)e[−

t−x
α

]dx, M(0) = M(∞) = 1. (3)

Moreover, we have

lim
α−→0

1

α
exp

(
− t− x

α

)
= δ(x− t). (4)

Definition 2. [28]. The fractional integral of a given function is expressed as follows.

Iςt (k(t)) =
2(1− ς)

(2− ς)U(ς)
k(t) +

2ς

(2− ς)U(ς)

∫ t

0
k(u)du, t ≥ 0. (5)

Next, we move to the following Remark:
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Remark 2. The Definition 2 provided above yields the following result.

2(1− ς)

(2− ς)U(ς)
+

2ς

(2− ς)U(ς)
= 1, (6)

with the condition that U(ς) = 2
2−ς .

In [28], new operator has been developed by utilizing (6) as follows

Dς
t (k(t)) =

1

1− ς

∫ t

0
k′(x) exp

(
ς
t− x

1− ς

)
dx. (7)

In this context, the fractional order adheres to the requirement that 0 < ς < 1.

In the literature, various authors have introduced several fractional operators. Some
novel fractional operators are defined below:

Definition 3. The Atangana-Beleanu fractional operator in the Caputo form is given by:

ABC
p Dς

t g(t) =
B(ς)

1− ς

∫ t

p
g′(κ)Eς

[
− ς

(t− κ)ς

1− ς

]
dκ.

in which g ∈ H1(p, q), q > p, and ∈ [0, 1].

Definition 4. [24]. The He’s fractional operator is defined as follows:

Dς
t g(t) =

1

Γ(1− ς)

dn

dtn

∫ t

t0

(s− t)n−ς−1[g0(s)− g(s)]ds.

where ς is the fractional order and g0 is a known function.

3. Formulation of the model

We constructed a compartmental mathematical model to simulate the dynamics of
hepatitis B transmission based on various transmission routes. The total population,
denoted as N(t), is partitioned into six distinct classes: S(t), V1(t), V2(t), I(t), C(t), and
R(t). Consequently, N(t) can be described as follows:

N(t) = S(t) + V1(t) + V2(t) + I(t) + C(t) +R(t). (8)

Additionally, S(t) stands for individuals who have not encountered the infection yet and
remain susceptible to infection. V1(t) denotes those who have been administered the
initial vaccine dose, whereas V2(t) represents individuals who have successfully received
both doses of the vaccine, usually with a one-month interval between them. I(t) denotes
those who are in the infectious acute stage of HB, which typically spans the first six months
following infection. C(t) represents individuals in the chronic infectious stage, and R(t)
designates those who have successfully recovered from hepatitis B.
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The underlying assumptions of this model include the transmission of HB via both
vertical and horizontal methods. Additionally, the model disregards infection from acutely
infected mothers, as the acute infection stage is relatively short compared to the duration of
pregnancy. The model accounts for disease-induced mortality within the chronic class and
incorporates a natural mortality rate for each compartment. Furthermore, it postulates
a constant generation of new susceptible individuals, represented by the symbol Π. All
parameters involved in the model are nonnegative. Individuals at risk can contract the
infection through horizontal transmission, driven by the force of infection represented
as λ = ξ(κA + C). Here, the effective contact rate is denoted by ξ, while the relative
infectiousness of acute infections versus chronic ones is represented by κ. When κ > 1,
it indicates that acute infections have a higher likelihood of transmission to susceptible
individuals than chronic infections. Both acute and chronic infections have an identical
chance of spreading to individuals who are susceptible when κ = 1. In contrast, if κ < 1,
it means that chronic infections are more probable than acute infections to spread to
individuals who are susceptible.

In the scenario of vertical transmission, we make the assumption that newborn infants
receive successful vaccination at a rate represented by Πω, or unsuccessful vaccination at
a rate represented by Π(1− ω). Here, the birth rate is denoted by Π, and the proportion
of effectively immunized individuals is denoted by ω, where 0 < ω < 1. Consequently,
Πω individuals transition to the vaccinated first dose class, while Π(1 − ω)τC move into
the chronic class. The remaining fraction, Π(1− ω)(1− τC), enters the susceptible class.
In this context, the symbol τ denotes the fraction of infants born to carrier mothers who
remain unvaccinated and subsequently develop a chronic condition. Furthermore, we have
taken into account that the percentage of unvaccinated newborns moving into a chronic
state is lower than the sum of the mortality rates from hepatitis B and the percentage of
patients who recover from the chronic category.

Furthermore, the model encompasses a range of parameters, each with specific inter-
pretations: Π represents the birth rate, µ signifies the natural death rate, σ denotes the
natural recovery rate from the acute class, ϑ characterizes the rate of recovery from the
chronic class due to treatment, δ represents the speed at which individuals move from
the acute class to the chronic class once they exhibit symptoms, α represents the rate at
which individuals in the initially vaccinated first dose class receive their second vaccine
dose whereas the rate of recovery from the second dose class of vaccination is represented
by ϵ. ψ represents the disease-related death rate in the chronic class, φ1 designates the rate
at which members of the susceptible population receive their first dosage of the vaccine,
and φ2 signifies the rate at which vaccine immunity diminishes in the vaccinated first dose
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class. The system of ODEs, under the specified assumptions, is expressed as follows [13]:

dS
dt = Π(1− ω)(1− τC) + φ2V1 − (λ+ µ+ φ1)S,
dV1
dt = φ1S +Πω − (α+ µ+ φ2)V1,
dV2
dt = αV1 − (ϵ+ µ)V2,
dA
dt = λS − (δ + σ + µ)A,
dC
dt = δA+Π(1− ω)τC − (ϑ+ µ+ ψ)C,
dR
dt = σA+ ϑC + ϵV2 − µR,

(9)

with the following values
0 ≤ S(0), 0 ≤ V1(0), 0 ≤ V2(0)

0 ≤ A(0), 0 ≤ C(0), 0 ≤ R(0).

This incorporation facilitates a comprehensive examination of epidemic dissemination
in complex scenarios featuring memory effects and long-range interactions, which enhances
our understanding of the underlying mechanisms. Consequently, we have applied a frac-
tional framework to describe the dynamics of HB disease. In our proposed model, we have
employed the CF fractional operator in the following manner.

CF
0 Dς

tS = Π(1− ω)(1− τC) + φ2V1 − (λ+ µ+ φ1)S,
CF
0 Dς

tV1 = φ1S +Πω − (α+ µ+ φ2)V1,
CF
0 Dς

tV2 = αV1 − (ϵ+ µ)V2,
CF
0 Dς

tA = λS − (δ + σ + µ)A,
CF
0 Dς

tC = δA+Π(1− ω)τC − (ϑ+ µ+ ψ)C,
CF
0 Dς

tR = σA+ ϑC + ϵV2 − µR,

(10)

with positive initial conditions.

3.1. Analysis of Disease-Free Equilibrium

The system (10) reaches a disease-free equilibrium (DFE) in the absence of infections.
To find the DFE, one must solve the system by setting the left-hand side of equation (10)
to zero. At the DFE, both A and C are equal to zero, causing system (10) to simplify to

0 = Π(1− ω) + φ2V1 − (λ+ µ+ φ1)S,
0 = φ1S +Πω − (α+ µ+ φ2)V1,
0 = αV1 − (ϵ+ µ)V2,
0 = ϵV2 − µR,

(11)

therefore, based on (11), the DFE for model (10) can be expressed as

E0 =
(
S0, V 0

1 , V
0
2 , A

0, C0, R0
)
,

=
(
Π(l−ωv)
µl+φ1v

, Π(φ1+ωµ)
µl+φ1v

, Πα(φ1+ωµ)
(ϵ+µ)(µl+φ1v)

, 0, 0, Πεα(φ1+ωµ)
(ε+µ)(µl+φ1v)

)
,

(12)

where l = α+ µ+ φ2, v = α+ µ, and α+ µ < ω(α+ µ).
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The basic reproduction number, R0, for the system described in (10) is calculated
using the approach outlined in [38]. This parameter is defined as R0 = ρ(FV −1), where
ρ(FV −1) represents the spectral radius of the matrix FV −1. In our analysis, we focus
only on the infectious classes within the differential equation system (10), which can be
expressed as:

dA
dt = λS − (δ + σ + µ)A,
dC
dt = δA+Π(1− ω)τC − (ϑ+ µ+ ψ)C.

(13)

Consider f to represent the rate at which new infections enter the system, and let v
quantify the disparity between the immigration rate into the compartments and the rate
of inter-compartmental transfer.

f =

[
λS
0

]
, and v =

[
(δ + σ + µ)A

(ϑ+ µ+ ψ)C −Π(1− ω)τC − δA

]
,

where λ = ξ(κA + C). Next, calculate the Jacobian matrix for both f and v concerning
the variables A and C at the DFE denoted as E0.

F =

[
κ 1
0 0

]
, and V =

[
δ + σ + µ 0

−δ (ϑ+ µ+ ψ)−Π(1− ω)τ

]
.

Next, by calculating the matrix V inverse, we obtain the following result.

V −1 =
1

(δ + σ + µ)((ϑ+ µ+ ψ)−Π(1− ω)τ)

[
(ϑ+ µ+ ψ)−Π(1− ω)τ 0

δ δ + σ + µ

]
,

then FV −1 is given by

FV −1 =

[
κξS0

δ+σ+µ + ξδS0

(δ+σ)((ϑ+µ+ψ)−Π(1−ω)τ)
ξS0

(ϑ+µ+ψ)−Π(1−ω)τ
0 0

]
.

The endemic indicator R0 corresponds to the highest eigenvalue of the matrix mentioned
above.

R0 = ξS0

(
κ

δ+σ+µ + δ
(δ+σ+µ)((ϑ+µ+ψ)−Π(1−ω)τ)

)
. (14)

Theorem 1. The state of DFE exhibits local asymptotic stability when R0 < 1, and it
becomes unstable when R0 exceeds 1.

Proof. The Jacobian matrix of the system described in (10) at the equilibrium point
denoted as E0 is given by

J(E0) =



−(µ+ φ1) φ2 0 −ξκS0 −Π(1− ω)τ − ξS0 0
φ1 −(α+ µ+ φ2) 0 0 0 0
0 α −(µ+ ϵ) 0 0 0
0 0 0 ξκS0 − (δ + σ + µ) ξS0 0
0 0 0 δ Π(1− ω)τ − (ϑ+ µ+ ψ) 0
0 0 ϵ σ ϑ −µ

 ,
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then the characteristic equation of the above is |J(E0)− λ| = 0. From which, we derived
λ1 = −µ < 0, λ2 = −(µ+ ϵ) < 0. Furthermore, employing the Routh-Hurwitz criteria, we
established that both λ3 and λ4 are negative. As for the remaining two eigenvalues, they
constitute the eigenvalues of the given system.

J1 =

[
ξκS0 − (δ + σ + µ) ξS0

δ Π(1− ω)τ − (ϑ+ µ+ ψ)

]
.

We can now employ the standard criteria to guarantee that the eigenvalues of J1 exhibit a
negative real component. Specifically, we seek a condition where both the trace of J1 < 0,
and the determinant of J1 > 0. From the second set of inequalities, the following condition
has been derived:

(ξκS0 − (δ + σ + µ))(Π(1− ω)τ − (ϑ+ µ+ ψ))− δξS0 > 0,
−(δ + σ + µ)(Π(1− ω)τ − (ϑ+ µ+ ψ)) > (ϑ+ µ+ ψ −Π(1− ω)τ)ξκS0 + δξS0,

1 > ξS0
(

κ
δ+σ+µ + δ

(δ+σ+µ)(ϑ+µ+ψ−Π(1−ω)τ)

)
= R0.

(15)
Observing the condition R0 < 1, we can determine that the trace of J1 is negative
(J1 < 0), and the determinant of J1 is positive (J1 > 0). These indications imply that
the remaining two eigenvalues have negative real parts. Consequently, when R0 < 1, the
DFE point exhibits local asymptotic stability, while for R0 > 1, the DFE point becomes
unstable.

3.2. Existence theory

Our focus is on analyzing the solutions of the proposed fractional HBV system. The
existence of the solution (10) is investigated using fixed point theory. The procedure is as
follows:

S(t)− S(0) = CF
0 Iςt

{
Π(1− ω)(1− τC) + φ2V1 − (λ+ µ+ φ1)S

}
,

V1(t)− V1(0) = CF
0 Iςt

{
φ1S +Πω − (α+ µ+ φ2)V1

}
,

V2(t)− V2(0) = CF
0 Iςt

{
αV1 − (ϵ+ µ)V2

}
,

A(t)−A(0) = CF
0 Iςt

{
λS − (δ + σ + µ)A

}
,

C(t)− C(0) = CF
0 Iςt

{
δA+Π(1− ω)τC − (ϑ+ µ+ ψ)C

}
,

R(t)−R(0) = CF
0 Iςt

{
σA+ ϑC + ϵV2 − µR

}
.

(16)

After that, we have

S(t)− S(0) =
2(1− ς)

(2− ς)U(ς)

{
Π(1− ω)(1− τC) + φ2V1 − (λ+ µ+ φ1)S

}
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+
2ς

(2− ς)U(ς)

∫ t

0

{
Π(1− ω)(1− τC) + φ2V1 − (λ+ µ+ φ1)S

}
dy,

V1(t)− V1(0) =
2(1− ς)

(2− ς)U(ς)

{
φ1S +Πω − (α+ µ+ φ2)V1

}
+

2ς

(2− ς)U(ς)

∫ t

0

{
φ1S +Πω − (α+ µ+ φ2)V1

}
dy,

V2(t)− V2(0) =
2(1− ς)

(2− ς)U(ς)

{
αV1 − (ϵ+ µ)V2

}
+

2ς

(2− ς)U(ς)

∫ t

0

{
αV1 − (ϵ+ µ)V2

}
dy,

A(t)−A(0) =
2(1− ς)

(2− ς)U(ς)

{
λS − (δ + σ + µ)A

}
+

2ς

(2− ς)U(ς)

∫ t

0

{
λS − (δ + σ + µ)A

}
dy,

C(t)− C(0) =
2(1− ς)

(2− ς)U(ς)

{
δA+Π(1− ω)τC − (ϑ+ µ+ ψ)C

}
+

2ς

(2− ς)U(ς)

∫ t

0

{
δA+Π(1− ω)τC − (ϑ+ µ+ ψ)C

}
dy,

R(t)−R(0) =
2(1− ς)

(2− ς)U(ς)

{
σA+ ϑC + ϵV2 − µR

}
+

2ς

(2− ς)U(ς)

∫ t

0

{
σA+ ϑC + ϵV2 − µR

}
. (17)

Moreover, 

L1(t, S) = Π(1− ω)(1− τC) + φ2V1 − (λ+ µ+ φ1)S,
L2(t, V1) = φ1S +Πω − (α+ µ+ φ2)V1,
L3(t, V2) = αV1 − (ϵ+ µ)V2,
L4(t, A) = βC + γI − (d+ τ)R,
L5(t, C) = δA+Π(1− ω)τC − (ϑ+ µ+ ψ)C,
L6(t, R) = σA+ ϑC + ϵV2 − µR.

(18)

Theorem 2. The kernels L1,L2,L3,L4,L5, and L6 satisfy the conditions of Lipschitz
and contraction if the following criteria are met.

0 ≤ (ξ(κM +M) + µ+ φ1) < 1.

Proof. To achieve the specified outcomes, we consider the variables denoted as S and
S1, initiating the process from the initial state L1 is as follows:

L1(t, S)− L1(t, S1) = −λ{S(t)− S(t1)} − µ{S(t)− S(t1)}
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−φ1{S(t)− S(t1)}. (19)

Upon simplifying equation (19), we attain the below

∥L1(t, S)− L1(t, S1)∥ ≤ ∥λ{S(t)− S(t1)}||+ µ∥{S(t)− S(t1)}∥

+φ1∥{S(t)− S(t1)}∥

≤ ∥ξ(κA+ C)∥∥{S(t)− S(t1)}||+ µ∥{S(t)− S(t1)}∥

+φ1∥{S(t)− S(t1)}∥

≤ ξ(κM +M)∥{S(t)− S(t1)}||+ µ∥{S(t)− S(t1)}∥

+φ1∥{S(t)− S(t1)}∥

≤ (ξ(κM +M) + µ+ φ1)∥{S(t)− S(t1)}∥.

Taking ϖ1 = (ξ(κM +M)+µ+φ1), where ∥A∥ ≤M and ∥C∥ ≤M due to boundedness,
we have

||L1(t, S)− L1(t, S1)|| ≤ ϖ1||S(t)− S(t1)||. (20)

Therefore, we have established the Lipschitz condition for L1, and additionally, contraction
is derived from the condition 0 ≤ (M + d+ ν) < 1. Similarly, the Lipschitz conditions can
be determined as follows

||L2(t, V1)− L2(t, V11)|| ≤ ϖ2||V1(t)− V1(t1)||,

||L3(t, V2)− L3(t, V21)|| ≤ ϖ3||V2(t)− V2(t1)||,

||L4(t, A)− L4(t, A1)|| ≤ ϖ4||A(t)−A(t1)||,

||L5(t, C)− L5(t, C1)|| ≤ ϖ5||C(t)− C(t1)||,

||L6(t, R)− L6(t, R1)|| ≤ ϖ6||R(t)−R(t1)||. (21)



I. Ahmad et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5509 12 of 27

Utilizing (17), the following can be derived:

Sm(t) = 2 (1−ς)
(2−ς)U(ς)L1(t, S(m−1)) + 2 ς

(2−ς)U(ς)

∫ t
0(L1(z, S(m−1)))dz,

V1m(t) = 2 (1−ς)
(2−ς)U(ς)L2(t, V1(m−1)) + 2 ς

(2−ς)U(ς)

∫ t
0(L2(z, V1(m−1)))dz,

V2m(t) = 2 (1−ς)
(2−ς)U(ς)L3(t, V2(m−1)) + 2 ς

(2−ς)U(ς)

∫ t
0(L3(z, V2(m−1)))dz,

Am(t) = 2 (1−ς)
(2−ς)U(ς)L4(t, A(m−1)) + 2 ς

(2−ς)U(ς)

∫ t
0(L4(z,A(m−1)))dz,

Cm(t) = 2 (1−ς)
(2−ς)U(ς)L5(t, C(m−1)) + 2 ς

(2−ς)U(ς)

∫ t
0(L5(z, C(m−1)))dz,

Rm(t) = 2 (1−ς)
(2−ς)U(ς)L6(t, C(m−1)) + 2 ς

(2−ς)U(ς)

∫ t
0(L6(z,R(m−1)))dz,

(22)

with the below initial values

S0(t) = S(0), V 0
1 (t) = V1(0), V

0
2 (t) = V2(0), A

0(t) = A(0), C0(t) = C(0), R0(t) = R(0).

The difference expressions are derived in the following manner.

κ1m(t) = Sm(t)− S(m−1)(t) =
2(1− ς)

(2− ς)U(ς)
(L1(t, S(m−1))− L1(t, S(m−2)))

+2
ς

(2− ς)U(ς)

∫ t

0
(L1(z, S(m−1))− L1(z, S(m−2)))dz,

κ2m(t) = V1m(t)− V1(m−1)(t) =
2(1− ς)

(2− ς)U(ς)
(L2(t, V1(m−1))− L2(t, V1(m−2)))

+2
ς

(2− ς)U(ς)

∫ t

0
(L2(z, V1(m−1))− L2(z, V1(m−2)))dz,

κ3m(t) = V2m(t)− V2(m−1)(t) =
2(1− ς)

(2− ς)U(ς)
(L3(t, V2(m−1))− L3(t, V2(m−2)))

+2
ς

(2− ς)U(ς)

∫ t

0
(L3(z, V2(m−1))− L3(z, V2(m−2)))dz,

κ4m(t) = Am(t)−A(m−1)(t) =
2(1− ς)

(2− ς)U(ς)
(L4(t, A(m−1))− L4(t, A(m−2)))

+2
ς

(2− ς)U(ς)

∫ t

0
(L4(z,A(m−1))− L4(z,A(m−2)))dz,

κ5m(t) = Cm(t)− C(m−1)(t) =
2(1− ς)

(2− ς)U(ς)
(L5(t, C(m−1))− L5(t, C(m−2)))

+2
ς

(2− ς)U(ς)

∫ t

0
(L5(z, C(m−1))− L5(z, C(m−2)))dz,

κ6m(t) = Rm(t)−R(m−1)(t) =
2(1− ς)

(2− ς)U(ς)
(L6(t, R(m−1))− L6(t, R(m−2)))

+2
ς

(2− ς)U(ς)

∫ t

0
(L6(z,R(m−1))− L6(z,R(m−2)))dz. (23)
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Noticing
Sm(t) =

∑m
j=1 κ1j(t), V1n(t) =

∑m
j=1 κ2j(t), V2m(t) =

∑m
j=1 κ3J(t),

Am(t) =
∑m

j=1 κ4j(t), Cm(t) =
∑m

j=1 κ5j(t), Rm(t) =
∑m

j=1 κ6j(t).
(24)

Similarly,

||κ1m(t)|| = ||Sm(t)− S(m−1)(t)|| =
∥∥∥∥2 (1− ς)

(2− ς)U(ς)
(L1(t, S(m−1))− L1(t, S(m−2)))

+2
ς

(2− ς)U(ς)

∫ t

0
(L1(z, S(m−1))− L1(z, S(m−2)))dz

∥∥∥∥. (25)

Equation (25) suggests that

∥Sm(t)− S(m−1)(t)∥ ≤ 2
(1− ς)

(2− ς)U(ς)
∥(L1(t, S(m−1))− L1(t, S(m−2)))∥

+2
ς

(2− ς)U(ς)

∥∥∥∥∫ t

0
(L1(z, S(m−1))− L1(z, S(m−2)))dz

∥∥∥∥.(26)
The aforementioned results in

∥Sm(t)− Sm−1(t)∥ ≤ 2
(1− ς)

(2− ς)U(ς)
ϖ1∥S(m−1) − S(m−2)∥+ 2

ς

(2− ς)U(ς)
ϖ1

×
∫ t

0
∥S(m−1) − S(m−2)∥dz. (27)

Furthermore

∥κ1m(t)∥ ≤ 2
(1− ς)

(2− ς)U(ς)
ϖ1∥κ1(m−1)(t)∥+ 2

ς

(2− ς)U(ς)
ϖ1

∫ t

0
∥κ1(m−1)(z)∥dz.(28)

Similarly

∥κ2m(t)∥ ≤ 2
(1− ς)

(2− ς)U(ς)
ϖ2∥κ2(m−1)(t)∥+ 2

ς

(2− ς)U(ς)
ϖ2

∫ t

0
∥κ2(m−1)(z)∥dz,

∥κ3m(t)∥ ≤ 2
(1− ς)

(2− ς)U(ς)
ϖ3∥κ3(m−1)(t)∥+ 2

ς

(2− ς)U(ς)
ϖ1

∫ t

0
∥κ3(m−1)(z)∥dz,

∥κ4m(t)∥ ≤ 2(1− ς)

(2− ς)U(ς)
ϖ4∥κ4(m−1)(t)∥+ 2

ς

(2− ς)U(ς)
ϖ4

∫ t

0
∥κ4(m−1)(z)∥dz,

∥κ5m(t)∥ ≤ 2
(1− ς)

(2− ς)U(ς)
ϖ5∥κ5(m−1)(t)∥+ 2

ς

(2− ς)U(ς)
ϖ5

∫ t

0
∥κ5(m−1)(z)∥dz,

∥κ6m(t)∥ ≤ 2
(1− ς)

(2− ς)U(ς)
ϖ6∥κ6(m−1)(t)∥+ 2

ς

(2− ς)U(ς)
ϖ6

∫ t

0
∥κ6(m−1)(z)∥dz.(29)
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Theorem 3. If there exists a t0 such that the following condition satisfies

2
(1− ς)

(2− ς)U(ς)
ϖ1 + 2

ς

(2− ς)U(ς)
ϖ1t0 < 1,

then, exact coupled solutions for the formulated fractional system (10) are obtained.

Proof. Given the satisfaction of the Lipschitz condition and the boundedness of S(t),
V1(t), V2(t), A(t), C(t), and R(t), we deduce the following from (28) and (29).

∥κ1m(t)∥ ≤ ||Sm(0)||
[(

2
(1− ς)

(2− ς)U(ς)
ϖ1

)
+
(
2

ς

(2− ς)U(ς)
ϖ1t

)]m
,

∥κ2m(t)∥ ≤ ||V1m(0)||
[(

2
(1− ς)

(2− ς)U(ς)
ϖ2

)
+
(
2

ς

(2− ς)U(ς)
ϖ2t

)]m
,

∥κ3m(t)∥ ≤ ||V2m(0)||
[(

2
(1− ς)

(2− ς)U(ς)
ϖ3

)
+
(
2

ς

(2− ς)U(ς)
ϖ3t

)]m
,

∥κ4m(t)∥ ≤ ||Am(0)||
[(

2
(1− ς)

(2− ς)U(ς)
ϖ4

)
+
(
2

ς

(2− ς)U(ς)
ϖ4t

)]m
,

∥κ5m(t)∥ ≤ ||Cm(0)||
[(

2
(1− ς)

(2− ς)U(ς)
ϖ5

)
+
(
2

ς

(2− ς)U(ς)
ϖ5t

)]m
,

∥κ6m(t)∥ ≤ ||Rm(0)||
[(

2
(1− ς)

(2− ς)U(ς)
ϖ6

)
+
(
2

ς

(2− ς)U(ς)
ϖ6t

)]m
. (30)

Consequently, the continuity and existence of solutions are established. Additionally, it is
imperative to demonstrate that the aforementioned is a solution of the model (10), and
we proceed with the following steps.

S(t)− S(0) = Sm(t)−W1m(t),

V1(t)− V1(0) = V1m(t)−W2m(t),

V2(t)− V2(0) = V2m(t)−W3m(t),

A(t)−A(0) = Am(t)−W4m(t),

C(t)− C(0) = Cm(t)−W5m(t),

R(t)−R(0) = Rm(t)−W6m(t). (31)

Subsequently, we proceed to the following stage.

∥Bm(t)∥ =
∣∣∣∣∣∣ 2(1− ς)

(2− ς)U(ς)
(L1(t, Sm)− L1(t, S(m−1))) +

2ς

(2− ς)U(ς)
×∫ t

0
(L1(z, Sm)− L1(z, S(m−1)))dz

∣∣∣∣∣∣,
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≤ 2(1− ς)

(2− ς)U(ς)
∥(L1(t, Sm)− (L1(t, S(m−1)))∥+

2ς

(2− ς)U(ς)
×∫ t

0
||(L1(z, S)− L1(z, S(m−1)))||dz,

≤ 2(1− ς)

(2− ς)U(ς)
ϖ1∥S − S(m−1)∥+

2ς

(2− ς)U(ς)
ϖ1∥S − S(m−1)∥t. (32)

Moreover,

∥W1m(t)∥ ≤
( 2(1− ς)

(2− ς)U(ς)
+

2ς

(2− ς)U(ς)
t
)nm+1

µm+1
1 a. (33)

At the temporal point t0, we have

∥W1m(t)∥ ≤
( 2(1− ς)

(2− ς)U(ς)
+

2ς

(2− ς)U(ς)
t0

)m+1
µm+1
1 a. (34)

Employing identical procedures and utilizing (34), we have

∥W1m(t)∥ −→ 0, n→ ∞.

Similarly, we deduce that the functions W2m(t),W3m(t),W4m(t),W5m(t),W6m(t) con-
verge to zero as the parameter m approaches ∞.

In order to establish the uniqueness of the solution for the system (10), we assume an
alternative solution denoted as (S1(t), V11(t), V21(t), A1(t), C1(t) R1(t)).

S(t)− S1(t) =
2(1− ς)

(2− ς)U(ς)
(L1(t, S)− L1(t, S1)) +

2ς

(2− ς)U(ς)
×∫ t

0
(L1(z, S)− L1(z, S1)) dz. (35)

Applying a norm to (35), we obtain

∥S(t)− S1(t)∥ ≤ 2(1− ς)

(2− ς)U(ς)
∥L1(t, S)− L1(t, S1)∥+

2ℓ

(2− ℓ)U(ℓ)
×∫ t

0
∥L1(z, Sh)− L1(z, S1h)∥dz. (36)

Here, we establish the following via the Lipschitz condition.

∥S(t)− S1(t)∥ ≤ 2(1− ς)

(2− ς)U(ς)
ϖ1∥Sh(t)− S1(t)∥+

2ς

(2− ς)U(ς)
×∫ t

0
ϖ1t∥S(t)− S1(t)∥dz. (37)

This implies that

∥S(t)− S1(t)∥
(
1− 2(1− ς)

(2− ς)U(ς)
ϖ1 −

2ς

(2− ℓ)U(ς)
ϖ1t

)
≤ 0. (38)
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Theorem 4. If the condition expressed by the following equation is satisfied(
1− 2(1− ς)

(2− ς)U(ς)
ϖ1 −

2ς

(2− ς)U(ς)
ϖ1t

)
> 0. (39)

then the system (10) possesses a unique solution.

Proof. Assuming that the expression in (39) holds, the subsequent (38) yields the
following expression

∥S(t)− S1(t)∥ = 0. (40)

Consequently, we obtain

S(t) = S1(t). (41)

Similarly, we achieve the following

V1(t) = V11(t), V2(t) = V21(t), A(t) = A1(t),

C(t) = C1(t), R(t) = R1(t).

4. Computational scheme for the model

Here we provide the numerical solution for the proposed fractional model (10) utilizing
the approach outlined in [12]. The subsequent steps adhere to the procedure outlined for
solving (10):

S(t)− S(0) =
(1− ς)

B(ς)
F1(t, S) +

ς

B(ς)

∫ t

0
F1(ς, S)dς. (42)

At each time step tm+1, where m = 0, 1, 2, ...,, we acquire

S(tm+1)− S0 =
1− ς

B(ς)
F1(tm, Sm) +

ς

B(ς)

∫ tm+1

0
F1(t, S)dt. (43)

The difference between successive terms is expressed as follows:

Sm+1 − Sm =
1− ς

B(ς)
{F1(tm, Sm)−F1(tm−1, Sm−1)}+

ς

B(ς)

∫ tm+1

tn

F1(t, S)dt. (44)

Within the close interval [tk, t(k+1)], one can estimate the function F1(t, S) by employing
an interpolation polynomial.

Pk(t) ∼=
f(tk, zk)

h
(t− tk−1)−

f(tk−1, zk−1)

h
(t− tk), (45)
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where h = tm − tm−1. By applying the previously mentioned polynomial approximation,
we can compute the integral in equation (44).∫ tm+1

tm

F1(t, S)dt =

∫ tm+1

tm

F1(tm, Sm)

h
(t− tm−1)−

F1(tm−1, Sm−1)

h
(t− tm)dt

=
3h

2
F1(tm, Sm)−

h

2
F1(tm−1, Sm−1). (46)

Substituting (46) into (44) and subsequent simplification yielded the following result.

Sm+1 = Sm +

(
1− ς

B(ς)
+

3h

2B(ς)

)
F1(tm, Sm)−

(
1− ς

B(ς)
+

ςh

2B(ς)

)
F1(tm−1, Sm−1).(47)

Similarly, for the remaining equations within the system (10), we derived the recursive
formula as presented below.

V1(m+1) = V10 +

(
1− ς

B(ς)
+

3h

2B(ς)

)
F2(tm, V1m)−

(
1− ς

B(ς)
+

ςh

2B(ς)

)
F2(tm−1, V1(m−1)),

V2(m+1) = V20 +

(
1− ς

B(ς)
+

3h

2B(ς)

)
F3(tm, V2m)−

(
1− ς

B(ς)
+

ςh

2B(ς)

)
F3(tm−1, V2(m−1)),

Am+1 = A0 +

(
1− ς

B(ς)
+

3h

2B(ς)

)
F4(tm, Am)−

(
1− ς

B(ς)
+

ςh

2B(ς)

)
F4(tm−1, Am−1),

Cm+1 = C0 +

(
1− α

B(ς)
+

3h

2B(ς)

)
F5(tm, Cm)−

(
1− ς

B(ς)
+

ςh

2B(ς)

)
F5(tm−1, Cm−1),

Rm+1 = R0 +

(
1− ς

B(ς)
+

3h

2B(ς)

)
F6(tm, Rm)−

(
1− ς

B(ς)
+

ςh

2B(ς)

)
F6(tm−1, Rm−1).(48)

This numerical scheme will be utilized to examine the dynamic behavior of the proposed
model under different input parameters. This investigation aims to predict the spread of
infectious diseases within populations, providing critical insights into their propagation
patterns. Understanding these dynamics is essential for developing strategies to control
or mitigate the disease’s impact. Such findings equip public health officials with the
knowledge needed to implement effective measures to reduce infection rates and alleviate
the associated public health burden.
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Figure 1: Visualization of the solution trajectories of vaccinated, acutely infected, chronically infected, and
recovered individuals within the proposed infection system under varying values of the parameter ς, specifically,
ς = 1.00, 0.95, 0.90, 0.85.
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Figure 2: Visualization of the solution trajectories of vaccinated, acutely infected, chronically infected, and
recovered individuals within the proposed infection system under varying values of the parameter ς, specifically,
ς = 0.5, 0.6, 0.7, 0.8.
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Figure 3: Graphical analysis of vaccinated, acutely infected, chronically infected, and recovered individu-
als within the proposed infection model, considering varying values of the parameter φ1, specifically φ1 =
0.25, 0.35, 0.45, 0.55.
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Figure 4: Graphical analysis of vaccinated, acutely infected, chronically infected, and recovered individu-
als within the proposed infection model, considering varying values of the parameter ξ, specifically ξ =
0.45, 0.55, 0.65, 0.75.
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Figure 5: Plotting the dynamic response of the solution trajectories of the proposed system as a function of the
system’s input parameter δ i.e., δ = 0.126, 0.226, 0.326, 0.426.

5. Numerical findings

In this section, we will examine the dynamical behaviour of the recommended system to
show the impact of input factors on the output of the system. These analysis will provide
a roadmap for responding to and managing outbreaks effectively, benefiting public health
on both local and global scales. In a progressively interconnected global landscape, the
capacity to model and forecast disease dissemination is imperative for global preparedness.
Epidemic models play a crucial role in guiding early detection and containment strategies,
thereby mitigating the swift worldwide transmission of infectious diseases.In this context,
specific values for input parameters and state variables were assumed to facilitate the sim-
ulations. All computations were performed on an HP PC laptop equipped with an Intel(R)
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Core(TM) i5-7200U CPU @ 2.50 GHz (2.71 GHz) and 8 GB of RAM. The simulations
and numerical analysis were carried out using MATLAB (R2012a) software.

In the first simulation presented in Figure 1 and Figure 2, we have show the effect of
fractional order on the vaccinated, acute, chronic and recovered individuals of the system.
In Figure 1, the value of zeta is considered to be ς = 1.00, 0.95, 0.90 and 0.85 while in Figure
2, we assume the value of fractional order ς = 0.8, 0.7, 0.6 and 0.5. In these Figures, we
noticed that decreasing the value of fractional parameter can decrease the infection level
in the society. This implies that this input factor is fruitful and can control the infection
level in the society. In the second simulation presented in Figure 3, we have shown the
impact of vaccination on the dynamics of the infection. We assumed the values of φ1 to
be 0.25, 0.35, 0.45 and 0.55. It can be seen that vaccination is also an important factor
and can significantly contribute to reduce the burden of the infection in the society. In
Figure 4, we illustrated the solution pathways of vaccinated, acute, chronic and recovered
individuals with the variation of the ξ. In this simulation, the values of ξ are assumed
to be 0.45, 0.55, 0.65 and 0.75. We observed that the increasing value of this parameter
increases the infection level of the hepatitis B which means that ξ is critical parameter and
contribute to the spread of HB. In the last simulation illustrated in Figure 5, the impact
of δ has been conceptualized on the vaccinated, acute, chronic and recovered individuals
of the recommend fractional system.

In our increasingly interconnected world, accurately modeling and predicting disease
transmission is essential for global preparedness. Epidemic models enable early detection
and guide containment strategies, playing a crucial role in preventing the rapid spread of
infectious diseases. Understanding epidemic dynamics not only improves the communica-
tion of the importance of preventive measures to the public but also promotes adherence
to recommendations such as vaccination, treatment, quarantine, and other preventive ac-
tions, ultimately helping to mitigate the impact of outbreaks.

6. Conclusion

Hepatitis B infection constitutes a severe and potentially fatal viral disease, necessi-
tating a thorough investigation into its transmission dynamics. This research has inves-
tigated the dynamics of hepatitis B by introducing a two-shot vaccination series and has
employed the fractional Caputo-Fabrizio operator to model the system. The fractional
Caputo-Fabrizio model has been derived, and key findings related to this fractional model
have been presented. Notably, the basic characteristics of the hepatitis B disease model
have been determined, with the threshold parameter R0 having been determined using
the next-generation matrix method. Stability analysis of infection-free equilibrium has
been examined, and the uniqueness and existence of the solution for the hepatitis B dis-
ease system have been investigated. A novel numerical approach has been introduced to
explore the system of hepatitis B disease. The use of different orders of derivatives has re-
vealed that the hypothesized model with the Caputo-Fabrizio derivative has yielded more
accurate and efficient graphical results and analyses compared to integer-order deriva-
tives. The graphical representations have also highlighted the impact and significance of
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various input parameters and have visualized the most important factors of the system.
The findings of this study are expected to provide critical insights for policymakers and
healthcare authorities working to control the spread of hepatitis B within affected pop-
ulations. Additionally, future extensions of this model may incorporate time-dependent
control strategies, grounded in optimal control theory, to further enhance the effectiveness
of disease management and intervention efforts.
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