EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 1, Article Number 5532 ISSN 1307-5543 – ejpam.com Published by New York Business Global

L-Convex Sublattice of an L-Lattice and Complement of an L-set

Aparna Jain¹, Iffat Jahan² *

¹ Department of Mathematics, Shivaji College, University of Delhi, Delhi, India

² Department of Mathematics, Ramjas College, University of Delhi, Delhi, India

Abstract. In this paper, the authors define and explore the notion of an L-convex sublattice in an L-lattice. The investigations in this paper lead to 'The Unique Representation Theorem' for L-convex sublattices. Also, the authors effectively use the concept of order reversing involution on the lattice L of truth values to define complement of an L-set. Further, they employ this notion in the studies of L- prime ideals and L-maximal ideals.

2020 Mathematics Subject Classifications: 06B10, 06D72, 06D75, 08A72

Key Words and Phrases: Lattices, generated *L*-sublattice, generated *L*-ideal, generated *L*-dual ideal, *L*-convex sublattice, Complement of an *L*-set, *L*-maximal ideal, *L*-prime ideal

1. Introduction

The literature on fuzzy algebraic structures has been growing ever since the introduction of the concept of a fuzzy subgroup by A. Rosenfeld [14] in the year 1971. Ajmal and Thomas [4–6] systematically developed the theory of fuzzy sublattices in a lattice. They introduced the notions of a fuzzy sublattice, fuzzy ideal (dual ideal), fuzzy prime ideal (dual ideal), fuzzy ideal (dual ideal) generated by a fuzzy set and studied their properties. The concept of a fuzzy convex sublattice was also introduced by Ajmal and Thomas in [4, 5], wherein the Unique Representation Theorem for convex sublattices was extended to fuzzy setting.

The concept of an L-fuzzy set was pioneered by Goguen [7] in the year 1967 .In [10], the authors studied the concept of an L-lattice. This shifts their studies from the evaluation lattice [0, 1] to a more general lattice L. Moreover in [10], authors made one more transition by studying the notions of L-substructures in an L-lattice instead of fuzzy substructures of an ordinary lattice. Thus, the parent structure also shifts from a lattice to an L-lattice. It is worthwhile to mention here that under this arrangement, some notions

1

https://www.ejpam.com

Copyright: (c) 2025 The Author(s). (CC BY-NC 4.0)

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v18i1.5532

Email addresses: jainaparna@yahoo.com (A. Jain), ij.umar@yahoo.com (I. Jahan)

such as L-maximal ideal can be defined more meaningfully in the L-setting.

In past few years, Ajmal and Jahan have successfully developed the theory of L-subgroups in [1–3, 8, 9, 12]]. They have taken the theory of L-subgroups towards completion by studying the concepts of characteristic subgroups, normalizer of a subgroup, nilpotent subgroups, solvable subgroups, normal closure of a subgroup etc., within the framework of L-groups. In [9], Jahan and Manas studied maximal and Frattini L-subgroups of an L-group.

In [10], the notions of an L-maximal ideal and L-prime ideal in an L-lattice are defined and various related results are studied. In order to take such studies further, in the present paper, we introduce the notion of an L-convex sublattice in an L-lattice. Then this notion of convex L-sublattice is used to demonstrate that the Unique Representation Theorem of classical lattice theory for convex sublattices also holds under the L-setting wherein the parent structure is an L-lattice.

In the last section of this paper, we use the notion of an order reversing involution on a lattice to define the concept of complement of an *L*-set. The notion of order reversing involution occurs frequently in fuzzy topological spaces and fuzzy implication algebras [11, 13, 15–17]. Thereafter, we establish some significant analogues of results of classical lattice theory to *L*-setting using complement of an *L*-set, thereby taking the theory of *L*-lattices to a more developed stage.

2. Preliminaries

In this work, (M, \leq, \wedge, \vee) denotes a bounded lattice and (L, \leq, \wedge, \vee) a complete lattice. The maximal and minimal elements of both the lattices L and M are denoted by 1 and 0 respectively. The notations ' \leq ', ' \wedge ' and ' \vee ' denote the partial order, meet and join operations respectively of both the lattices L and M. An L-subset of M is defined as a mapping $\mu : M \to L$. The collection of all L-subsets of M is denoted by L^M and is called the L-power set of M. If $\mu, \eta \in L^M$, η is said to be contained in μ (denoted by $\eta \subseteq \mu$), if $\eta(x) \leq \mu(x), \forall x \in M$. Moreover, η is said to be properly contained in μ , if $\eta \subseteq \mu$ and there exists $x \in M$ such that $\eta(x) < \mu(x)$. If $\eta \subseteq \mu$, then η is said to be an L-subset of an L-subset of an L-subset of μ is called the L-power set of all L-subsets of μ is called the L-power set of all L-subsets of μ is called the L-power set of μ and is denoted by L^{μ} .

If $\mu \in L^M$ and $\alpha \in L$, the level subset μ_{α} and the strong level subset $\mu_{\alpha}^{>}$ are defined as follows:

$$\mu_{\alpha} = \{ x \in M/\mu(x) \ge \alpha \} \quad \text{and} \quad \mu_{\alpha}^{>} = \{ x \in M/\mu(x) > \alpha \}.$$

Clearly, $\mu_{\alpha}^{>} \subseteq \mu_{\alpha}, \forall \alpha \in L$ and if $\alpha \leq \beta$ in L, then $\mu_{\beta} \subseteq \mu_{\alpha}$ and $\mu_{\beta}^{>} \subseteq \mu_{\alpha}^{>}$.

If $\mu \in L^M$, then $\forall_{x \in M} \mu(x)$ and $\wedge_{x \in M} \mu(x)$ are called the tip and tail of μ , respectively. The arbitrary union $\cup_{i \in I}(\mu_i)$ and intersection $\cap_{i \in I}(\mu_i)$ of a family $\{\mu_i\}_{i \in I}$ of *L*-subsets of *M* are given by:

$$(\bigcup_{i\in I}\mu_i)(x) = \bigvee_{i\in I}\mu_i(x)$$
 and $(\bigcap_{i\in I}\mu_i)(x) = \wedge_{i\in I}\mu_i(x).$

Definition 1 ([4]). Let $\mu \in L^M$. Then, μ is said to be an L-sublattice of M if $\forall x, y \in M$

$$\mu(x \lor y) \ge \mu(x) \land \mu(y) \text{ and } \mu(x \land y) \ge \mu(x) \land \mu(y).$$

Let L(M) denote the set of all L-sublattices of M. If $\mu \in L(M)$, μ is called an L-Lattice and is denoted by $L(\mu, M)$. If $\mu, \eta \in L(M)$ and $\eta \subseteq \mu$, then η is called an L-sublattice of the L-lattice μ . The collection of all L-sublattices of μ is denoted by $L(\mu)$. In this paper, we shall study the L-convex sublattices of an L-lattice μ rather convex sublattices of an ordinary lattice.

The following theorems provide the level subset characterizations and strong level subset characterizations of an *L*-sublattice of μ . For similar characterizations of *L*-sublattices of M, we refer to [10].

Theorem 1 ([10]). Let $\mu, \eta \in L^M$ be such that $\eta \subseteq \mu$. Also, let $L(\mu, M)$ be an L-lattice and $a_o = tip\{\eta\}$. Then, η is an L-sublattice of μ if and only if each level subset η_{α} is a sublattice of $\mu_{\alpha}, \forall \alpha \leq a_o$. Equivalently, η is an L-sublattice of μ if and only if each nonempty level subset η_{α} is a sublattice of μ_{α} .

Theorem 2 ([10]). Let L be a chain. Let $\mu, \eta \in L^M$ be such that $\eta \subseteq \mu$. Also, let $L(\mu, M)$ be an L-lattice and $a_o = tip\{\eta\}$. Then, η is an L-sublattice of μ if and only if each strong level subset $\eta_{\alpha}^{>}$ is a sublattice of $\mu_{\alpha}^{>}$, $\forall \alpha < a_o$. Equivalently, η is an L-sublattice of μ if and only if each nonempty strong level subset $\eta_{\alpha}^{>}$ is a sublattice of $\mu_{\alpha}^{>}$.

The notions of L-ideal, L-dual ideal in lattice M and L-ideal, L-dual ideal in an L-lattice μ are defined as follows:

Definition 2 ([10]). Let $\mu \in L^M$. Then,

 $[(i)]\mu$ is called an *L*-ideal of *M* if $\mu \in L(M)$ and $x \leq y$ in *M* implies $\mu(x) \geq \mu(y)$ in *L*; μ is called an *L*-dual ideal of *M* if $\mu \in L(M)$ and $x \leq y$ in *M* implies $\mu(x) \leq \mu(y)$ in *L*.

Definition 3 ([10]). Let $\mu, \eta \in L^M$ be such that $\eta \subseteq \mu$. Also, let $L(\mu, M)$ be an L-lattice. Then,

(i)] η is called an *L*-ideal of μ if

 $\eta(x \lor y) \ge \eta(x) \land \eta(y)$ and $\eta(x \land y) \ge \mu(x) \land \eta(y); \quad \forall x, y \in M.$

 η is called an *L*-dual ideal of μ if

 $\eta(x \wedge y) \ge \eta(x) \wedge \eta(y)$ and $\eta(x \vee y) \ge \eta(x) \wedge \mu(y); \quad \forall x, y \in M.$

It is important to note here that in a bounded lattice M, an L-ideal attains its supremum at the least element of M, whereas an L-dual ideal attains its supremum at the greatest element of M. The following theorems provide the level subset characterizations and strong level subset characterizations of an L-ideal (L-dual ideal) of μ . For similar characterizations of L-ideal (L-dual ideal) of M, refer to [10].

Theorem 3 ([10]). Let $\mu, \eta \in L^M$ be such that $\eta \subseteq \mu$. Also, let $L(\mu, M)$ be an L-lattice and $a_o = tip\{\eta\}$. Then, η is an L-ideal(L-dual ideal) of μ if and only if each level subset η_{α} is an ideal(dual ideal) of μ_{α} , $\forall \alpha \leq a_o$. Equivalently, η is an L-ideal(L-dual ideal) of μ if and only if each nonempty level subset η_{α} is an ideal(dual ideal) of μ_{α} .

Theorem 4 ([10]). Let L is a chain. Let $\mu, \eta \in L^M$ be such that $\eta \subseteq \mu$. Also, let $L(\mu, M)$ be an L-lattice and $a_o = tip\{\eta\}$. Then, η is an L-ideal(L-dual ideal) of μ if and only if each strong level subset $\eta_{\alpha}^{>} \quad \forall \alpha < a_o$, is an ideal (dual ideal) of $\mu_{\alpha}^{>}$. Equivalently, η is an L-ideal(L-dual ideal) of μ if and only if each nonempty strong level subset $\eta_{\alpha}^{>}$ is an ideal (dual ideal) of $\mu_{\alpha}^{>}$.

It can be easily verified that the intersection of an arbitrary family of L-sublattices(Lideals, L-dual ideals) of μ is an L-sublattice(L-ideal, L-dual ideal) of μ . This leads to the definition of an L-sublattice(L-ideal, L-dual ideal) generated by an L-subset η of μ as the intersection of all L-sublattices(resp. L-ideals, L-dual ideals) of μ containing η . These are denoted by $[\eta]_{\mu}$, $(\eta]_{\mu}$ and $[\eta)_{\mu}$ respectively. The following result from [3] gives the structural compositions of an L-sublattice, L-ideal, L-dual ideal of an L-lattice μ generated by an L-subset η of μ in terms of level subsets.

Theorem 5 ([10]). Let $L(\mu, M)$ be an L-lattice, $\eta \in L^M$, $\eta \subseteq \mu$ with $a_o = tip\{\eta\}$.

/(i)]Define an L-subset η_o of M as:

$$\eta_o(x) = \bigvee_{t \le a_o} \{t : x \in [\eta_t]\},\$$

where $[\eta_t]$ is a sublattice of μ_t generated by η_t . Then, η_o is an *L*-sublattice of μ and $\eta_o = [\eta]_{\mu}$. Define an *L*-subset η_1 of *M* as:

$$\eta_1(x) = \bigvee_{t \le a_o} \{t : x \in (\eta_t]\},\$$

where $(\eta_t]$ is an ideal of μ_t generated by η_t . Then, η_1 is an *L*-ideal of μ and $\eta_1 = (\eta]_{\mu}$. Define an *L*-subset η_2 of *M* as:

$$\eta_2(x) = \bigvee_{t \le a_o} \{t : x \in [\eta_t)\},\$$

where $[\eta_t)$ is an dual ideal of μ_t generated by η_t . Then, η_2 is an *L*-dual ideal of μ and $\eta_2 = [\eta)_{\mu}$.

The concept of a maximal ideal could be meaningfully extended from classical setting to fuzzy setting by the authors in [10] by shifting the parent structure from classical lattice to an *L*-structure as follows:

Definition 4 ([10]). Let $L(\mu, M)$ be an L-lattice.

[(i)]A proper L-ideal η of μ is called an L-maximal ideal of μ if for any L-ideal θ of μ , whenever $\eta \subseteq \theta \subseteq \mu$, then $\theta = \eta$ or $\theta = \mu$. A proper L-dual ideal η of μ is called an L-dual maximal ideal of μ if for any L-dual ideal θ of μ , whenever $\eta \subseteq \theta \subseteq \mu$, then $\theta = \eta$ or $\theta = \mu$.

In [10], some characterizations of an *L*-maximal ideal and *L*-maximal dual ideal of μ were provided. Further, an *L*-prime ideal(*L*-prime dual ideal) in lattice *M* and an *L*-prime ideal(*L*-prime dual ideal) in an *L*-lattice μ are defined as follows:

Definition 5 ([4]). ((i)]

(i) An L-ideal μ of M is called an L-prime ideal of M if

$$\mu(x \wedge y) \le \mu(x) \lor \mu(y); \quad \forall x, y \in M.$$

(ii) An L-dual ideal μ of M is called an L-prime dual ideal of M if

$$\mu(x \lor y) \le \mu(x) \lor \mu(y); \quad \forall x, y \in M.$$

Definition 6 ([10]). Let $L(\mu, M)$ be an L-lattice.

[(i)]A proper L-ideal η of μ is called an L-prime ideal of μ if, $\forall x, y \in M$

 $\eta(x \wedge y) \wedge \mu(x) \wedge \mu(y) \leq \eta(x) \text{ or } \eta(x \wedge y) \wedge \mu(x) \wedge \mu(y) \leq \eta(y).$

A proper L-dual ideal η of μ is called an L-dual prime ideal of μ if, $\forall x, y \in M$

$$\eta(x \lor y) \land \mu(x) \land \mu(y) \le \eta(x) \text{ or } \eta(x \lor y) \land \mu(x) \land \mu(y) \le \eta(y).$$

In [10], the authors defined a fuzzy convex sublattice of a lattice and studied the related properties. On similar lines, an *L*-convex sublattice of a lattice M can be defined as follows:

Definition 7. If $\mu \in L(M)$, then μ is called an L-convex sublattice of M if for each interval $[a,b] \subseteq M$,

$$\mu(x) \ge \mu(a) \land \mu(b), \quad \forall \ x \in [a, b].$$

3. L-convex Sublattice of an L-lattice

In this section, L is taken to be a complete and completely distributive lattice in some results. The definition of a completely distributive lattice is well known in the literature and can be found in any standard text on the subject.

Let $\{J_i : i \in I\}$ be any family of subsets of a complete lattice L and F denote the set of choice functions for J_i , i.e. functions $f : I \to \prod_{i \in I} J_i$ such that $f(i) \in J_i$ for each $i \in I$. Then, we say that L is a completely distributive lattice, if

Then, we say that L is a completely distributive lattice, if

$$\bigwedge \left\{ \bigvee_{i \in I} J_i \right\} = \bigvee_{f \in F} \left\{ \bigwedge_{i \in I} f(i) \right\}.$$

The above law is known as the complete distributive law. Thus, in order theory, a complete lattice is completely distributive if arbitrary joins distribute over arbitrary meets. Note that the dual of completely distributive law is valid in a completely distributive lattice.

We begin this section by defining an L-convex sublattice of an L-lattice μ and study its properties.

Definition 8. Let $L(\mu, M)$ be an L-lattice. An L-sublattice η of μ is called an L-convex sublattice of μ if

$$\eta(x) \ge \eta(a) \land \eta(b) \land \mu(x)$$
 where $a \le x \le b$ in M.

The following characterisations of an *L*-convex sublattice η of μ with the help of level subsets and strong level subsets of η can be verified easily.

Theorem 6. Let $L(\mu, M)$ be an L-lattice and $\eta \in L(\mu)$ with $a_o = tip\{\eta\}$. Then, η is an L-convex sublattice of μ if and only if each level subset η_t , $\forall t \leq a_o$, is a convex sublattice of μ_t . Equivalently, η is an L-convex sublattice of μ if and only if each nonempty level subset η_t is a convex sublattice of μ_t .

Theorem 7. Let L be a chain. Let $L(\mu, M)$ be an L-lattice and $\eta \in L(\mu)$ with $a_o = tip\{\eta\}$. Then, η is an L-convex sublattice of μ if and only if each strong level subset $\eta_t^>$ is a convex sublattice of $\mu_t^>$, $\forall t < a_o$. Equivalently, η is an L-convex sublattice of μ if and only if each nonempty strong level subset $\eta_t^>$ is a convex sublattice of $\mu_t^>$.

We now provide the following examples of L-convex sublattices in an L-lattice:

Example 1. Let $M = \aleph$ be the chain of natural numbers and $L = P(\aleph)$, the power set of \aleph , be the Boolean Algebra. Define the following L-subsets of \aleph :

$$\eta(n) = \begin{cases} \emptyset \ if \ n = 1, \\ \{1, 2, ..., n - 1\} \ \forall n \ge 2; \end{cases}$$

and

$$\mu(n) = \{1, 2, ..., n\} \quad \forall n \in \aleph.$$

Then $\eta \subseteq \mu$. Moreover, it is easy to verify that η and μ are L-sublattices of \aleph . Futhermore, η turns out to be an L-convex sublattice of μ . It is wothwhile to note here that the set of all level subsets of η form a chain in the lattice $M = \aleph$. Here, we write $A_i = \{1, 2, \dots, i-1\}$ $\forall i \geq 2$. Further, note that

$$\eta_{A_i} = A_i \text{ and } \eta_{\emptyset} = \emptyset.$$

Thus, we have

$$A_1 = \emptyset \subseteq A_2 \subseteq A_3 \subseteq \dots \subseteq A_n \subseteq \dots \subseteq \aleph.$$

Example 2. Let $X = \{a, b, c\}$ and L = P(X) be the power set of X. Then $\langle L, \cap, \cup, \prime \rangle$ is a Boolean Algebra where ' \cup ', ' \cap ' and ' \prime ' denote the ordinary intersection, union and complement of members of L respectively. Further, It is easy to see that L is Boolean Algebra with order reversing involution given by :

$$\tau: L \longrightarrow L^*, \tau(A) = A'.$$

Let $M = \{1, 2, 3, 6\}$ denote the set of all factors of '6'. Then $\langle M, \vee, \wedge, \prime \rangle$, where $a \vee b = lcm\{a, b\}$, $a \wedge b = gcd\{a, b\}$ and $a' = \frac{6}{a}$; $\forall a, b \in M$, is also a Boolean Algebra. In the following diagram, (i) and (ii) represent Boolean Algebras M and L respectively.

Define the following L-subsets μ and η of M:

$$\mu(A) = \begin{cases} 2 & \text{if } A \in \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, \\ 6 & \text{if } A = P(X) \setminus \{\emptyset, \{a\}, \{b\}, \{a, b\}\}; \end{cases}$$

and

$$\eta(A) = \begin{cases} 1 & \text{if } A \in \{\emptyset, \{b\}\}, \\ 2 & \text{if } A \in \{\{a\}, \{a, b\}\}, \\ 3 & \text{if } A \in \{c, \{\{b, c\}\}, \\ 6 & \text{if } A \in \{\{a, c\}, X\}. \end{cases}$$

Now, note that $\eta \subseteq \mu$. The set $\{\eta_a : a \in Im \ \eta\}$ of all level subset of η is determined below :

$$\eta_1 = M, \ \eta_2 = \{\{a\}, \{a, b\}, \{a, c\}, X\}, \ \eta_3 = \{\{c\}, \{b, c\}, \{a, c\}, X\} \ and \ \eta_6 = \{\{a, c\}, X\}.$$

Further, the set $\{\mu_a : a \in Im \ \mu\}$ of all level subset of μ is determined below :

$$\mu_2 = M$$
, and $\mu_6 = \{\{c\}, \{b, c\}\{a, c\}, X\}.$

Now, it is easy to see that η and μ are L-sublattices of M. Futhermore, η forms an L-convex sublattice of μ . Observe that in this example the set of all level subsets of η does not form a chain. Infact, the set of all level subsets { $\eta_a : a \in Im \eta$ } turns out to be only a poset under the ordering of usual set theoretic containment.

Example 3. Let $M = \emptyset \cup \mathbb{Z} \cup \{\{n\} : n \in \mathbb{Z}\}$. Then M is a Boolean Algebra with the following Hasse Diagram :

Further, let $L = \{A \subseteq \mathbb{R} : either A \text{ or } A' \text{ is finite}\}$. Here A' is complement of A in \mathbb{R} . It is easy to see that L is Boolean Algebra with order reversing involution given by :

$$\tau: L \longrightarrow L^*, \tau(A) = A'.$$

Define the following L-subsets of M:

$$\eta(A) = \begin{cases} \emptyset & \text{if } A = \mathbb{Z}, \\ \mathbb{R} & \text{if } A = \emptyset, \\ \{n\} & \text{if } n \in \mathbb{Z}; \end{cases}$$

and

$$\mu(A) = \begin{cases} \emptyset & \text{ if } A = \mathbb{Z}, \\ \mathbb{R} & \text{ if } A = \emptyset, \\ \{n, -n\} & \text{ if } n \in \mathbb{Z}. \end{cases}$$

Now, note that $\eta \subseteq \mu$. The set $\{\eta_a : a \in Im \ \eta\}$ of all level subset of η is determined below :

$$\eta_{\mathbb{R}} = \emptyset, \eta_{\{n\}} = \{\mathbb{Z}, \{n\}\} \text{ and } \eta_{\emptyset} = M.$$

Further, the set $\{\mu_a : a \in Im \ \mu\}$ of all level subset of μ is determined below :

$$\mu_{\mathbb{R}} = \emptyset, \mu_{\{\pm n\}} = \{\mathbb{Z}, \{n\}\}, and \mu_{\emptyset} = M.$$

Now, it is easy to see that η and μ are L-sublattices of M. Futhermore, η forms an L-convex sublattice of μ . Observe that in this example the Hesse Diagram of set of all level subsets of both η and μ coincide with that of Hasse Diagram of the lattice M given above. Infact, the set of all level subsets $\{\eta_a : a \in Im \ \eta\}$ turns out to be lattice under the usual set theoretic containment.

The following result is also straightforward.

Theorem 8. The intersection of an arbitrary family of L-convex sublattices of L-lattice μ is an L-convex sublattice of μ .

The above result is instrumental in defining an L-convex sublattice of μ generated by an L-subset η of μ .

Definition 9. An L-convex sublattice of L-lattice μ generated by an L-subset η of μ is defined as the intersection of all L-convex sublattices of μ containing η and is denoted by $[\eta]^c_{\mu}$. Thus,

 $[\eta]_{\mu}^{c} = \bigcap \{\eta_{i} : \eta_{i} \text{ is an } L\text{-convex sublattice of } \mu, \eta \subseteq \eta_{i}, \forall i \in I \}.$

The next result provides a complete structure of L-convex sublattice generated by L-subset η of μ in terms of level subsets.

Theorem 9. Let L be a complete and completely distributive lattice and $L(\mu, M)$ be an L-lattice. Let $\eta \in L^M$ with $\eta \subseteq \mu$ and $a_0 = tip\{\eta\}$. Define an L-subset η' of M as:

$$\eta'(x) = \bigvee_{t < a_o} \{t : x \in [\eta_t]_c\}, \ \forall \ x \in M;$$

where $[\eta_t]_c$ is the convex sublattice of lattice μ_t generated by η_t . Then, η' is an L-convex sublattice of μ and $\eta' = [\eta]^c_{\mu}$.

Proof. Since $\eta \subseteq \mu$, $\eta_t \subseteq \mu_t$, $\forall t \in L$. As μ is an *L*-lattice, μ_t is a sublattice of M, $\forall t \leq tip\{\mu\}$. Moreover, $[\eta_t]_c \subseteq \mu_t$, as $[\eta_t]_c$ is the convex sublattice of μ_t generated by η_t . Thus,

$$\eta'(x) = \bigvee_{t \le a_o} \{t : x \in [\eta_t]_c\}$$
$$\leq \bigvee_{t \le tip\{\mu\}} \{t : x \in \mu_t\}$$
$$= \mu(x).$$

We thus have $\eta' \subseteq \mu$. Further, to prove that $\eta \subseteq \eta'$, let $x \in M$ and let $\eta(x) = \alpha \leq a_0$. Then,

$$x \in \eta_{\alpha} \subseteq [\eta_{\alpha}]_c.$$

Therefore, by definition of $\eta', \alpha \leq \eta'(x)$. That is, $\eta(x) \leq \eta'(x)$. Thus, $\eta \subseteq \eta'$. We now prove that η' is an *L*-sublattice of μ . For any $z \in M$, define a subset $L_{\eta}(z)$ of *L* as follows:

$$L_{\eta}(z) = \{ t \in L/t \le a_0, z \in [\eta_t]_c \}.$$

Clearly, $\eta'(x) = \bigvee L_{\eta}(x)$. Let $x, y \in M$, $a \in L_{\eta}(x)$ and $b \in L_{\eta}(y)$. We claim that $a \wedge b \in L_{\eta}(x \vee y)$. First note that $\eta_a \cup \eta_b \subseteq \eta_{a \wedge b}$. Since $a \in L_{\eta}(x)$ and $b \in L_{\eta}(y)$, we have $a, b \leq a_0, x \in [\eta_a]_c, y \in [\eta_b]_c$. Therefore, $x = p\{x_i\}$ (a lattice polynomial in variables x_i 's. where $x_i \in \eta_a, \forall i$). Similarly, $y = q\{y_j\}$ (a lattice polynomial in variables y_j 's. where $y_j \in \eta_b, \forall j$). Thus, $x \vee y$ is also a lattice polynomial in variables x_i 's and y_j 's, where $x_i, y_j \in \eta_a \cup \eta_b \subseteq \eta_{a \wedge b}$. That is,

$$x \lor y \in [\eta_{a \land b}]_c$$

We also have $a \wedge b \leq a_0$. Thus, $a \wedge b \in L_\eta(x \vee y)$. This implies that

$$\eta'(x \lor y) \ge a \land b; \quad \forall \ a \in L_{\eta}(x) \text{ and } b \in L_{\eta}(y).$$

Consequently,

$$\eta'(x \lor y) \ge \lor \{a \land b/a \in L_{\eta}(x), b \in L_{\eta}(y)\}$$

= {\\{a/a \in L_{\eta}(x)\}\} \{\\\{b/b \in L_{\eta}(y)\}\}
(as L is a completely distributive lattice)
= \(\eta'(x) \land \eta'(y).

Similarly, it can be proved that

$$\eta'(x \wedge y) \ge \eta'(x) \wedge \eta'(y); \quad \forall x, y \in M$$

Thus, η' is an *L*-sublattice of μ . Further, to establish that η' is an *L*-convex sublattice of μ , we shall prove that,

((i)
$$\eta'(w) \ge \eta'(x) \land \eta'(y) \land \mu(w)$$
 where $x \le w \le y$ in M .

For any $z \in M$, let

$$L_{\eta}(z) = \{ t \in L/t \le a_0, z \in [\eta_t]_c \}$$

Then, $\eta'(x) = \bigvee L_{\eta}(x)$. Also let

$$L_{\mu}(z) = \{ t \in L / t \le tip \{\mu\}, z \in \mu_t = [\mu_t] \}.$$

Let $r \in L_{\mu}(w)$, $s \in L_{\eta}(x)$ and $t \in L_{\eta}(y)$. Then,

$$r \leq tip \{\mu\}; s, t \leq a_0, w \in [\mu_r] = \mu_r, x \in [\eta_s]_c \text{ and } y \in [\eta_t]_c$$

Hence, $s \wedge t \wedge r \leq a_0$ and we have

$$x \in [\eta_s]_c \subseteq \mu_s \subseteq \mu_{s \wedge t \wedge r};$$

$$y \in [\eta_t]_c \subseteq \mu_t \subseteq \mu_{s \wedge t \wedge r}; \text{ and }$$

$$w \in [\mu_r] = \mu_r \subseteq \mu_{s \wedge t \wedge r}.$$

Thus, $x, y, w \in \mu_{s \wedge t \wedge r}$. Moreover,

$$x \in [\eta_s]_c \subseteq [\eta_{s \wedge t \wedge r}]_c$$
 and $y \in [\eta_t]_c \subseteq [\eta_{s \wedge t \wedge r}]_c$;

and $[\eta_{s \wedge t \wedge r}]_c$ is a convex sublattice of $\mu_{s \wedge t \wedge r}$ generated by the *L*-set $\eta_{s \wedge t \wedge r}$. Therefore, we have $w \in [\eta_{s \wedge t \wedge r}]_c$ (as $x \leq w \leq y$ in *M*). This implies

$$\eta'(w) \ge s \wedge t \wedge r; \ \forall \ r \in L_{\mu}(w), \ s \in L_{\eta}(x) \ \text{and} \ t \in L_{\eta}(y).$$

That is,

$$\begin{aligned} \eta'(w) &\geq \forall \{s \wedge t \wedge r/r \in L_{\mu}(w), s \in L_{\eta}(x) \text{ and } t \in L_{\eta}(y) \} \\ &= \{ \forall \{s/s \in L_{\eta}(x)\} \} \wedge \{ \forall \{t/t \in L_{\eta}(y)\} \} \wedge \{ \forall \{r/r \in L_{\mu}(w)\} \} \\ & \text{ (as } L \text{ is a completely distributive lattice)} \\ &= \eta'(x) \wedge \eta'(y) \wedge \mu(w). \end{aligned}$$

Hence, η' is an *L*-convex sublattice of μ . Now it is left to prove that η' is the smallest *L*-convex sublattice of μ containing η . For this, suppose θ is an *L*-convex sublattice of μ such that $\eta \subseteq \theta$. Then, $\eta_t \subseteq \theta_t$, $\forall t \in L$. Since θ is an *L*-convex sublattice of μ , therefore by Theorem 6, each nonempty θ_t is a convex sublattice of μ_t . Therefore, $[\theta_t]_c = \theta_t$. This implies that

$$[\eta_t]_c \subseteq \theta_t, \quad \forall t \le a_0.$$

Also, $a_0 = tip\{\eta\} \le tip\{\theta\}$. Thus, $\forall x \in M$, we have

$$\eta'(x) = \bigvee_{t \le a_o} \{t : x \in [\eta_t]_c\}$$
$$\leq \bigvee_{t \le tip\{\theta\}} \{t : x \in \theta_t\}$$

$$= \theta(x).$$

That is, $\eta' \subseteq \theta$. Hence, $\eta' = [\eta]_{\mu}^c$.

The next result is significant for establishing the Unique Representation Theorem for L-convex sublattice of an L-lattice μ . The proof being trivial is omitted.

Theorem 10. Let $L(\mu, M)$ be an L-lattice and $\eta \subseteq \mu$ be an L-ideal (L-dual ideal) of μ . Then, η is an L-convex sublattice of μ .

Before discussing the Unique Representation Theorem for L-convex sublattices in an Llattice μ , we provide the structural composition of an L-ideal of μ generated by an L-subset η of μ in terms of strong level subsets of η . The following result is proved by taking L to be a dense chain. Note that a dense chain is a completely distributive lattice.

Theorem 11. Let L be a dense chain and $L(\mu, M)$ be an L-lattice. Let $\eta \in L^M$, $\eta \subseteq \mu$ and $a_0 = tip\{\eta\}$. Define an L-set $\hat{\eta}$ of M as follows:

$$\widehat{\eta}(x) = \bigvee_{t < a_0} \{t : x \in (\eta_t^>]\},\$$

where $(\eta_t^{>}]$ is an ideal of $\mu_t^{>}$ generated by $\eta_t^{>}$. Then, $\hat{\eta} = (\eta)_{\mu}$.

Proof. Since $\eta \subseteq \mu$, $\eta_t^> \subseteq \mu_t^>$, $\forall t \in L$. As μ is an *L*-lattice, $\mu_t^>$ is a sublattice of M, $\forall t < tip\{\mu\}$. Also, as $(\eta_t^>)$ is an ideal of $\mu_t^>$ generated by $\eta_t^>$, we have

$$(\eta_t^>] \subseteq \mu_t^>, \quad \forall \ t < a_0.$$

Thus,

$$\widehat{\eta}(x) = \bigvee_{t < a_0} \{t : x \in (\eta_t^{\geq})\}$$
$$\leq \bigvee_{t < tip\{\mu\}} \{t : x \in \mu_t^{\geq}\}$$
$$< \mu(x).$$

We thus have $\hat{\eta} \subseteq \mu$. To establish that $\eta \subseteq \hat{\eta}$, we prove that $\eta_{\alpha}^{>} \subseteq (\hat{\eta})_{\alpha}^{>}$, $\forall \alpha \in L$. Let $\alpha \in L$ and $x \in \eta_{\alpha}^{>}$. Then, $\eta(x) > \alpha$. Since L is a dense chain, $\exists \beta \in L$ such that $\eta(x) > \beta > \alpha$. This implies $x \in \eta_{\beta}^{>}$ and hence $x \in (\eta_{\beta}^{>}]$. Consequently,

$$\widehat{\eta}(x) = \bigvee_{t < a_0} \{ t : x \in (\eta_t^>] \}$$
$$> \beta > \alpha.$$

That is, $x \in (\hat{\eta})_{\alpha}^{\geq}$. This proves that $\eta \subseteq \hat{\eta}$. We now prove that $\hat{\eta}$ is an *L*-ideal of μ . For any $z \in M$, define a set

$$L_{\eta}(z) = \{ t \in L/t < a_0, z \in (\eta_t^{>}] \}.$$

Then, $\widehat{\eta}(x) = \bigvee L_{\eta}(x)$. Let $x, y \in M$. We claim that for any $a \in L_{\eta}(x)$ and $b \in L_{\eta}(y)$, $a \wedge b \in L_{\eta}(x \vee y)$. Suppose, $a \in L_{\eta}(x)$ and $b \in L_{\eta}(y)$. Then,

$$a < a_0, \ b < b_0, \ x \in (\eta_a^>], \ y \in (\eta_b^>].$$

Since L is a chain, $a \wedge b < a_0$. Now, $x \in (\eta_a^>]$, $y \in (\eta_b^>]$ implies that

$$x \le x_1 \lor \ldots \lor x_n, \quad x_i \in \eta_a^>, \quad \forall i; \text{ and} \\ y \le y_1 \lor \ldots \lor y_m, \quad y_j \in \eta_b^>, \quad \forall j.$$

Then, we have $x \vee y \leq (\vee x_i) \vee (\vee y_j)$, which is a finite join of elements of $\eta_a^> \cup \eta_b^>$ and $\eta_a^> \cup \eta_b^> \subseteq \eta_{a \wedge b}^>$. Therefore,

$$x \lor y \in (\eta_{a \land b}^{>}]$$
 and $a \land b < a_0$.

Thus, $a \wedge b \in L_{\eta}(x \vee y)$. Consequently, $\widehat{\eta}(x \vee y) \geq a \wedge b$; $\forall a \in L_{\eta}(x)$ and $b \in L_{\eta}(y)$. Hence,

$$\begin{split} \widehat{\eta}(x \lor y) &\geq \lor \{a \land b/a \in L_{\eta}(x), b \in L_{\eta}(y)\} \\ &= \{\lor \{a/a \in L_{\eta}(x)\}\} \land \{\lor \{b/b \in L_{\eta}(y)\}\} \\ & \text{(as } L \text{ is a completely distributive lattice)} \\ &= \eta'(x) \land \eta'(y). \end{split}$$

Now, to verify that $\widehat{\eta}(x \wedge y) \ge \mu(x) \wedge \widehat{\eta}(y)$, we again define the following subsets of L for $z \in M$:

$$L_{\eta}(z) = \{t \in L/t < a_0, z \in (\eta_t^{>})\} \text{ and } L_{\mu}(z) = \{t \in L/t \le tip\{\mu\}, z \in \mu_t = [\mu_t]\}.$$

Thus, $\widehat{\eta}(x) = \bigvee L_{\eta}(x)$ and $\mu(x) = \bigvee L_{\mu}(x)$. If $a \in L_{\mu}(x)$ and $b \in L_{\eta}(y)$, then $a \leq tip \{\mu\}$, $b < a_0, x \in \mu_a = [\mu_a]$ and $y \in (\eta_b^>]$. Therefore,

$$a \wedge b < a_0 \text{ and } y \leq y_1 \vee \ldots \vee y_m, \ y_j \in \eta_b^>, \ \forall j.$$

This implies

$$\wedge y \leq y_1 \vee \ldots \vee y_m, \ y_j \in \eta_b^{>} \subseteq \eta_{a \wedge b}^{>}, \ \forall j.$$

We thus have $x \wedge y \in (\eta_b^>] \subseteq (\eta_{a \wedge b}^>]$ and therefore,

x

$$a \wedge b \in L_{\eta}(x \wedge y); \quad \forall \ a \in L_{\mu}(x) \text{ and } b \in L_{\eta}(y).$$

That is,

$$\widehat{\eta}(x \wedge y) \ge a \wedge b; \quad \forall \ a \in L_{\mu}(x) \text{ and } b \in L_{\eta}(y).$$

Consequently,

$$\begin{aligned} \widehat{\eta}(x \wedge y) &\geq \vee \{a \wedge b/a \in L_{\mu}(x) \text{ and } b \in L_{\eta}(y)\} \\ &= \{ \vee \{a/a \in L_{\mu}(x)\} \} \wedge \{ \vee \{b/b \in L_{\eta}(y)\} \} \\ \text{ (as } L \text{ is a completely distributive lattice)} \\ &= \mu(x) \wedge \widehat{\eta}(y). \end{aligned}$$

We thus get that $\hat{\eta}$ is an *L*-ideal of μ . Finally, to prove that $\hat{\eta}$ is the smallest *L*-ideal of μ containing η , suppose θ is an *L*-ideal of μ such that $\eta \subseteq \theta$. Then, $\eta_t^> \subseteq \theta_t^>$ and $\theta_t^>$ is an ideal of $\mu_t^>$. Therefore, $(\theta_t^>] = \theta_t^>$. We thus have:

$$\widehat{\eta}(x) = \bigvee_{t < a_0} \{t : x \in (\eta_t^>)\}$$

$$\leq \bigvee_{t \le tip\{\theta\}} \{t : x \in \theta_t^>\}$$

$$\leq \theta(x).$$

That is, $\hat{\eta} \subseteq \theta$. Hence, $\hat{\eta} = (\eta]_{\mu}$.

A similar result holds for L-dual ideal generated by η .

Theorem 12. Let L be a dense chain and $L(\mu, M)$ be an L-lattice. Let $\eta \in L^M$, $\eta \subseteq \mu$ and $a_0 = tip\{\eta\}$. Define an L-subset $\check{\eta}$ of M as follows:

$$\check{\eta}(x) = \bigvee_{t < a_0} \{ t : x \in [\eta_t^>) \},\$$

where $[\eta_t^>)$ is a dual ideal of $\mu_t^>$ generated by $\eta_t^>$. Then, $\check{\eta} = [\eta)_{\mu}$.

We now establish the Unique Representation Theorem for L-convex sublattices in an Llattice. In the following theorem, O represents the constant L-subset with all truth values equal to 0 of lattice L.

Theorem 13. Let L be a dense chain, $L(\mu, M)$ be an L-lattice, $\eta, \theta \subseteq \mu$ such that η is an L-ideal of μ and θ is an L-dual ideal of μ . Then, $\eta \cap \theta$ is an L-convex sublattice of μ if $\eta \cap \theta \neq O$. Further, every L-convex sublattice of μ can be expressed in this form in one and only one way.

Proof. Let η be an *L*-ideal of μ and θ be an *L*-dual ideal of μ . Then by Theorem 10, η and θ are *L*-convex sublattices of μ . Since intersection of *L*-convex sublattices of μ is an *L*-convex sublattice of μ , therefore $\eta \cap \theta$ is an *L*-convex sublattice of μ provided $\eta \cap \theta \neq O$ (i.e., $\exists x \in M$ such that $(\eta \cap \theta)(x) > 0$).

Next, let γ be an *L*-convex sublattice of μ . We take

$$\eta = (\gamma]_{\mu} \text{ and } \theta = [\gamma)_{\mu}.$$

We prove that $\gamma = \eta \cap \theta$. Clearly, $\gamma \subseteq \eta$ and $\gamma \subseteq \theta$. Therefore, $\gamma \subseteq \eta \cap \theta$. Suppose, $\gamma \subseteq \eta \cap \theta$. Then, $\exists x \in M$ such that $\gamma(x) < \eta(x) \land \theta(x)$. Let $\gamma(x) = t$. Then, $\eta(x) > t$ and $\theta(x) > t$. That is, $x \in \eta_t^>$ and $x \in \theta_t^>$. By Theorem 4, $\eta_t^>$ is an ideal of $\mu_t^>$ and $\theta_t^>$ is a dual ideal of $\mu_t^>$. This implies

$$\eta_t^> = (\eta_t^>] \text{ and } \theta_t^> = [\theta_t^>).$$

Since $\eta = (\gamma]_{\mu}$, $\theta = [\gamma)_{\mu}$ and $\eta(x) > t$, $\theta(x) > t$, therefore by Theorem 11, 12, $\exists r, s < a_0$, $x \in (\gamma_r^>]$, $x \in [\gamma_s^>)$, such that t < r and t < s. Thus we have,

$$x \in (\gamma_r^>] \subseteq (\gamma_{r\wedge s}^>), \quad t < r; \text{ and} \\ x \in [\gamma_s^>) \subseteq [\gamma_{r\wedge s}^>), \quad t < s.$$

That is, $t \leq r \wedge s$. Moreover,

$$\exists x_1, \dots, x_n \in \gamma_{r \wedge s}^{\geq} \subseteq \mu_{r \wedge s}^{\geq} \exists y_1, \dots, y_m \in \gamma_{r \wedge s}^{\geq} \subseteq \mu_{r \wedge s}^{\geq} \text{ such that}$$
$$a = y_1 \wedge \dots \wedge y_m \leq x \leq x_1 \vee \dots \vee x_n = b.$$

Since $\mu_{r\wedge s}^{>}$ is a sublattice of M and $(\gamma_{r\wedge s}^{>}]$ is an ideal of $\mu_{r\wedge s}^{>}$, we have $a, b, x \in \mu_{r\wedge s}^{>}$. We also have $a, b \in \gamma_{r\wedge s}^{>}$ as $\gamma_{r\wedge s}^{>}$ is a sublattice of $\mu_{r\wedge s}^{>}$. Now, γ being an L-convex sublattice of $\mu, \gamma_{r\wedge s}^{>}$ is a convex sublattice of $\mu_{r\wedge s}^{>}$. Consequently, $x \in \gamma_{r\wedge s}^{>}$. That is, $t = \gamma(x) > r \wedge s$, which contradicts the fact that t < r and t < s (as L is a chain). Hence,

$$\gamma(x) = (\eta \cap \theta)(x), \quad \forall \ x \in M.$$

That is $\gamma = \eta \cap \theta$. Thus each convex sublattice γ of μ can be expressed in this form. To prove the uniqueness of this representation, suppose there exists an *L*-ideal η of μ and an *L*-dual ideal θ of μ such that $\gamma = \eta \cap \theta$. We prove that $\eta = (\gamma)_{\mu}$ and $\theta = [\gamma)_{\mu}$. Since $\gamma \subseteq \eta$, therefore $(\gamma)_{\mu} \subseteq \eta$.

For reverse inclusion, let $x \in M$ and $\eta(x) = t$. Then clearly, $t \leq a_0$. Since $\gamma \subseteq \eta$, therefore $\gamma_t \subseteq \eta_t$. If $y \in \gamma_t$, then $x, y \in \eta_t$. This implies $x \lor y \in \eta_t$. We also have $y \in \gamma_t \subseteq [\gamma_t)$, where $[\gamma_t)$ is a dual ideal of μ_t and $y \leq x \lor y$ in μ_t . Therefore, $x \lor y \in [\gamma_t)$ and $t \leq a_0$. This implies

$$t \le [\gamma)(x \lor y) = \theta(x \lor y).$$

We also have $\eta(x \lor y) \ge t$. Therefore, $\theta(x \lor y) \land \eta(x \lor y) \ge t$. That is, $\gamma(x \lor y) \ge t$. Thus,

$$x \lor y \in \eta_t \subseteq (\gamma_t].$$

Note that $(\gamma_t]$ is an ideal of μ_t and $x \leq x \vee y$. Hence, $x \in (\gamma_t]$ and $t \leq a_0$. Thus,

$$\eta(x) = t \le \bigvee_{r \le a_0} \{r : x \in (\gamma_r]\} = (\gamma](x).$$

Hence, $\eta \subseteq (\gamma]$ and therefore, $\eta = (\gamma]$. Similarly, $\theta = [\gamma)$. Consequently, we get the uniqueness of the representation of γ .

4. Complement of an *L*-set and *L*-prime ideal and *L*-maximal ideal of an *L*-lattice

In this section, the important concept of an order reversing involution on a lattice is discussed. Based on this notion, the complement of an *L*-lattice is defined. These notions occur frequently in Lattice Implication Algebras and *L*-topological spaces [11, 13, 16, 17]. If (L, \leq, \wedge, \vee) is a lattice, then $L^*(=L)$ is also a lattice with respect to reverse order " \geq ", where $y \geq x$ in L^* if and only if $x \leq y$ in *L*. An order reversing involution on a lattice *L* is defined as a bijection $\tau : L \to L^*$ satisfying $\tau(\tau(x)) = x, \forall x \in L$ and $x \leq y$ in *L* if and only if $\tau(y) \leq \tau(x)$ in $L = L^*$.

It is interesting to note that in all the examples provided in Section 3, there is an order reversing involution on the lattice L of truth values.

The following result displays an inherent property of an order reversing involution.

 $16~{\rm of}~20$

Lemma 1. If L and L^{*} are lattices and $\tau: L \to L^*$ is an order reversing bijection, then

$$\tau(a \lor b) = \tau(a) \land \tau(b) \text{ and } \tau(a \land b) = \tau(a) \lor \tau(b); \forall a, b \in L.$$

An order reversing involution defined on a lattice L of truth values leads to the definition of complement of an L-set as follows:

Definition 10. Let $\mu \in L^M$ and τ be an order reversing involution on L, i.e., $\tau : L \to L^*$ is a bijection satisfying $\tau(\tau(x)) = x$, $\forall x \in L$ and $x \leq y$ in L if and only if $\tau(y) \leq \tau(x)$ in $L = L^*$. Define an L-set $\mu' : M^* \to L^*$ as

$$\mu'(x) = \tau(\mu(x)), \ \forall \ x \in M^*(=M).$$

Then, $\mu' \in L^M$ and μ' is called the complement of μ in L^M .

The following lemma establishes the De Morgan's Laws in L^M :

Lemma 2. Let $\mu, \eta \in L^M$ and τ be an order reversing involution on L. Then,

$$(\mu \cup \eta)' = \mu' \cap \eta'$$
 and $(\mu \cap \eta)' = \mu' \cup \eta'$.

Proof. Let $x \in M$. Then,

$$(\mu \cup \eta)'(x) = \tau[(\mu \cup \eta)(x)]$$

= $\tau[\mu(x) \lor \eta(x)]$
= $\tau(\mu(x)) \land \tau(\eta(x))$
= $\mu'(x) \land \eta'(x)$
= $(\mu' \cap \eta')(x).$

Hence, $(\mu \cup \eta)' = \mu' \cap \eta'$. The proof of the other part follows similarly.

In the next result, it is proved that the complement of an L-prime ideal in M is an L-dual prime ideal in M.

Theorem 14. Let τ be an order reversing involution on lattice L and μ be an L-prime ideal of M. Then μ' , the complement of μ in L^M , is an L-dual prime ideal of M.

Proof. Let $x, y \in M$. Since μ is an *L*-prime ideal of *M*, we have

$$\mu(x \wedge y) \le \mu(x) \lor \mu(y).$$

This implies, $\tau(\mu(x \wedge y)) \ge \tau[\mu(x) \lor \mu(y)]$ as τ is an order reversing involution. That is,

$$\mu'(x \wedge y) \ge \tau[\mu(x) \lor \mu(y)]$$

= $\tau(\mu(x)) \land \tau(\mu(y))$
= $\mu'(x) \land \mu'(y).$ (1)

Further, if $x \leq y$ in M, then $\mu(x) \geq \mu(y)$ in L (as μ is an L-ideal of M). This implies

 $\tau(\mu(x)) \le \tau(\mu(y))$ in L^* .

Thus,

$$\mu'(x) \le \mu'(y) \,. \tag{2}$$

Moreover, as μ is an L-ideal of $M, x \leq x \lor y$ and $y \leq x \lor y$ in M implies

 $\mu(x) \ge \mu(x \lor y)$ and $\mu(y) \ge \mu(x \lor y)$.

Thus, $\mu'(x) \leq \mu'(x \vee y)$ and $\mu'(y) \leq \mu'(x \vee y)$ and hence

$$\mu'(x) \wedge \mu'(y) \le \mu'(x) \le \mu'(x \lor y).$$
(3)

By (1), (2) and (3), we get that μ' is an *L*-dual ideal of *M*. To establish that μ' is an *L*-dual prime ideal of *M*, note that $\mu(x \vee y) \geq \mu(x) \wedge \mu(y)$. This implies

$$\mu'(x \lor y) = \tau(\mu(x \lor y))$$

$$\leq \tau[\mu(x) \land \mu(y)]$$

$$= \tau(\mu(x)) \lor \tau(\mu(y))$$

$$= \mu'(x) \lor \mu'(y).$$

Consequently, μ' is an *L*-dual prime ideal of *M*.

By the above theorem, it can be concluded that if L is a lattice with an order reversing involution τ , then μ is an L-prime ideal of M if and only if μ' is an L-dual prime ideal of M. The next theorem, combined with Theorem 14, leads to the following interesting analogue of a result from classical lattice theory:

An *L*-ideal η of *M* is an *L*-prime ideal of *M* if and only if η' is an *L*-dual ideal of *M*. In fact, η' is an *L*-dual prime ideal of *M*.

Theorem 15. Let τ be an order reversing involution on the lattice L and η be an L-ideal of M such that η' is an L-dual ideal of M. Then, η and η' are L-prime ideals of M.

Proof. Suppose η is an L-ideal of M such that η' is an L-dual ideal of M. We have

$$\eta'(x \wedge y) \ge \eta'(x) \wedge \eta'(y); \quad \forall \ x, y \in M.$$

This implies

$$\eta(x \wedge y) = \tau[\eta'(x \wedge y)]$$

$$\leq \tau[\eta'(x) \wedge \eta'(y)]$$

$$= \tau(\eta'(x)) \vee \tau(\eta'(y))$$

$$= \eta(x) \vee \eta(y).$$

Thus, η is an *L*-prime ideal of *M*. Similarly, we have

$$\eta(x \wedge y) \ge \eta(x) \wedge \eta(y); \quad \forall \ x, y \in M.$$

This implies

$$\eta'(x \wedge y) = \tau[\eta(x \wedge y)]$$

$$\leq \tau[\eta(x) \wedge \eta(y)]$$

$$= \tau(\eta(x)) \lor \tau(\eta(y))$$

$$= \eta'(x) \lor \eta'(y).$$

Hence, η and η' are *L*-prime ideals of *M*.

In fact, in the above theorem, it can be proved that η' is an L-dual prime ideal of M.

We conclude this paper by discussing an analogue of another well known fact in classical lattice theory that,

In a distributive lattice with the maximal element 1, every proper ideal is contained in a maximal ideal.

The next theorem proves a similar result in an *L*-lattice μ .

Theorem 16. Let $L(\mu, M)$ be an L-lattice, where L is a completely distributive lattice. Let $\eta \subseteq \mu$ be an L-ideal of μ . Then, there exists an L-maximal ideal θ of μ such that $\eta \subseteq \theta$.

Proof. Let $I = \{\gamma/\gamma \text{ is an } L\text{-ideal of } \mu \text{ such that } \eta \subseteq \gamma\}$. Let $\Phi = \{\gamma_i\}_{i \in \Lambda}$ be a chain in I. Then clearly,

$$\eta \subseteq \cup \{\gamma_i\} \text{ and } \cup \{\gamma_i\} \subseteq \mu.$$

If $x, y \in M$,

$$\begin{aligned} \{\cup\gamma_i\}(x\vee y) &= \vee\gamma_i(x\vee y) \\ &\geq \vee[\gamma_i(x)\wedge\gamma_i(y)] \\ &\quad (\text{as each } \gamma_i \text{ is an } L\text{-ideal of } \mu) \\ &= [\vee\gamma_i(x)]\wedge[\vee\gamma_i(y)] \\ &= (\cup\gamma_i)(x)\wedge(\cup\gamma_i)(y). \end{aligned}$$

Moreover,

$$\begin{aligned} \{\cup\gamma_i\}(x \wedge y) &= \lor\gamma_i(x \wedge y) \\ &\geq \lor[\mu(x) \wedge \gamma_i(y)] \\ &\quad (\text{as each } \gamma_i \text{ is an } L\text{-ideal of } \mu) \\ &= \mu(x) \wedge [\lor\gamma_i(y)] \\ &= \mu(x) \wedge (\cup\gamma_i)(y). \end{aligned}$$

 $18 \ {\rm of} \ 20$

Thus, $\{\cup\gamma_i\}$ is an *L*-ideal of μ containing η . That is, $\{\cup\gamma_i\} \in I$. Thus, every chain in *I* has an upper bound in *I*. Therefore, by Zorn's Lemma, *I* has a maximal element. That is, \exists a maximal *L*-ideal γ of μ such that $\eta \subseteq \gamma$. Hence, γ is the required *L*-maximal ideal of μ containing η .

Conclusion

In the present work, the concept of an L-convex sublattice in an L-lattice is studied in detail and the unique representation theorem for L-convex sublattices is established. Moreover, the concept of order reversing involution is utilized on the lattice L of truth values to define the complement of an L-set. The notion of complementation plays a significant role in the theory of Boolean Algebras, lattice implication Algebras and topological spaces. In this paper, it is established that the concept of complementation of an L-set leads to proving some significant results in L-lattice theory. This notion is further worthy of attention as it may lead to some remarkable development in the theory of L-substructures of an L-

Acknowledgements

The authors are highly grateful to the learned referees for their valued comments which helped to improve the quality and presentation of this paper.

References

- [1] N Ajmal and I Jahan. A study of normal fuzzy subgroups and characteristic fuzzy subgroup of a fuzzy group. *Fuzzy Information and Engineering*, 3:123–143, 2012.
- [2] N Ajmal and I Jahan. Nilpotency and theory of L subgroups of an L-group. Fuzzy Information and Engineering, 6(1):1–17, 2014.
- [3] N Ajmal and I Jahan. Generated L-subgroup of an L-group. Iranian Journal of Fuzzy Systems, 12(1):129–136, 2015.
- [4] N Ajmal and K V Thomas. Fuzzy lattices. 79:271–291, 1994.
- [5] N Ajmal and K V Thomas. Fuzzy lattices-i. Journal of Fuzzy Mathematics, 10:255– 274, 2002.
- [6] N Ajmal and K V Thomas. Fuzzy lattices-ii. Journal of Fuzzy Mathematics, 10:275– 296, 2002.
- [7] J A Goguen. L-Fuzzy sets. Journal of Mathematical Analysis and Applications, 18:145–174, 1967.
- [8] I Jahan. Development of L- group theory. 2023.
- [9] I Jahan and M Ananya. Maximal and Frattini L-subgroups of an L-group. Journal of Intelligent and Fuzzy Systems, 39:3995–4007, 2020.
- [10] A Jain and I Jahan. Maximal ideal and prime ideal in an L-lattice. Fuzzy Information and Engineering, 16(3):244–263, 2024.

- [11] T Kubiak and De Prada M A Vincente. Regular L-fuzzy topological spaces and their topological modifications. International Journal of Mathematics and Mathematical Sciences, 23(10):687–695, 2000.
- [12] I Jahan N Ajmal and B Davvaz. Subnormality and theory of L-subgroups. European Journal of Pure and Applied Mathematics, 15(4):2086–2115, 2022.
- [13] L Platil and T Tanaka. Milti-criteria evaluation for intuitionistic fuzzy sets based on Set-relations. Nihonkai Mathematical Journal, 34:1–18, 2023.
- [14] A Rosenfeld. Fuzzy groups. J. Math. Anal. Appl., 35(3):512–517, 1971.
- [15] F G Shi and R X Li. Compactness in L- fuzzy topological spaces. Hecettepe Journal of Mathematics and Statistics, 40(6):767–774, 2011.
- [16] K Qin Y Xu and J Liu. Lattice valued logic- an Alternative approach to treat fuzziness and incompatibility. 2003.
- [17] D S Zhao. The N-compactness in L-fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 128:64–79, 1987.