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Abstract. We know that mathematical modeling is an important tool for understanding the
dynamics of breast cancer (BC) development, spread and reduce new therapeutic approaches. So,
in the current article, we have investigated the analytical solution of the mathematical model for
BC by using the modified Adomian decomposition method (MADM). The MADM is based on the
integral transform (Mohand transform) with the Adomian decomposition procedure. The MADM
provides a series of solutions that converge quickly to the exact solution for the proposed problem.
The convergence of this method is discussed. Through this work, a numerical simulation was
presented to solve the mathematical model under study with several values of the approximation
order, rate of the estrogen source, and effectiveness of anti-cancer drugs, to understand the extent
of their effect on the numerical solution and then on the nature and dynamics of the system, and
to provide some recommendations to reduce the impact of this malignant tumor. In addition,
we presented a comparison between the solution generated by the proposed technique and that
numerical solution by utilizing the Runge-Kutta method (RK4M). Finally, the proposed method
can also be extended to solving other models in the applied sciences.
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1. Introduction

Breast cancer is described and defined as a disease condition resulting from the un-
controlled proliferation of cells within the breast tissue. Through many data provided by
the WHO on the global burden of cancer, we find that BC has the highest prevalence rate
when compared to other forms of cancer [6]. Globally, through surveys conducted by the
WHO, which ranked breast cancer in 2004 as the second most common form of cancer, we
find that it represents a major potential threat to women, as it affects approximately 8-9
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percent of women worldwide [1]. Despite all these studies and numerous investigations,
the exact cause of breast cancer is still uncertain. It was also directly responsible for the
deaths of 685,000 people in 2020, out of 2.3 million women affected, as indicated by the
diagnosis of 7.8 million women during the previous five-year period ([1], [23]). Breast can-
cer is the most common in women after puberty and its incidence increases with age [1].
Based on all of the above considerations, we emphasize the need for a comprehensive un-
derstanding of the epidemiology of breast cancer and its effects on women’s health, as
it is of utmost importance in developing effective preventive and therapeutic approaches
worldwide [10].

Mathematical modeling plays an important and pivotal role in understanding and
studying cancer tumors in general and breast cancer, the focus of our study here in this
research paper in particular, because it is used to describe and simulate the growth and
behavior of tumors, in addition to how they interact with the surrounding tissues and
the immune system as well ([2], [12], [13]). These models help researchers and clini-
cians gain insights into the fundamental mechanisms of tumor growth, predict treatment
outcomes, and then provide suggestions and recommendations for improving therapeutic
strategies ([3], [4], [20]). Finally, there are several mathematical models used in cancer
research among them, Growth models, Pharmacokinetic models, Spatial models, Immune
response models, and Evolutionary models. For more focus concerning these types of
models with their definitions, properties, and uses see [17].

These mathematical models are often represented as a system of differential equations,
which are calibrated and validated with the help of some experimental data. Through real
solutions or numerical simulations of these equations, we can gain valuable insights into
tumor behavior, its response to treatment, and the effectiveness of different therapeutic
interventions. One of the most important and prominent of these models for breast cancer
is the one in which the mathematical model is divided into four aspects represented by:
the number of normal cells, number of cancer cells, immune response class, and estrogen
compartment. From this standpoint, we find that these mathematical systems are a pow-
erful tool for predicting some hypotheses, guiding experimental design, and assisting in
clinical decision-making in cancer research and treatment. Finally, extreme caution must
be exercised when interpreting the recommendations and predictions obtained from the
numerical processing and solutions of these mathematical models, even though they are
simplifications of a complex biological reality.

It is worth noting a few crucial points regarding the MT. Firstly, this method provides
the solution in terms of easily computable components, making it highly practical for real-
world applications. The solutions obtained using the MT exhibit rapid convergence, which
is beneficial for solving physical problems accurately. The numerical results obtained from
this approach have shown excellent agreement with their respective exact solutions, further
validating its effectiveness. Secondly, the methods employed in this study were applied
directly, without resorting to linearization, perturbation, or restrictive assumptions. This
direct approach demonstrates the broad applicability of the MT in solving various linear
and nonlinear problems encountered in applied science [21]. This transform is coupled with
the analytical homotopy perturbation method, and applied to solve the Newell-White-
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Segel equation [18], the nonlinear Pantograph delay differential equations [14].
For the analytical solution to the given problem, we have put into practice a recently

created methodology. The MADM, which uses the Mohand transform (MT) in place of
the Adomian decomposition method, is the process ([24], [25]). The sequence of obtained
approximate solutions by using the MADM converges to the exact solution. By solving
the resulting nonlinear system of ODEs, the application and validity of this method are
verified. Tables and charting are utilized to compare the acquired results. The application
of the MT approach in conjunction with the MADM to derive the approximate solution
of the suggested model is another novel feature of this research. When the models are
the same, the validation processes compare the outcomes directly to the models that have
been constructed.

The paper is organized as follows: In Section 2, we give the formulation of the pro-
posed model. Section 3 presents the procedure solution by giving the basic concepts of
the Mohand transform, and implementing the modified Adomian decomposition method.
Section 4 introduces the numerical simulation of the proposed model. Finally, Section 5
gives the conclusions and remarks.

2. Formulation of the model

As mentioned above, the mathematical modeling of the BC or any other biological
phenomena has been an important tool for understanding the dynamic behavior of tumor
growth in the treatment process and solving epidemiological problems. This is evident
from the studies previously done in ([5], [11], [15]). Despite the large number of studies,
none of the proposed mathematical models included a diet (ketogenic diet). Therefore,
Oak et al. developed the model in [16], to include some of the control parameters such
as the immune booster, ketogenic diet, and anticancer drug, to confirm that there is an
interaction between cells due to the mutation in the tumor cell DNA ([7], [27]).

We study the following form of breast cancer ([22], [26]):

ψ̇1(t) = ψ1(t)λ1 (p1 − β1ψ1(t)− α1 ψ2(t))− (1− p)θ1 ψ1(t)ψ4(t),

ψ̇2(t) = ψ2(t)λ2(p2d− β2ψ2(t)− α2ψ3(t))− κψ2(t) + (1− p)θ1ψ1(t)ψ2(t)ψ4(t),

ψ̇3(t) = σρ+ ψ3(t)λ1(p3 − β3 − α3ψ2(t))− (1− p)θ2ψ3(t)ψ4(t),

ψ̇4(t) = α4ψ4(t) + ϱ(1− p),

(1)

the corresponding initial conditions of this model are given as follows:

ψ1(0) = ψ̂0
1, ψ2(0) = ψ̂0

2, ψ3(0) = ψ̂0
3, ψ4(0) = ψ̂0

4. (2)

The description of the meaning of the included parameters (∈ R+) of the system (1), will
be given in Table 1 ([11], [16]).

The stability analysis, equilibrium points, existence, and uniqueness, of the system
under consideration are given in detail in [26].
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Table 1: The description of the included parameters of the system (1).
Symbol Description
ψ1(t) Normal cell population
ψ2(t) Luminal type tumor cells
ψ3(t) Class of immune response
ψ4(t) Estrogen compartment
λ1 Growth rate of ψ1

λ2 Growth rate of ψ2

pi Carrying capacity of ψi, i = 1, 2, 3
(1− p) Effectiveness of anti-cancer drugs
κ Result of the tumor starvation nutrients during the ketogenic diet
ϱ Process of constantly replenishing excess estrogen
α1 Inhibition rate of ψ1(t)
α2 Rate of the effectiveness of the immune system to the tumor cells
α3 Rate of interaction between ψ2(t) and ψ3(t)
α4 Rate at which estrogen is being washed out from the body
θ1 Tumor formation rate resulting from DNA mutation caused

by the presence of excess estrogen
θ2 Immune suppression rate
βi Logistic rate of ψi, i = 1, 2, 3
d Ketogenic diet
σ Source rate of immune response fully infused in the body daily

3. Numerical implementation

3.1. Basic concepts on the Mohand transform

The MT has some useful properties, including linearity, convolution, differentiation,
and inversion, which make it a powerful tool in signal processing and other areas. It also
has some connections with other well-known transforms, such as the Laplace transform
and Mellin transform. We introduce some key definitions and introductory ideas for the
MT in this subsection.

Definition 1. [18]

We examine functions in set A that are defined using the Mohand transform, which
applies to exponential order functions:

A =
{
f(t) : ∃ Υ, σ1, σ2 > 0 |f(t)| < Υ e

|t|
σj , t ∈ (−1)j × [0,∞)

}
,

σ1 and σ2 may be infinite or finite given a function in the set A, but the constant Υ must
have a finite value.

Mahgoub and Mohand explained the Mohand transform in 2017 for the function f(t)
for t ≥ 0. For a function f(t), the Mohand transformation indicated by M(.) is defined
as [24]:

M{f(t)} = F (s) = s2
∫ ∞

0
f(t)e−stdt, σ1 ≤ s ≤ σ2. (3)
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If the MT of f(t) is F (s) then f(t) is known as the inverse of F (s) which can be described
by:

M−1{F (s)} = f(t), M−1 is the inverse MT. (4)

Some properties of the MT [24]:
Linearity property for M{.}: For arbitrary constants a1, a2, we have

M{a1f1(t) + a2f2(t)} = a1M{f1(t)}+ a2M{f2(t)}.

Change of scale property: If M{f(t)} = F (s), then M{f(at)} = aF
(
s
a

)
.

Shifting property: M{eatf(t)} = s2

(s−a)2
F (s− a).

Convolution theorem for M{.}: If M{f1(t)} = F1(s) and M{f2(t)} = F2(s), then

M {f1(t) ∗ f2(t)} =
1

s2
F1(s)F2(s).

Mohand transforms of the derivatives of the function f(t):

M
{
f (n)(t)

}
= sn F (s)− sn+1f(0)− snf ′(0)− . . .− s2 f (n−1)(0), n = 1, 2, 3, ... . (5)

Mohand transforms for the power functions:

M {tn} =

{
n!

sn−1 , n ∈ N,
Γ(n+1)
sn−1 , n > −1.

3.2. Implementation of the modified Adomian decomposition method

In this current subsection, we briefly explained the procedure of the newly adopted
modified technique.

To implement the MADM for solving the proposed system (1)-(2), we will rewrite it
in the following operator form:

ψ̇1(t) = N1(ψ1, ψ2, ψ3, ψ4),

ψ̇2(t) = N2(ψ1, ψ2, ψ3, ψ4),

ψ̇3(t) = σρ+N3(ψ1, ψ2, ψ3, ψ4),

ψ̇4(t) = ϱ(1− p) +N4(ψ1, ψ2, ψ3, ψ4),

(6)

where the nonlinear operator functions Ni(ψ1, ψ2, ψ3, ψ4), i = 1, 2, 3, 4 are defined as fol-
lows:

N1 = λ1 ψ1(t)(p1 − β1ψ1(t)− α1 ψ2(t))− (1− p)θ1 ψ1(t)ψ4(t),

N2 = λ2 ψ2(t) (p2d− β2ψ2(t)− α2ψ3(t))− κψ2(t) + (1− p)θ1ψ1(t)ψ2(t)ψ4(t),

N3 = λ1 ψ3(t)(p3 − β3 − α3ψ2(t))− (1− p)θ2ψ3(t)ψ4(t),

N4 = −α4 ψ4(t).

(7)
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Take the MT of the system (6) as follows:

sΨ1(s)− s2ψ1(0) = M [N1(ψ1, ψ2, ψ3, ψ4)] ,

sΨ2(s)− s2ψ2(0) = M [N2(ψ1, ψ2, ψ3, ψ4)] ,

sΨ3(s)− s2ψ3(0) = σρ s+M [N3(ψ1, ψ2, ψ3, ψ4)] ,

sΨ4(s)− s2ψ4(0) = ϱ(1− p) s+M [N4(ψ1, ψ2, ψ3, ψ4)] .

(8)

By using the initial conditions (2), we can solve the above algebraic system as follows:

Ψ1(s) = ψ̂0
1 s+

1

s
M [N1(ψ1, ψ2, ψ3, ψ4)] ,

Ψ2(s) = ψ̂0
2 s+

1

s
M [N2(ψ1, ψ2, ψ3, ψ4)] ,

Ψ3(s) = ψ̂0
3 s+ σρ +

1

s
M [N3(ψ1, ψ2, ψ3, ψ4)] ,

Ψ4(s) = ψ̂0
4 s+ ϱ(1− p) +

1

s
M [N4(ψ1, ψ2, ψ3, ψ4)] .

(9)

Take the inverse MT of the system (9) as follows:

ψ1(t) = ψ̂0
1 +M−1

[
1

s
M [N1(ψ1, ψ2, ψ3, ψ4)]

]
,

ψ2(t) = ψ̂0
2 +M−1

[
1

s
M [N2(ψ1, ψ2, ψ3, ψ4)]

]
,

ψ3(t) = ψ̂0
3 + σρ t+M−1

[
1

s
M [N3(ψ1, ψ2, ψ3, ψ4)]

]
,

ψ4(t) = ψ̂0
4 + ϱ(1− p) t+M−1

[
1

s
M [N4(ψ1, ψ2, ψ3, ψ4)]

]
.

(10)

Thus, the first initial components for the approximated solution of the given problem will
be obtained as follows:

ψ1,0(t) = ψ̂0
1, ψ2,0(t) = ψ̂0

2, ψ3,0(t) = ψ̂0
3 + σρ t, ψ4,0(t) = ψ̂0

4 + ϱ(1− p) t,

(11)

then, the final iterative scheme for the other terms becomes as:

ψk,m+1(t) = M−1

[
1

s
M [Nk(ψ1, ψ2, ψ3, ψ4)]

]
= M−1

[
1

s
M
[
Ak

m

]]
, k = 1, 2, 3, 4. (12)

The nonlinear terms Nk(ψ1, ψ2, ψ3, ψ4), k = 1, 2, 3, 4, are decomposed by using Adomian’s
polynomials defined as:

Nk(ψ1, ψ2, ψ3, ψ4) =
∞∑

m=0

Ak
m, k = 1, 2, 3, 4, (13)
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where,

Ak
m =

1

m!

[
dm

dλm

[
Nk

( ∞∑
b=0

λb ψ1,b,
∞∑
b=0

λbψ2,b,
∞∑
b=0

λb ψ3,b,
∞∑
b=0

λb ψ4,b

)]]
λ=0

, m = 0, 1, ... .

(14)

In view of these formulae, we can compute the first Adomian’s polynomials as follows:

A1
0 = λ1 ψ1,0(t)(p1 − β1ψ1,0(t)− α1 ψ2,0(t))− (1− p)θ1 ψ1,0(t)ψ4,0(t)

= λ1ψ̂
0
1 (p1 − β1 ψ̂

0
1 − α1 ψ̂

0
2)− (1− p)θ1 ψ̂

0
1ψ̂

0
4,

A2
0 = λ2 ψ2,0(t) (p2d− β2ψ2,0(t)− α2ψ3,0(t))− κψ2,0(t) + (1− p)θ1ψ1,0(t)ψ2,0(t)ψ4,0(t)

= λ2 ψ̂
0
2 (p2d− β2ψ̂

0
2 − α2ψ̂

0
3)− κψ̂0

2 + (1− p)θ1 ψ̂
0
1ψ̂

0
2ψ̂

0
4,

A3
0 = λ1 ψ3,0(t)(p3 − β3 − α3ψ2,0(t))− (1− p)θ2ψ3,0(t)ψ4,0(t)

= λ1 ψ̂
0
3 (p3 − β3 − α3ψ̂

0
2)− (1− p)θ2 ψ̂

0
3ψ̂

0
4,

A4
0 = −α4 ψ4,0(t) = −α4 ψ̂

0
4.

(15)

In view of the iteration formulae (12), we can compute the following first components of
the approximate solution:

ψ1,1(t) =
(
λ1ψ̂

0
1 (p1 − β1 ψ̂

0
1 − α1 ψ̂

0
2)− (1− p)θ1 ψ̂

0
1 ψ̂

0
4

)
t,

ψ2,1(t) =
(
λ2 ψ̂

0
2 (p2d− β2ψ̂

0
2 − α2ψ̂

0
3)− κψ̂0

2 + (1− p)θ1 ψ̂
0
1ψ̂

0
2ψ̂

0
4

)
t,

ψ3,1(t) =
(
λ1 ψ̂

0
3 (p3 − β3 − α3ψ̂

0
2)− (1− p)θ2 ψ̂

0
3ψ̂

0
4

)
t,

ψ4,1(t) =
(
−α4 ψ̂

0
4

)
t, ... .

(16)

Thus, the approximate solution is obtained by collecting m of the approximated terms as
follows:

ψj(t) =

m−1∑
k=0

ψj,k(t), j = 1, 2, 3, 4. (17)

4. Numerical simulation

We test the accuracy of the resulting numerical method by presenting numerical simula-
tions on some cases in [0, 3] for the proposed model (1). The behavior of ψk(t), k = 1, 2, 3, 4
are presented in Figures 1-5 at different values of some parameters (m, ϱ, p).

We approach the system under study (1) with the following values for the parameters
contained in it [8]:

θ1 = 0.2, θ2 = 0.02, λ1 = 0.3, λ2 = 0.4, d = 0.5, α1 = 6× 10−8, α2 = 3× 10−7,
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α3 = 1×10−7, α4 = 0.97, ρ = 0.01, κ = 2, β1 = 0.15, β2 = 0.7, β3 = 0.1, p = 0.5,

σ = 0.1, p1 = 0.1, p2 = 0.2, p3 = 0.3, ϱ = 0.8.

With the initial conditions (I.Cs) ψi(0) = 0.2, i = 1, 2, 3, 4. Figures 1-5 show a numerical
simulation of the system under investigation by applying the given procedure.

(i) Figure 1 gives the approximate solution for distinct values of the approximation
order m = 5, 10, 15.

(ii) Figure 2 shows the approximate solution for distinct values of the estrogen source
rate ϱ = 0.8, 1.4, 2.0, 2.6.

(iii) Figure 3 depicts the effect of p (= 0.25, 0.5, 0.75, 1.0) on the approximate solution.

(iv) Figure 4 presents a comparison between the solution generated by the obtained
approach with that numerical solution by implementing the RK4M [9] with the
same parameters and I.Cs.

(v) Figure 5 plots the residual error function (REF) [19] of the obtained approximate
solution.

The behavior of the approximate solution is based on m, ϱ, p, as shown in Figures
1-3, respectively. From Figures 2 and 3, we can confirm that the behavior of the solution
consists with of the natural effect of the parameters ϱ, and p, respectively. From Figures
4 and 5, we can point out that the proposed method has been well applied to solve the
problem under study. Hence, we can verify that the expected behavior of the disease has
been obtained, which means that we have provided a clear simulation of the proposed
model that can be used by the relevant authorities to treat this deadly cancer.
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Figure 1. The approximate solution via various values of m.

Figure 2. The approximate solution via various values of ϱ.
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Figure 3. The approximate solution via various values of p.

Figure 4. Comparison the solution obtained by the proposed method and RK4M.
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Figure 5. The REF of the obtained approximate solution.

5. Conclusions

We implemented an approximate method by using the modified Adomian decomposi-
tion method associated with Mohand transforms to solve and simulate the mathematical
model for Breast Cancer. By means of this work, we used several values of the approxima-
tion order, estrogen source rate, and anti-cancer drug efficacy to obtain the approximate
solution of the model under investigation. The obtained results were compared graphi-
cally with those obtained using the RK4 approach, from which we found a great deal of
convergence between them. The accuracy of the resulting solutions can be increased by
increasingm. From the obtained results, we can confirm that the proposed approach is sur-
prisingly successful in simulating the BC model, as well as it demonstrating the accuracy
and computational effectiveness of this method. Finally, the present study may contribute
to providing more robust physical explanations for future theoretical and computational
studies on the same topic.
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