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Abstract. Rough set theory, a powerful mathematical framework, excels in addressing uncertainty
and imprecision. In this study, we explore the analysis and provide examples of ideals and prime
ideals within imprecise scenarios, utilizing rough set theory to quantify and navigate the inherent
imprecision and roughness within these algebraic structures. This research contributes to our
comprehension of how rough set theory effectively manages imprecision in algebraic contexts.
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1. Introduction

Real-world problems are inherently plagued by imprecision, necessitating the employ-
ment of mathematical tools capable of handling uncertainty. Various mathematical the-
ories, including fuzzy set theory, soft set theory, and rough set theory, have emerged to
address these imprecise scenarios. Among these, rough set theory stands out due to its
unique feature of requiring only the dataset itself, without any prior information, to ana-
lyze uncertainty. In the realm of mathematics and its practical applications, the study of
ideals and prime ideals assumes a foundational role in understanding algebraic structures.
These concepts, originating from abstract algebra, possess far-reaching implications across
various domains, including number theory, ring theory, and algebraic geometry. However,
when confronted with real-world data and imprecise information, traditional algebraic
methods may fall short in providing meaningful insights. This is where Rough Set The-
ory, a branch of mathematics tailored for handling uncertainty and imprecision, comes
into play.

Rough Set Theory, introduced by Polish mathematician Zdzis law Pawlak in the 1980s,
provides a mathematical framework designed specifically to grapple with imprecision and
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uncertainty in data [14]. At its core, Rough Set Theory deals with approximations and
object classification based on available information. The central concept in Rough Set
Theory is the notion of a rough set, characterized by two sets: the lower approximation
(containing certain information) and the upper approximation (containing potential infor-
mation). These sets are used to define boundaries and make decisions when faced with
imprecise data.

Developments in rough set theory, spanning advancements in pure mathematics, the
establishment of algebraic foundations, and practical applications, have been rapidly pro-
gressing since its inception. Pawlak’s seminal work [16] laid the primary algebraic ground-
work for rough sets, culminating in the exploration of various algebraic properties and
theories in this field [6]. This paper references several related works to underscore the
significance of rough set theory. Pawlak himself emphasized the importance of rough sets
[15]. Concepts such as rough groups, rough subgroups, and their properties have been
thoroughly investigated in [12]. Q. Xiao and Z. Zhang introduced the concepts of rough
prime ideals and rough fuzzy prime ideals [20]. Fuzzy ideals within a ring have been metic-
ulously explored by T. Mukherjee and M. Sen [13]. B. Davvaz explores into roughness
based on fuzzy ideals and roughness within rings [7, 8]. Kuroki has conducted research on
rough ideals in semigroups [11]. A.K. Sinha and A. Prakash have meticulously examined
the algebraic properties of rough set theory [18, 19]. Recent extensions of rough set theory
can be found in [10, 17, 21].

The article by Hosny et al. [9] explores how rough set theory can be enhanced using ide-
als and maximal right neighborhoods. The study focuses on minimizing boundary regions
and increasing classification accuracy, particularly in medical cases such as COVID-19 and
heart disease diagnosis. Similarly, the work by Al-shami et al. [5] introduces an advanced
extension of rough set theory by incorporating Ik-neighborhoods, which combine neigh-
borhood systems and ideal structures. This approach enhances decision-making accuracy
and is applied to analyze data related to Chikungunya disease. Their results highlight the
effectiveness of these models in reducing uncertainty, aligning with the current article’s
focus on the algebraic foundations of ideals within rough set theory.

Further, Al-shami et al. [1] develop a novel decision-making framework that uses rough
set theory with new approximation models based on basic-minimal neighborhoods. Their
application to heart failure diagnosis achieves 100% accuracy, significantly improving upon
previous methods. This work complements the present study by expanding the connec-
tion between rough set theory and topological structures, reinforcing the practical utility
of ideals-based methods in medical applications. These recent developments, alongside
the current article, underscore the potential of ideals-based rough set theory in enhancing
decision-making accuracy and addressing uncertainties [3] in various fields, especially in
medical data analysis. Recent advancements in rough set theory, including concepts like
somewhere dense sets [2], containment neighborhoods, and supra-topological frameworks
[4], have improved accuracy and decision-making, particularly in medical diagnostics [1].
Future research could explore these enhanced rough set models in complex applications,
such as broader clinical contexts and other data-driven environments, to strengthen deci-
sion frameworks under uncertain data conditions.
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This introduction lays the groundwork for a comprehensive investigation into the ap-
plication of rough set theory to analyze ideals and prime ideals within imprecise scenarios.
It underscores the necessity of such an approach in addressing real-world problems char-
acterized by uncertainty and imprecision.

2. Preliminaries

In this section, we present a foundational understanding of rough set theory with key
algebraic properties.

Let U represent a universal set, and let θ denote an equivalence relation on U . The
equivalence class of an element x ∈ U is defined as the set of elements related to x in U ,
denoted as [x]θ. The pair (U, θ), where U is non-empty, and θ is an equivalence relation on
U, constitutes an approximation space. In this context, rough approximation [16] in (U, θ)
is represented by a mapping Apr : P (U) → P (U) × P (U), defined for every X ∈ P (U) as
follows:

Apr(X) = (θ−(X), θ−(X)),

where θ−(X) = {x ∈ U | [x]θ ⊆ X} and θ−(X) = {x ∈ U | [x]θ ∩ X ̸= ∅}. These sets,
θ−(X) and θ−(X), are known as the lower and upper approximations of set X within
(U, θ), respectively. The accuracy of rough set can be measured as [16]:

αθ(X) =
card

(
θ−(X)

)
card

(
θ−X

) ,

where X ̸= ∅. The accuracy measure αθ(X) quantifies the degree of completeness of our
knowledge about the set X. It holds that 0 ≤ αθ(X) ≤ 1, and when αθ(X) = 1, the
θ-borderline region of X is empty. The θ-roughness of X [16] is defined as:

ρθ(X) = 1 − αθ(X) = 1 −
card

(
θ−(X)

)
card

(
θ−(X)

) .
It’s worth noting that lower roughness of a subset indicates a better approximation.

In this paper, we consider R as a ring with standard operations. Let I represent an
ideal of R, and X (where X ̸= emptyset) be a subset of R. We define I−(X) and I−(X)
as follows:

I−(X) = {x ∈ R | (x + I) ⊆ X}

I−(X) = {x ∈ R | (x + I) ∩X ̸= ∅},

representing the lower and upper approximations of set X concerning the ideal I,
respectively. Additionally, we introduce notations for R as a ring and ρ as a congruence
relation on R:

ρ−(A) = {x ∈ R | [x]ρ ⊆ A}
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ρ−(A) = {x ∈ R | [x]ρ ∩A ̸= ∅}

A congruence relation on R is termed complete if [a]ρ[b]ρ = [ab]ρ for any a, b ∈ R. We also
present key propositions and theorems relevant to our study:

Proposition 1. ([7], Proposition 3.4) Let I be an ideal of R, and A,B non-empty subsets
of R. Then

I−(A) · I−(B) = I−(A ·B).

Proposition 2. ([7], Proposition 3.5) Let I be an ideal of R, and A,B non-empty subsets
of R. Then

I−(A) · I−(B) = I−(A ·B).

Theorem 1. (Theorem 3.12, [7]) Let I and J be two ideals of the ring R. Then I−(J) is
an ideal of R.

Theorem 2. (Theorem 3.13, [7]) Let I and J be two ideals of the ring R. Then I−(J) is
an ideal of R.

These propositions and theorems establish essential properties and relationships within
our research domain.

3. Rough Set Analysis of Ideals: Theory, Applications, and Illustrated
Examples

In this section, we explore the fundamental theorems related to ideals, with a specific
focus on upper and lower approximations. To aid in comprehension, we provide concrete
examples that illustrate these theorems. We also explore the concept of rough ideals,
offering a precise definition to facilitate understanding. Further, we present additional
theorems and illustrative examples to enhance the practical application of these concepts.

Theorem 3. Let ρ be a congruence relation on a ring R. Suppose A is a subset of ring
R,and if A is an ideal of ring R, then the upper approximation of A, denoted as ρ−(A),
is also an ideal of ring R.

Proof. Assume that A is an ideal of ring R, which implies that RA ⊆ A and AR ⊆ A.
Note that ρ−(R) = R. By Proposition 1, we have:

Rρ−(A) = ρ−(R)ρ−(A) ⊆ ρ−(RA) ⊆ ρ−(A)

ρ−(A)R = ρ−(A)ρ−(R) ⊆ ρ−(AR) ⊆ ρ−(A)

This implies that ρ−(A) is an ideal of R, making it an upper rough ideal of ring R. It’s
important to note that the converse of this theorem does not hold in general.
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Example 1. Let’s consider R = Z12, I = {0, 6} as a congruence relation on Z12, and
A = {0, 4, 8} as a subset of Z12. In this case, I−(A) = {0, 2, 4, 6, 8, 10} is an ideal of
Z12. However, the lower approximation is an empty set, i.e., I−(A) = ∅. Now, consider
another subset, B = {0, 2, 4, 6, 8, 10} in Z12. Here, I−(B) = {0, 2, 4, 6, 8, 10} is also an
ideal of Z12, and its lower approximation is I−(B) = {0, 6}. The roughness ρ(B) = 0.67,
indicating the degree of completeness of our knowledge about set B.

Theorem 4. Let ρ be a complete congruence relation on a ring R, and A be an ideal of
R. If the lower approximation ρ−(A) is non-empty, then it is also an ideal of ring R.

Proof. Consider A as an ideal of ring R, implying RA ⊆ A and AR ⊆ A. Note that
ρ−(R) = R. By Proposition 2, we have:

Rρ−(A) = ρ−(R)ρ−(A) ⊆ ρ−(RA) ⊆ ρ−(A)

This indicates that ρ−(A) is an ideal of R, and it represents a lower rough ideal.

Definition 1. Suppose ρ is a congruence relation on a ring R, and A ⊆ R. We define
ρ(A) = (ρ−(A), ρ−(A)) as a rough ideal of R if both the lower approximation ρ−(A) and
the upper approximation ρ−(A) are ideals of the ring R.

Example 2. Let’s take R = Z12, I = {0, 4} as an ideal of R, and A = {0, 4, 6} as a
subset of R. In this case, I−(A) = {0, 4} and I−(A) = {0, 2, 4, 6} are the lower and upper
approximations of A concerning the congruence relation I. Since both I−(A) and I−(A)
are ideals of R, this implies that I(A) = (I−(A), I−(A)) is a rough ideal of Z12. The
roughness of A is calculated as ρ(A) = 0.5.

Theorem 5. If ρ and λ are congruence relations on a ring R, and ρ ⊂ λ, and if A is a
non-empty subset of R, then

(ρ ∩ λ)−(A) = ρ−(A) ∩ λ−(A).

Proof. Since ρ and λ are congruence relations on a ring R, this implies that ρ∩λ is also
a congruence relation on ring R. For any c ∈ (ρ ∩ λ)−(A), we can deduce that c ∈ ρ−(A)
and c ∈ λ−(A). This establishes that

(ρ ∩ λ)−(A) ⊆ ρ−(A) ∩ λ−(A).

Conversely, for c ∈ ρ−(A) ∩ λ−(A), we can show that c ∈ (ρ ∩ λ)−(A), which leads to
the conclusion that

ρ−(A) ∩ λ−(A) ⊆ (ρ ∩ λ)−(A).

Hence, we have proven
(ρ ∩ λ)−(A) = ρ−(A) ∩ λ−(A).
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Example 3. Consider R = Z12 as the ring, J = {0, 6} and K = {0, 2, 4, 6, 8, 10} as
congruence relations on Z12. It’s clear that J and K are ideals on R. In this scenario,
J is a subset of K. Let B = {0, 1, 2, 5} as a subset of Z12. By calculating the respective
classes, we obtain the lower approximations:

J−(B) = {0, 1, 2, 5, 6, 7, 8, 11}
K−(B) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

(J ∩K)−(B) = {0, 1, 2, 5, 6, 7, 8, 11}

The intersection of J−(B) and K−(B) equals (J ∩ K)−(B), showing that the lower ap-
proximation of B under congruence relation (J ∩K) is (J ∩K)−(B).

Theorem 6. If ρ and λ are congruence relations on a ring R, and A is a non-empty
subset of R, then

(ρ ∩ λ)−(A) = ρ−(A) ∩ λ−(A).

Proof. The proof for this theorem follows a similar logic to the previous theorem, with
the focus on the lower approximations.

Example 4. Let’s consider R = Z12 as the ring, I = {0, 4, 8}, and K = {0, 2, 4, 6, 8, 10}
as congruence relations on Z12. We note that I and K are ideals on Z12. In this case, I
is a subset of K. Let A = {1, 3, 5, 7, 9, 11} as a subset of Z12. By calculating the classes
for I and K, we obtain the lower approximations:

I−(A) = {1, 3, 5, 7, 9, 11}
K−(A) = {1, 3, 5, 7, 9, 11}

(I ∩K)−(A) = {1, 3, 5, 7, 9, 11}

In this case, the intersection of I−(A) and K−(A) equals (I ∩K)−(A), showing that the
lower approximation of A under congruence relation (I ∩K) is (I ∩K)−(A).

Definition 2. Let R be a ring in the usual sense. An ideal A of a ring R is termed a
prime ideal of the ring R if, for any x, y ∈ R, xy ∈ A implies that either x ∈ A or y ∈ A.

Now, let ρ be a congruence relation on a ring R. We define a subset I of ring R as
a lower rough prime ideal of ring R if ρ−(I) is a prime ideal of ring R, and an upper
rough prime ideal of ring R if ρ−(I) is a prime ideal of ring R. We then denote ρ(I) =
(ρ−(I), ρ−(I)) as a rough prime ideal of R.

Example 5. Consider R = Z12 as a ring, with I = {0, 6} and subsets A = {0, 1, 2, 5, 6, 8}
and B = {0, 3, 4, 6, 9}. In this context, I is an ideal of ring Z12. A is a subset of Z12, and
it’s evident that I is a congruence relation in Z12. Now, we define the lower approximation
of A with respect to the congruence relation I as I−(A) = {x ∈ Z12|(x + I) ⊆ A} and the
upper approximation as I−(A) = {x ∈ Z12|(x + I) ∩A ̸= ∅}.

For this example, the classes of I are {2, 8}, {4, 10}, {3, 9}, {1, 7}, {6, 0}, {5, 11} in Z12.
Consequently, I−(A) = {0, 2, 6, 8} and I−(A) = {0, 1, 2, 5, 6, 7, 8, 11}. This implies that
I−(A) and I−(A) are prime ideals of Z12, demonstrating that Apr(A) = (I−(A), I−(A))
is a rough prime ideal. The roughness of set A is calculated as ρ(A) = 0.5.
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Example 6. Let’s consider the same ring R = Z12, but this time with the congruence
relation I = {0, 4, 8} and the subset B = {0, 1, 3, 4, 6, 8, 10}. Here, I is an ideal over ring
R, and B is any subset of R. By defining the lower approximation of B with respect to
congruence relation I, we get I−(B) = {x ∈ R|x + I ⊆ B} and the upper approximation
is I−(B) = {x ∈ R|(x + I) ∩B ̸= ∅}.

In this scenario, the classes of ρ are {0, 4, 8}, {1, 5, 9}, {2, 6, 10}, {3, 7, 11} within Z12.
Thus ρ−(B) = {0, 2, 4, 6, 8, 10} and ρ−(B) = {0, 2, 3, 4, 6, 7, 8, 11}. This indicates that
ρ−(B) and ρ−(B) are prime ideals of R = Z12, suggesting that ρ(B) = (ρ−(B), ρ−(B)) is
a prime ideal of R = Z12.

4. Conclusion

In conclusion, traditional algebraic interpretations of ideals and prime ideals are grounded
in precise mathematical definitions, often struggling to accommodate the inherent impreci-
sion and uncertainty encountered in real-world data. In contrast, Rough Set Theory offers
a refreshing perspective, introducing a high degree of flexibility by considering lower and
upper approximations. These rough interpretations bridge the gap between classical alge-
braic structures and practical applications, providing a versatile mathematical framework
that excels in scenarios where precision remains elusive.

The fusion of abstract algebraic concepts with the adeptness of Rough Set Theory in
handling imprecision and uncertainty opens up a promising avenue for further research
and practical applications. The exploration of algebraic concepts within rough sets has
proven to be captivating. We explained the concepts of upper and lower approximations
of ideals within the context of congruence relations, shedding light on the notion of rough
ideals with examples. We also investigated the study of upper and lower prime ideals,
examining their associated roughness and bridging the theory and applications. These
findings are poised to make significant contributions to the mathematical foundation of
rough set theory. They not only extend our understanding of algebraic structures within
rough set theory but also pave the way for further explorations and applications within
this intriguing field. The mathematical interpretations of rough ideals and rough prime
ideals empower us to adapt and extend traditional algebraic concepts effectively, providing
the tools needed to tackle imprecise information efficiently. This, enables us to gain deeper
insights and develop solutions applicable in various domains where uncertainty and data
imperfections prevail. As mathematical tools continue to evolve to meet the demands
of the modern world, Rough Set Theory stands as a testament to the adaptability and
versatility of mathematics in addressing real-world challenges.
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