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Abstract. In this paper, the authors define and explore the notion of an L-convex sublattice in
an L-lattice. The investigations in this paper lead to "The Unique Representation Theorem’ for
L-convex sublattices. Also, the authors effectively use the concept of order reversing involution on
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in the studies of L- prime ideals and L-maximal ideals.
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1. Introduction

The literature on fuzzy algebraic structures has been growing ever since the introduction
of the concept of a fuzzy subgroup by A. Rosenfeld [14] in the year 1971. Ajmal and
Thomas [4-6] systematically developed the theory of fuzzy sublattices in a lattice. They
introduced the notions of a fuzzy sublattice, fuzzy ideal (dual ideal), fuzzy prime ideal
(dual ideal), fuzzy ideal (dual ideal) generated by a fuzzy set and studied their properties.
The concept of a fuzzy convex sublattice was also introduced by Ajmal and Thomas in
[4, 5], wherein the Unique Representation Theorem for convex sublattices was extended
to fuzzy setting.

The concept of an L-fuzzy set was pioneered by Goguen [7] in the year 1967 .In [10], the
authors studied the concept of an L-lattice. This shifts their studies from the evalua-
tion lattice [0,1] to a more general lattice L. Moreover in [10], authors made one more
transition by studying the notions of L-substructures in an L-lattice instead of fuzzy sub-
structures of an ordinary lattice. Thus, the parent structure also shifts from a lattice to
an L-lattice. It is worthwhile to mention here that under this arrangement, some notions
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such as L-maximal ideal can be defined more meaningfully in the L-setting.

In past few years, Ajmal and Jahan have successfully developed the theory of L-subgroups
in [1-3, 8, 9, 12]]. They have taken the theory of L-subgroups towards completion by
studying the concepts of characteristic subgroups, normalizer of a subgroup, nilpotent
subgroups, solvable subgroups, normal closure of a subgroup etc., within the framework
of L-groups. In [9], Jahan and Manas studied maximal and Frattini L-subgroups of an
L-group.

In [10], the notions of an L-maximal ideal and L-prime ideal in an L-lattice are defined
and various related results are studied. In order to take such studies further, in the present
paper, we introduce the notion of an L-convex sublattice in an L-lattice. Then this notion
of convex L-sublattice is used to demonstrate that the Unique Representation Theorem of
classical lattice theory for convex sublattices also holds under the L-setting wherein the
parent structure is an L-lattice.

In the last section of this paper, we use the notion of an order reversing involution on a
lattice to define the concept of complement of an L-set. The notion of order reversing
involution occurs frequently in fuzzy topological spaces and fuzzy implication algebras
[11, 13, 15-17]. Thereafter, we establish some significant analogues of results of classical
lattice theory to L-setting using complement of an L-set, thereby taking the theory of
L-lattices to a more developed stage.

2. Preliminaries

In this work, (M, <,A,V) denotes a bounded lattice and (L, <,A,V) a complete lattice.
The maximal and minimal elements of both the lattices L and M are denoted by 1 and
0 respectively. The notations '<’; A’ and 'V’ denote the partial order, meet and join
operations respectively of both the lattices L and M. An L-subset of M is defined as a
mapping p : M — L. The collection of all L-subsets of M is denoted by L™ and is called
the L-power set of M. If u,n € LM, 5 is said to be contained in p(denoted by n C p), if
n(z) < p(x), Vo € M. Moreover, 7 is said to be properly contained in p, if n C p and
there exists € M such that n(z) < p(x). If n C p, then 7 is said to be an L-subset of
an L-set p. The set of all L-subsets of i is called the L-power set of i and is denoted by L*.

If o € LM and « € L, the level subset ji, and the strong level subset u. are defined as
follows:

po ={z € M/u(xr) > a} and pg ={z € M/u(z) > a}.

Clearly, ug C pio, ¥V v € L and if o < B in L, then pg C po and ME Cuz.
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If p € LM, then Vyeprp(z) and Ageprp(x) are called the tip and tail of ju, respectively.
The arbitrary union U;er(p;) and intersection N;er(p;) of a family {u;}ier of L-subsets of
M are given by:

(Uierpi)(x) = Vierpi(x) and (Nierpi)(x) = Nierpa(x).
Definition 1 ([4]). Let u € L. Then, u is said to be an L-sublattice of M if ¥ x,y € M

p(zVy) > p(@) Aply) and plz Ay) > p() A py).

Let L(M) denote the set of all L-sublattices of M. If u € L(M), u is called an L-Lattice
and is denoted by L(u, M). If u,n € L(M) and n C pu, then 7 is called an L-sublattice of
the L-lattice p. The collection of all L-sublattices of u is denoted by L(x). In this paper,
we shall study the L-convex sublattices of an L-lattice u rather convex sublattices of an
ordinary lattice.

The following theorems provide the level subset characterizations and strong level subset
characterizations of an L-sublattice of . For similar characterizations of L-sublattices of
M, we refer to [10].

Theorem 1 ([10]). Let pu,n € LM be such that n C p. Also, let L(u, M) be an L-lattice
and a, = tip{n}. Then, n is an L-sublattice of u if and only if each level subset 1 is
a sublattice of pa, Vo < ao. FEquivalently, n is an L-sublattice of p if and only if each
nonempty level subset 0, is a sublattice of piq .

Theorem 2 ([10]). Let L be a chain. Let u,n € L™ be such that n C p. Also, let L(p, M)
be an L-lattice and a, = tip{n}. Then, n is an L-sublattice of n if and only if each strong
level subset nZ is a sublattice of pz, vV a < a,. Equivalently, n is an L-sublattice of p if
and only if each nonempty strong level subset 1, is a sublattice of pz .

The notions of L-ideal, L-dual ideal in lattice M and L-ideal, L-dual ideal in an L-lattice
u are defined as follows:

Definition 2 ([10]). Let u € LM. Then,

[(1)]p is called an L-ideal of M if p € L(M) and = < y in M implies p(z) > p(y) in L;
w is called an L-dual ideal of M if p € L(M) and x <y in M implies u(z) < u(y)
in L.

Definition 3 ([10]). Let u,n € L™ be such that n C p. Also, let L(u, M) be an L-lattice.
Then,

[(D)]n is called an L-ideal of y if

n(zVy) >n(x) An(y) and n(zAy) > px) Anly); Vo,y € M.

7 is called an L-dual ideal of u if

n(@Ay) = n(x) An(y) and n(zVy) >n(z) Aply); Vo,y € M.
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It is important to note here that in a bounded lattice M, an L-ideal attains its supre-
mum at the least element of M, whereas an L-dual ideal attains its supremum at the
greatest element of M. The following theorems provide the level subset characterizations
and strong level subset characterizations of an L-ideal (L-dual ideal) of p. For similar
characterizations of L-ideal (L-dual ideal) of M, refer to [10].

Theorem 3 ([10]). Let pu,n € LM be such that n C p. Also, let L(u, M) be an L-lattice
and a, = tip{n}. Then, n is an L-ideal(L-dual ideal) of p if and only if each level subset
N s an ideal(dual ideal) of pa, Yo < ao. Equivalently, n is an L-ideal(L-dual ideal) of
w if and only if each nonempty level subset n, is an ideal(dual ideal) of i .

Theorem 4 ([10]). Let L is a chain. Let pu,n € L™ be such that n C p. Also, let L(p, M)
be an L-lattice and a, = tip{n}. Then, n is an L-ideal(L-dual ideal) of p if and only if
each strong level subset n; Vo < ao, is an ideal (dual ideal) of u; . Equivalently, n is

an L-ideal(L-dual ideal) of u if and only if each nonempty strong level subset n; is an
ideal (dual ideal) of u, .

It can be easily verified that the intersection of an arbitrary family of L-sublattices(L-
ideals, L-dual ideals) of p is an L-sublattice(L-ideal, L-dual ideal) of u. This leads to the
definition of an L-sublattice(L-ideal, L-dual ideal) generated by an L-subset 1 of u as the
intersection of all L-sublattices(resp. L-ideals, L-dual ideals) of u containing 7. These are
denoted by [n],, (7], and [n), respectively. The following result from [3] gives the struc-
tural compositions of an L-sublattice, L-ideal, L-dual ideal of an L-lattice u generated by
an L-subset n of u in terms of level subsets.

Theorem 5 ([10]). Let L(u, M) be an L-lattice, n € L™, n C u with a, = tip{n}.
[(i)]Define an L-subset 7, of M as:
no(z) = \/ {t:z € ml},
t<ao

where [n;] is a sublattice of u; generated by n;. Then, 7, is an L-sublattice of p and
Mo = [N, Define an L-subset 7 of M as:

m(e) = \/{t: e e},

t<ao

where (1] is an ideal of y; generated by 7. Then, 7 is an L-ideal of ¢ and 71 = (],.
Define an L-subset 1o of M as:

(@) = \/ {t:2 € ),

t<ao

where [n;) is an dual ideal of p; generated by 7;. Then, 7, is an L-dual ideal of u
and 7z = [1) -
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The concept of a maximal ideal could be meaningfully extended from classical setting to
fuzzy setting by the authors in [10] by shifting the parent structure from classical lattice
to an L-structure as follows:

Definition 4 ([10]). Let L(u, M) be an L-lattice.

[(D)]A proper L-ideal n of u is called an L-maximal ideal of p if for any L-ideal 6 of
1, whenever n C 0 C p, then § =7 or § = u. A proper L-dual ideal n of p is called
an L-dual maximal ideal of p if for any L-dual ideal 6 of u, whenever n C 6 C p,
then 0 =n or 0 = p.

In [10], some characterizations of an L-maximal ideal and L-maximal dual ideal of p were
provided. Further, an L-prime ideal(L-prime dual ideal) in lattice M and an L-prime
ideal(L-prime dual ideal) in an L-lattice y are defined as follows:

Definition 5 ([4]). /(i)]

(i) An L-ideal p of M is called an L-prime ideal of M if
@ Ay) < p(z) vV uly); Yo,y € M.
(ii) An L-dual ideal p of M is called an L-prime dual ideal of M if

pxVy) < p(z)Vuly); Yo,y e M.
Definition 6 ([10]). Let L(u, M) be an L-lattice.
[(D)]A proper L-ideal n of y is called an L-prime ideal of p if, V x,y € M
n(@ Ay) A p(e) Apy) <) or @ Ay) A p(z) A p(y) < nly).

A proper L-dual ideal n of u is called an L-dual prime ideal of p if,
Ya,ye M

n(@Vy)Ap@)Aply) <n(z) or nlzVy)Apup()Auly) < ny).

In [10], the authors defined a fuzzy convex sublattice of a lattice and studied the related
properties. On similar lines, an L-convex sublattice of a lattice M can be defined as
follows:

Definition 7. If u € L(M), then u is called an L-convex sublattice of M if for each
interval [a,b] C M,
() > pla) A p(b), ¥ @ € [a,b].
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3. L-convex Sublattice of an L-lattice

In this section, L is taken to be a complete and completely distributive lattice in some
results. The definition of a completely distributive lattice is well known in the literature
and can be found in any standard text on the subject.

Let {J; : i € I} be any family of subsets of a complete lattice L and F' denote the set

of choice functions for J;, i.e. functions f : I — [] J; such that f(i) € J; for each i € I.
el
Then, we say that L is a completely distributive lattice, if

AMvat-v ol

il fer \ier

The above law is known as the complete distributive law. Thus, in order theory, a complete
lattice is completely distributive if arbitrary joins distribute over arbitrary meets. Note
that the dual of completely distributive law is valid in a completely distributive lattice.

We begin this section by defining an L-convex sublattice of an L-lattice p and study its
properties.

Definition 8. Let L(u, M) be an L-lattice. An L-sublattice n of u is called an L-convex
sublattice of w if

n(x) > n(a) Anb) A u(x) where a <z <bin M.

The following characterisations of an L-convex sublattice n of p with the help of level
subsets and strong level subsets of ) can be verified easily.

Theorem 6. Let L(p, M) be an L-lattice and n € L(p) with a, = tip{n}. Then, n is an
L-convex sublattice of p if and only if each level subset ny, ¥V t < a,, is a convex sublattice
of ut. Equivalently, n is an L-convex sublattice of u if and only if each nonempty level
subset n is a convex sublattice of yy.

Theorem 7. Let L be a chain. Let L(p, M) be an L-lattice and n € L(u) with a, = tip{n}.
Then, 1 is an L-convex sublattice of u if and only if each strong level subset n;” is a convex
sublattice of ui, Vt < ao. Equivalently, n is an L-convex sublattice of u if and only if each
nonempty strong level subset n;" is a convex sublattice of u; .

We now provide the following examples of L-convex sublattices in an L-lattice:

Example 1. Let M = R be the chain of natural numbers and L = P(R), the power set of
N, be the Boolean Algebra. Define the following L-subsets of N :

=0 =t
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and
un) ={1,2,...n} ¥Ynew.

Thenn C p. Moreover, it is easy to verify that n and p are L-sublattices of X. Futhermore,
1 turns out to be an L-conver sublattice of u. It is wothwhile to note here that the set of all
level subsets of n form a chain in the lattice M = N. Here, we write A; = {1,2,--- ,i—1}
Vi > 2. Further, note that
Na, = Ai and 9, = 0.
Thus, we have
Al =0 C A CA3C---CA,C---CN

Example 2. Let X = {a,b,c} and L = P(X) be the power set of X. Then (L, N, U,/)
is a Boolean Algebra where 'U', '0Y and '’ denote the ordinary intersection, union and
complement of members of L respectively. Further, It is easy to see that L is Boolean
Algebra with order reversing involution given by :

7:L— L* 7(A)=A

Let M = {1,2,3,6} denote the set of all factors of '6’. Then (M,V,A\,!), where a\V b =
lem{a,b}, a Ab= gcd{a,b} and o =% ; Va, be M, is also a Boolean Algebra. In
the following diagram, (i) and (ii) represent Boolean Algebras M and L respectively.

{a,b,c}

6

{a,b} (b, c}

[aV]
(]

{a} {c}

0
(1) (i)

Define the following L-subsets p and n of M :

u(A4) - {2 i A e {0, {a}, {8}, {a. )},
6 if A= P(X)\ {0, {a}. (b}, {a.0}}
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and

if Ae{0,{b}},
if A€ {{a} {a,b}},
if A€ {c,{{bc}},
if A€ {{a,c}, X}

Now, note that n C u. The set {n, : a € Im n} of all level subset of n is determined
below :

m =M, n = {{a}7 {a> b}v {av C}>X}v n3 = {{C}v {b7 C}v {a,c},X} and ng = {{aac}aX}'

Further, the set {ia : a € Im u} of all level subset of p is determined below :

p2 =M, and pg = {{0}7 {bv C}{G,C},X}.

Now, it is easy to see that n and u are L-sublattices of M. Futhermore, 1 forms an L-
convex sublattice of . Observe that in this example the set of all level subsets of n does
not form a chain. Infact, the set of all level subsets {n, : a € Im n} turns out to be only
a poset under the ordering of usual set theoretic containment.

n(A) =

DD W N =

Example 3. Let M = QUZ U {{n} : n € Z}. Then M is a Boolean Algebra with the
following Hasse Diagram :

--o--@--- ---e--@---

Further, let L ={A C R : either A or A’ is finite}. Here A’ is complement of A in R.
It is easy to see that L is Boolean Algebra with order reversing involution given by :

7:L— L*7(A)=A"
Define the following L-subsets of M :

0 if A=17,
nA)=qR  ifA=0,
{n} ifnez;
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and

{n,—m} ifneZ.

Now, note that n C . The set {n, : a € Im n} of all level subset of n is determined
below :

Ny = (Z),’n{n} ={Z,{n}} and n, = M.

Further, the set {ug : a € Im p} of all level subset of u is determined below :

py =0, ., =1{Z,{n}}, and p, = M.

Now, it is easy to see that n and p are L-sublattices of M. Futhermore, 1 forms an L-
convex sublattice of . Observe that in this example the Hesse Diagram of set of all level
subsets of both 1 and p coincide with that of Hasse Diagram of the lattice M given above.
Infact, the set of all level subsets {ny : a € Im n} turns out to be lattice under the usual
set theoretic containment.

The following result is also straightforward.

Theorem 8. The intersection of an arbitrary family of L-convexr sublattices of L-lattice
w 1s an L-convex sublattice of p.

The above result is instrumental in defining an L-convex sublattice of 1 generated by an
L-subset n of u.

Definition 9. An L-convex sublattice of L-lattice p generated by an L-subset n of u is
defined as the intersection of all L-convex sublattices of u containing n and is denoted by
(g, Thus,

= ﬂ{m :m; 18 an L-convex sublattice of u, n Cn;, Vi € I}.

The next result provides a complete structure of L-convex sublattice generated by L-subset
n of p in terms of level subsets.

Theorem 9. Let L be a complete and completely distributive lattice and L(u, M) be an
L-lattice. Let n € LM with n C p and ag = tip{n}. Define an L-subsetn’ of M as:

n'(z) = \/ {t:x€net, Ve M,

t<ao

where [ng]. is the convex sublattice of lattice p, generated by n.. Then, n' is an L-convex

sublattice of p and n' = [n]s,.
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Proof. Since n C pu, ny C g, V't € L. As p is an L-lattice, y; is a sublattice of M, V
t < tip{pu}. Moreover, [n:]. C pu, as [ is the convex sublattice of y; generated by 7.
Thus,

(@)= \/{t: o€ ml}

t<ao
< \/ {t:zepm}
t<tip{u}
= p(z).
We thus have ' C p. Further, to prove that n C 7/, let z € M and let n(z) = a < ap.

Then,
T € N € [Nale

Therefore, by definition of 7', < n/(z). That is, n(z) < n/(x). Thus, n C n'. We now
prove that 7’ is an L-sublattice of p. For any z € M, define a subset L,(z) of L as follows:
Ly(z)={te L/t <ag,z € [}

Clearly, n'(z) = \ Ly(x). Let z,y € M, a € Ly(z) and b € L,(y). We claim that
a/Nbe Ly(zVy). First note that 1, Un, C ngnp. Since a € Ly(z) and b € Ly (y), we have
a,b < ag, © € [Nale, Yy € [Mp]e- Therefore, z = p{z;} (a lattice polynomial in variables x;’s.
where x; € 14, Vi). Similarly, y = ¢{y;} (a lattice polynomial in variables y;’s. where
yj € my, Vj). Thus, z V y is also a lattice polynomial in variables z;’s and y;’s, where
i, Yj € Na Unp C Napnp. That is,

TVy e [na/\b]c'

We also have a Ab < ag. Thus, a Ab € Ly(x Vy). This implies that
n(xVy)>anb;, Vaée Ly(z)andbe Ly(y).
Consequently,

n'(zVy)>V{aAb/a€ Ly(x),be Ly(y)}
= {V{a/a € Ly(2)}} A {V{b/b € Ly(y)}}

(as L is a completely distributive lattice)
=1'(z) An'(y)-
Similarly, it can be proved that
n'(xAy) =0 (z) An'(y); Yo,y € M.

Thus, 7 is an L-sublattice of u. Further, to establish that 1’ is an L-convex sublattice of
u, we shall prove that,

i) 7' (w)>n'(x) An'(y) A p(w) where z < w <y in M.



A. Jain, L. Jahan / Eur. J. Pure Appl. Math, 18 (1) (2025), 5532 11 of 20

For any z € M, let
Ly(z) = {t € L/t < ao, 2 € [m]c}-

Then, n'(z) =\ Ly(z). Also let

Ly(z) ={te L/t <tip{n}, z € e = [pu]}.
Let r € L,(w), s € Ly(x) and t € Ly(y). Then,

r < tip {u}; s,t < ag, w € (] = pr, € [ns]c and y € [nee.

Hence, s At Ar < ag and we have

x € Ms)e € ps C fsatar;
Y € [M)e € pe € pspenr; and
w € [pr] = pir € psninr-

Thus, z,y,w € pspiar- Moreover,

HAS [ns]c - [ns/\t/\r]c and Y€ [nt]c C [778/\7?/\7‘]63

and [nsatarle 1S a convex sublattice of psainr generated by the L-set nsaiar-
Therefore, we have w € [Nsainr]e (as @ < w <y in M). This implies

n'(w)>sAtAr; VreLy(w), s€ Ly(z) and t € L,(y).
That is,

n'(w) >V{sANtAr/re L,(w),s€ Ly(z) and t € L, (y)}
= {V{s/s € Ly(x)}} A{V{t/t € Ly(y)}} A{V{r/r € Lu(w)}}

(as L is a completely distributive lattice)
=n'(@) A (y) A p(w).

Hence, 1’ is an L-convex sublattice of u. Now it is left to prove that n’ is the smallest
L-convex sublattice of p containing 7. For this, suppose 6 is an L-convex sublattice of
such that n C 0. Then, n; C 0, Vt € L. Since 0 is an L-convex sublattice of u, therefore
by Theorem 6, each nonempty 6, is a convex sublattice of y;. Therefore, [0;]. = ;. This
implies that

ele € 0, YVt < ap.

Also, ag = tip{n} < tip{#}. Thus, V x € M, we have

(@)= \/{t:z € [ml}

t<ao

< \/ {t:z e b}

t<tip{0}
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=0(x).

That is, n' C 0. Hence, ' = [n]f.

The next result is significant for establishing the Unique Representation Theorem for
L-convex sublattice of an L-lattice u. The proof being trivial is omitted.

Theorem 10. Let L(u, M) be an L-lattice and n C p be an L-ideal (L-dual ideal) of p.
Then, 1 is an L-convex sublattice of .

Before discussing the Unique Representation Theorem for L-convex sublattices in an L-
lattice p, we provide the structural composition of an L-ideal of i generated by an L-subset
n of u in terms of strong level subsets of n. The following result is proved by taking L to
be a dense chain. Note that a dense chain is a completely distributive lattice.

Theorem 11. Let L be a dense chain and L(u, M) be an L-lattice. Let n € L™, n C p
and ag = tip{n}. Define an L-set ) of M as follows:

(z) = Vicao{t 1 @ € (7]},
where (0] is an ideal of pi generated by n; . Then, 1) = (1],.

Proof. Since n C p, 7 C py, Vit € L. As p is an L-lattice, p7 is a sublattice of M, V
t < tip{p}. Also, as (1] is an ideal of 7 generated by n;”, we have

(77t>]g:u’t>) Vt<a0.

Thus,

~

() = Vica{t 1 € (7]}
< Victip{uylt c @ € pg'}
< u(@).
We thus have 77 C pu. To establish that n C 7, we prove that 2 C ()2, V « € L. Let

a € L and z € n;. Then, n(z) > «. Since L is a dense chain, 3 § € L such that
n(z) > B > «a. This implies z € 775> and hence = € (775 |. Consequently,

7/7\(1’) = \/t<a0{t HEUS (77t>]}
>p>a.

That is, « € (7). This proves that n C 7. We now prove that 7 is an L-ideal of u. For
any z € M, define a set

Ly(z) ={te€ L/t <ag,z € (n7]}.

Then, 7j(x) =\ Ly(x). Let z,y € M. We claim that for any a € L,(z) and b € L,(y),
aAbe Ly(xVy). Suppose, a € Ly(x) and b € L,(y). Then,

a<ap, b<by, €], ye mnl
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Since L is a chain, a A b < ag. Now, z € (n7], y € (1] implies that

r<x1V...Va, x;€n., Vi and

Yy<yV.oNVym, yi€np, V.

Then, we have z V y < (Va;) V (Vy;), which is a finite join of elements of 7, Un; and
ng Umn, €., Therefore,

zVy€(n,) and aAb< ap.

Thus, a Ab € Ly(x Vy). Consequently, (z Vy) > aAb; ¥V ae€ Ly(zx) and b € Ly(y).
Hence,
nxVy) >Vv{iaAblaec Ly(x),be Ly(y)}
— (v{a/a € Ly()}} A {V{b/b € Ly}

(as L is a completely distributive lattice)
=7'(z) A1 (y).

Now, to verify that 7(z A y) > u(z) A(y), we again define the following subsets of L for
z € M:

Ly(z) ={t € L/t <aog,z € (n7]} and Ly(z) ={t € L/t < tip{p},z € p = [m]}.

Thus, 7(z) = \/ Ly(x) and p(z) =\/ L,(x). If a € L,(z) and b € L,(y), then a < tip {u},
b < ag, T € pa = [ta) and y € (n;]. Therefore,

aANb<apgand y <y1V...Vym, yj €n5, VY J.
This implies
TANY <1 V.. VYm, Y Enb> Qn;\b, Y J.
We thus have z Ay € (n;] C (n,,,] and therefore,

aNbe Ly(xNy); YaeLy(x)andbe Ly(y).

That is,
nxANy)>anb; VaecL,(x)andbe Ly(y).

Consequently,

nxANy)>Vv{aAb/ae L,(x)and be Ly(y)}
= {V{a/a € Lu(z)}} A{V{b/b € Ly(y)}}

(as L is a completely distributive lattice)
= p(x) A7(Y)-
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We thus get that 7 is an L-ideal of p. Finally, to prove that 7 is the smallest L-ideal of
containing 7, suppose 6 is an L-ideal of p such that n C 6. Then, ;7 C 67 and ;" is an
ideal of pg . Therefore, (0] = 6;. We thus have:

~

N(x) = Vica{t 1@ € (7]}
< \/ {t:z b}
t<tip{0}
<4(x).
That is, 7 C 6. Hence, 1) = (],
A similar result holds for L-dual ideal generated by 7.

Theorem 12. Let L be a dense chain and L(p, M) be an L-lattice. Let n € LM, n C p
and ag = tip{n}. Define an L-subset 11 of M as follows:

() = Vica{t 1 2 € 7))},
where [n7) is a dual ideal of p generated by n; . Then, 11 = [n),.

We now establish the Unique Representation Theorem for L-convex sublattices in an L-
lattice. In the following theorem, O represents the constant L-subset with all truth values
equal to 0 of lattice L.

Theorem 13. Let L be a dense chain, L(u, M) be an L-lattice, n, 0 C p such that n is
an L-ideal of i and 0 is an L-dual ideal of . Then, n N6 is an L-convexr sublattice of i
if nN 6O # O. Further, every L-convez sublattice of p can be expressed in this form in one
and only one way.

Proof. Let n be an L-ideal of u and 6 be an L-dual ideal of u. Then by Theorem 10, n
and 0 are L-convex sublattices of p. Since intersection of L-convex sublattices of p is an
L-convex sublattice of u, therefore n M@ is an L-convex sublattice of u provided nNé # O
(i.e., 3 x € M such that (nN6)(z) > 0).

Next, let v be an L-convex sublattice of u. We take

n=(v]y and 0 = [7),.

We prove that v = n N 6. Clearly, v C n and v C 0. Therefore, v C N 6. Suppose,
v Cnné. Then, 3 x € M such that y(z) < n(x) A 8(z). Let v(x) =t. Then, n(z) >t
and 6(z) > t. That is, x € n;” and = € 6;. By Theorem 4, n;" is an ideal of y;” and 6; is
a dual ideal of p;. This implies

ng = (7] and 07 = [07).
Since n = (Y], 0 = [v), and n(z) > t, §(x) > ¢, therefore by Theorem 11, 12, 3 r, s < ao,
x € (7], € [75), such that ¢t < r and ¢ < s. Thus we have,
2 € (%] € (Yas)y t<r; and
z€[7) C ), t<s.

That is, t < r A s. Moreover,
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3 T1y..Tn € 77">/\s - :U’T>/\s 3 Y1, Ym € f}/r>/\s - Mr>/\s such that

a=mnAN.. Nyp<zx<z1V...Vx, =0

Since p; s is a sublattice of M and (y;,,] is an ideal of p; s, we have a, b,z € p\,. We
also have a,b € ;s as Y;rs is a sublattice of u; . Now, v being an L-convex sublattice
of i, Y7, is a convex sublattice of ;. Consequently, x € v;,4. That is, t = y(z) > rAs,
which contradicts the fact that ¢ < r and ¢ < s (as L is a chain). Hence,

v(x)=(nné)(z), Vae M.

That is v = n N 6. Thus each convex sublattice v of p can be expressed in this form. To
prove the uniqueness of this representation, suppose there exists an L-ideal n of u and an
L-dual ideal 6 of ;1 such that v = nN6@. We prove that n = (7], and 6 = [),,. Since v C 7,
therefore (v], C 7.

For reverse inclusion, let x € M and n(z) = t. Then clearly, ¢t < ag. Since v C 7, therefore
v Cn. Ify €y, then z,y € n. This implies x Vy € n. We also have y € v C [y),
where [y;) is a dual ideal of y; and y < x V y in ;. Therefore, x Vy € [y) and t < ay.
This implies

t<[Vvy) =0(zVy).

We also have n(z Vy) > t. Therefore, 0(zVy) An(zVy) >t. Thatis, v(xVy) > t. Thus,

zVyen C(y.

Note that (7] is an ideal of i and < x Vy. Hence, z € (7] and ¢t < ag. Thus,

n(@) =t < Veao{r 1z € (3]} = (1(2).

Hence, n C (] and therefore, n = (v]. Similarly, # = [y). Consequently, we get the
uniqueness of the representation of ~.

4. Complement of an L-set and L-prime ideal and L-maximal ideal of an
L-lattice

In this section, the important concept of an order reversing involution on a lattice is
discussed. Based on this notion, the complement of an L-lattice is defined. These notions
occur frequently in Lattice Implication Algebras and L-topological spaces [11, 13, 16, 17].
If (L, <, A, V) is a lattice, then L*(= L) is also a lattice with respect to reverse order “>”,
where y > z in L* if and only if x <y in L. An order reversing involution on a lattice L
is defined as a bijection 7 : L — L* satisfying 7(7(z)) =2,V € L and z <y in L if and
only if 7(y) < 7(z) in L = L*.

It is interesting to note that in all the examples provided in Section 3, there is an order
reversing involution on the lattice L of truth values.
The following result displays an inherent property of an order reversing involution.
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Lemma 1. If L and L* are lattices and T : L — L* is an order reversing bijection, then
T(aVb)=7(a)AN7(b) and T(aANb)=7(a)VT(b); Va,be L.

An order reversing involution defined on a lattice L of truth values leads to the definition
of complement of an L-set as follows:

Definition 10. Let i € LM and 7 be an order reversing involution on L, i.e., 7 : L — L*
is a bijection satisfying 7(1(x)) = x, V& € L and x < y in L if and only if 7(y) <
7(x)in L = L*. Define an L-set p' : M* — L* as

i (@) = r(ul()), ¥ @ € M*(= M).
Then, ' € LM and i’ is called the complement of p in LM.
The following lemma establishes the De Morgan’s Laws in LM
Lemma 2. Let u,n € L™ and 7 be an order reversing involution on L. Then,
(pUn) =p' 0y and (pnn) =4 Uy

Proof. Let x € M. Then,

Hence, (unUn) = @/ Nn'. The proof of the other part follows similarly.

In the next result, it is proved that the complement of an L-prime ideal in M is an L-dual
prime ideal in M.

Theorem 14. Let 7 be an order reversing involution on lattice L and p be an L-prime
ideal of M. Then 1/, the complement of u in L™, is an L-dual prime ideal of M.

Proof. Let x,y € M. Since p is an L-prime ideal of M, we have

@ Ay) < p(@) vV u(y).

This implies, 7(p(z Ay)) > 7[p(z) V p(y)] as 7 is an order reversing involution. That is,
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Further, if z <y in M, then p(z) > p(y) in L (as p is an L-ideal of M). This implies
() < 7(u(y)) in L
Thus,
i () < p'(y)- (2)
Moreover, as p is an L-ideal of M, x <z Vy and y <z Vy in M implies
p(x) > p(z Vy) and p(y) > p( Vy).
Thus, ¢/(x) < p/(x Vy) and ¢/ (y) < p/(z V y) and hence
p(x) A (y) < pl(z) < pl(zVy). (3)

By (1), (2) and (3), we get that p’ is an L-dual ideal of M. To establish that p' is an
L-dual prime ideal of M, note that pu(x V y) > pu(x) A p(y). This implies

Consequently, ¢ is an L-dual prime ideal of M.

By the above theorem, it can be concluded that if L is a lattice with an order reversing
involution 7, then p is an L-prime ideal of M if and only if i/ is an L-dual prime ideal
of M. The next theorem, combined with Theorem 14, leads to the following interesting
analogue of a result from classical lattice theory:

An L-ideal n of M is an L-prime ideal of M if and only if 7 is an L-dual
ideal of M. In fact, ' is an L-dual prime ideal of M.

Theorem 15. Let 7 be an order reversing involution on the lattice L and n be an L-ideal
of M such that n' is an L-dual ideal of M. Then, n and n' are L-prime ideals of M.

Proof. Suppose 7 is an L-ideal of M such that 7" is an L-dual ideal of M. We have
n'(@Ay) =0 (x) A'(y); ¥ oy € M.
This implies

n(xAy) =
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Thus, n is an L-prime ideal of M. Similarly, we have

n(xAy) =n(x) Any); Vr,yeM.

This implies

Hence, n and 1’ are L-prime ideals of M.

18 of 20

In fact, in the above theorem, it can be proved that 7' is an L-dual prime ideal of M.

We conclude this paper by discussing an analogue of another well known fact in classical

lattice theory that,

In a distributive lattice with the maximal element 1, every proper ideal is contained in a

maximal ideal.

The next theorem proves a similar result in an L-lattice p.

Theorem 16. Let L(p, M) be an L-lattice, where L is a completely distributive lattice.
Let n C u be an L-ideal of u. Then, there exists an L-maximal ideal 6 of pu such that

nCa.

Proof. Let I = {~/~ is an L-ideal of p such that n C v}. Let ® = {~;}ica be a chain

in I. Then clearly,
n S U{v} and U{y} Cp

If z,y € M,
{Urit(@ Vy) = Vri(z Vy)
> V(@) Aviy)]
(as each ~; is an L-ideal of p)
= [Vyi(@)] A Vi (y)]
= (Uy)(@) A (D7) ().
Moreover,

{Wyit(z Ay) = Vyi(z Ay)
> V{p(z) Avi(y)]

as each ; is an L-ideal of p)

(
p(x) A [Vi(y)]
pl@) A (W) (y)-
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Thus, {Uv;} is an L-ideal of u containing n. That is, {Uy;} € I. Thus, every chain in
has an upper bound in I. Therefore, by Zorn’s Lemma, I has a maximal element. That
is, 4 a maximal L-ideal v of u such that n C . Hence, 7 is the required L-maximal ideal
of u containing 7.

Conclusion

In the present work, the concept of an L-convex sublattice in an L-lattice is studied
in detail and the unique representation theorem for L-convex sublattices is established.
Moreover, the concept of order reversing involution is utilized on the lattice L of truth
values to define the complement of an L-set. The notion of complementation plays a
significant role in the theory of Boolean Algebras, lattice implication Algebras and topo-
logical spaces. In this paper, it is established that the concept of complementation of
an L-set leads to proving some significant results in L-lattice theory. This notion is fur-
ther worthy of attention as it may lead to some remarkable development in the theory of
L-substructures of an L-
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