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Abstract. In this paper, the authors define and explore the notion of an L-convex sublattice in
an L-lattice. The investigations in this paper lead to ’The Unique Representation Theorem’ for
L-convex sublattices. Also, the authors effectively use the concept of order reversing involution on
the lattice L of truth values to define complement of an L-set. Further, they employ this notion
in the studies of L- prime ideals and L-maximal ideals.

2020 Mathematics Subject Classifications: 06B10, 06D72, 06D75, 08A72

Key Words and Phrases: Lattices, generated L-sublattice, generated L-ideal, generated L-dual
ideal, L-convex sublattice, Complement of an L-set, L-maximal ideal, L-prime ideal

1. Introduction

The literature on fuzzy algebraic structures has been growing ever since the introduction
of the concept of a fuzzy subgroup by A. Rosenfeld [14] in the year 1971. Ajmal and
Thomas [4–6] systematically developed the theory of fuzzy sublattices in a lattice. They
introduced the notions of a fuzzy sublattice, fuzzy ideal (dual ideal), fuzzy prime ideal
(dual ideal), fuzzy ideal (dual ideal) generated by a fuzzy set and studied their properties.
The concept of a fuzzy convex sublattice was also introduced by Ajmal and Thomas in
[4, 5], wherein the Unique Representation Theorem for convex sublattices was extended
to fuzzy setting.

The concept of an L-fuzzy set was pioneered by Goguen [7] in the year 1967 .In [10], the
authors studied the concept of an L-lattice. This shifts their studies from the evalua-
tion lattice [0, 1] to a more general lattice L. Moreover in [10], authors made one more
transition by studying the notions of L-substructures in an L-lattice instead of fuzzy sub-
structures of an ordinary lattice. Thus, the parent structure also shifts from a lattice to
an L-lattice. It is worthwhile to mention here that under this arrangement, some notions
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such as L-maximal ideal can be defined more meaningfully in the L-setting.

In past few years, Ajmal and Jahan have successfully developed the theory of L-subgroups
in [1–3, 8, 9, 12]]. They have taken the theory of L-subgroups towards completion by
studying the concepts of characteristic subgroups, normalizer of a subgroup, nilpotent
subgroups, solvable subgroups, normal closure of a subgroup etc., within the framework
of L-groups. In [9], Jahan and Manas studied maximal and Frattini L-subgroups of an
L-group.

In [10], the notions of an L-maximal ideal and L-prime ideal in an L-lattice are defined
and various related results are studied. In order to take such studies further, in the present
paper, we introduce the notion of an L-convex sublattice in an L-lattice.Then this notion
of convex L-sublattice is used to demonstrate that the Unique Representation Theorem of
classical lattice theory for convex sublattices also holds under the L-setting wherein the
parent structure is an L-lattice.

In the last section of this paper, we use the notion of an order reversing involution on a
lattice to define the concept of complement of an L-set. The notion of order reversing
involution occurs frequently in fuzzy topological spaces and fuzzy implication algebras
[11, 13, 15–17]. Thereafter, we establish some significant analogues of results of classical
lattice theory to L-setting using complement of an L-set, thereby taking the theory of
L-lattices to a more developed stage.

2. Preliminaries

In this work, (M,≤,∧,∨) denotes a bounded lattice and (L,≤,∧,∨) a complete lattice.
The maximal and minimal elements of both the lattices L and M are denoted by 1 and
0 respectively. The notations ’≤’, ’∧’ and ’∨’ denote the partial order, meet and join
operations respectively of both the lattices L and M . An L-subset of M is defined as a
mapping µ : M → L. The collection of all L-subsets of M is denoted by LM and is called
the L-power set of M . If µ, η ∈ LM , η is said to be contained in µ(denoted by η ⊆ µ), if
η(x) ≤ µ(x), ∀ x ∈ M . Moreover, η is said to be properly contained in µ, if η ⊆ µ and
there exists x ∈ M such that η(x) < µ(x). If η ⊆ µ, then η is said to be an L-subset of
an L-set µ. The set of all L-subsets of µ is called the L-power set of µ and is denoted by Lµ.

If µ ∈ LM and α ∈ L, the level subset µα and the strong level subset µ>
α are defined as

follows:

µα = {x ∈ M/µ(x) ≥ α} and µ>
α = {x ∈ M/µ(x) > α}.

Clearly, µ>
α ⊆ µα, ∀ α ∈ L and if α ≤ β in L, then µβ ⊆ µα and µ>

β ⊆ µ>
α .
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If µ ∈ LM , then ∨x∈Mµ(x) and ∧x∈Mµ(x) are called the tip and tail of µ, respectively.
The arbitrary union ∪i∈I(µi) and intersection ∩i∈I(µi) of a family {µi}i∈I of L-subsets of
M are given by:

(∪i∈Iµi)(x) = ∨i∈Iµi(x) and (∩i∈Iµi)(x) = ∧i∈Iµi(x).

Definition 1 ([4]). Let µ ∈ LM . Then, µ is said to be an L-sublattice of M if ∀ x, y ∈ M

µ(x ∨ y) ≥ µ(x) ∧ µ(y) and µ(x ∧ y) ≥ µ(x) ∧ µ(y).

Let L(M) denote the set of all L-sublattices of M . If µ ∈ L(M), µ is called an L-Lattice
and is denoted by L(µ,M). If µ, η ∈ L(M) and η ⊆ µ, then η is called an L-sublattice of
the L-lattice µ. The collection of all L-sublattices of µ is denoted by L(µ). In this paper,
we shall study the L-convex sublattices of an L-lattice µ rather convex sublattices of an
ordinary lattice.
The following theorems provide the level subset characterizations and strong level subset
characterizations of an L-sublattice of µ. For similar characterizations of L-sublattices of
M , we refer to [10].

Theorem 1 ([10]). Let µ, η ∈ LM be such that η ⊆ µ. Also, let L(µ,M) be an L-lattice
and ao = tip{η}. Then, η is an L-sublattice of µ if and only if each level subset ηα is
a sublattice of µα, ∀α ≤ ao. Equivalently, η is an L-sublattice of µ if and only if each
nonempty level subset ηα is a sublattice of µα.

Theorem 2 ([10]). Let L be a chain. Let µ, η ∈ LM be such that η ⊆ µ. Also, let L(µ,M)
be an L-lattice and ao = tip{η}. Then, η is an L-sublattice of µ if and only if each strong
level subset η>α is a sublattice of µ>

α , ∀ α < ao. Equivalently, η is an L-sublattice of µ if
and only if each nonempty strong level subset η>α is a sublattice of µ>

α .

The notions of L-ideal, L-dual ideal in lattice M and L-ideal, L-dual ideal in an L-lattice
µ are defined as follows:

Definition 2 ([10]). Let µ ∈ LM . Then,

[(i)]µ is called an L-ideal ofM if µ ∈ L(M) and x ≤ y inM implies µ(x) ≥ µ(y) in L;
µ is called an L-dual ideal of M if µ ∈ L(M) and x ≤ y in M implies µ(x) ≤ µ(y)
in L.

Definition 3 ([10]). Let µ, η ∈ LM be such that η ⊆ µ. Also, let L(µ,M) be an L-lattice.
Then,

[(i)]η is called an L-ideal of µ if

η(x ∨ y) ≥ η(x) ∧ η(y) and η(x ∧ y) ≥ µ(x) ∧ η(y); ∀x, y ∈ M.

η is called an L-dual ideal of µ if

η(x ∧ y) ≥ η(x) ∧ η(y) and η(x ∨ y) ≥ η(x) ∧ µ(y); ∀x, y ∈ M.
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It is important to note here that in a bounded lattice M , an L-ideal attains its supre-
mum at the least element of M , whereas an L-dual ideal attains its supremum at the
greatest element of M . The following theorems provide the level subset characterizations
and strong level subset characterizations of an L-ideal (L-dual ideal) of µ. For similar
characterizations of L-ideal (L-dual ideal) of M , refer to [10].

Theorem 3 ([10]). Let µ, η ∈ LM be such that η ⊆ µ. Also, let L(µ,M) be an L-lattice
and ao = tip{η}. Then, η is an L-ideal(L-dual ideal) of µ if and only if each level subset
ηα is an ideal(dual ideal) of µα, ∀α ≤ ao. Equivalently, η is an L-ideal(L-dual ideal) of
µ if and only if each nonempty level subset ηα is an ideal(dual ideal) of µα.

Theorem 4 ([10]). Let L is a chain. Let µ, η ∈ LM be such that η ⊆ µ. Also, let L(µ,M)
be an L-lattice and ao = tip{η}. Then, η is an L-ideal(L-dual ideal) of µ if and only if
each strong level subset η>α ∀α < ao, is an ideal (dual ideal) of µ>

α . Equivalently, η is
an L-ideal(L-dual ideal) of µ if and only if each nonempty strong level subset η>α is an
ideal (dual ideal) of µ>

α .

It can be easily verified that the intersection of an arbitrary family of L-sublattices(L-
ideals, L-dual ideals) of µ is an L-sublattice(L-ideal, L-dual ideal) of µ. This leads to the
definition of an L-sublattice(L-ideal, L-dual ideal) generated by an L-subset η of µ as the
intersection of all L-sublattices(resp. L-ideals, L-dual ideals) of µ containing η. These are
denoted by [η]µ, (η]µ and [η)µ respectively. The following result from [3] gives the struc-
tural compositions of an L-sublattice, L-ideal, L-dual ideal of an L-lattice µ generated by
an L-subset η of µ in terms of level subsets.

Theorem 5 ([10]). Let L(µ,M) be an L-lattice, η ∈ LM , η ⊆ µ with ao = tip{η}.
[(i)]Define an L-subset ηo of M as:

ηo(x) =
∨
t≤ao

{t : x ∈ [ηt]},

where [ηt] is a sublattice of µt generated by ηt. Then, ηo is an L-sublattice of µ and
ηo = [η]µ. Define an L-subset η1 of M as:

η1(x) =
∨
t≤ao

{t : x ∈ (ηt]},

where (ηt] is an ideal of µt generated by ηt. Then, η1 is an L-ideal of µ and η1 = (η]µ.
Define an L-subset η2 of M as:

η2(x) =
∨
t≤ao

{t : x ∈ [ηt)},

where [ηt) is an dual ideal of µt generated by ηt. Then, η2 is an L-dual ideal of µ
and η2 = [η)µ.
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The concept of a maximal ideal could be meaningfully extended from classical setting to
fuzzy setting by the authors in [10] by shifting the parent structure from classical lattice
to an L-structure as follows:

Definition 4 ([10]). Let L(µ,M) be an L-lattice.

[(i)]A proper L-ideal η of µ is called an L-maximal ideal of µ if for any L-ideal θ of
µ, whenever η ⊆ θ ⊆ µ, then θ = η or θ = µ. A proper L-dual ideal η of µ is called
an L-dual maximal ideal of µ if for any L-dual ideal θ of µ, whenever η ⊆ θ ⊆ µ,
then θ = η or θ = µ.

In [10], some characterizations of an L-maximal ideal and L-maximal dual ideal of µ were
provided. Further, an L-prime ideal(L-prime dual ideal) in lattice M and an L-prime
ideal(L-prime dual ideal) in an L-lattice µ are defined as follows:

Definition 5 ([4]). [(i)]

(i) An L-ideal µ of M is called an L-prime ideal of M if

µ(x ∧ y) ≤ µ(x) ∨ µ(y); ∀x, y ∈ M.

(ii) An L-dual ideal µ of M is called an L-prime dual ideal of M if

µ(x ∨ y) ≤ µ(x) ∨ µ(y); ∀x, y ∈ M.

Definition 6 ([10]). Let L(µ,M) be an L-lattice.

[(i)]A proper L-ideal η of µ is called an L-prime ideal of µ if, ∀ x, y ∈ M

η(x ∧ y) ∧ µ(x) ∧ µ(y) ≤ η(x) or η(x ∧ y) ∧ µ(x) ∧ µ(y) ≤ η(y).

A proper L-dual ideal η of µ is called an L-dual prime ideal of µ if,
∀ x, y ∈ M

η(x ∨ y) ∧ µ(x) ∧ µ(y) ≤ η(x) or η(x ∨ y) ∧ µ(x) ∧ µ(y) ≤ η(y).

In [10], the authors defined a fuzzy convex sublattice of a lattice and studied the related
properties. On similar lines, an L-convex sublattice of a lattice M can be defined as
follows:

Definition 7. If µ ∈ L(M), then µ is called an L-convex sublattice of M if for each
interval [a, b] ⊆ M ,

µ(x) ≥ µ(a) ∧ µ(b), ∀ x ∈ [a, b].
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3. L-convex Sublattice of an L-lattice

In this section, L is taken to be a complete and completely distributive lattice in some
results. The definition of a completely distributive lattice is well known in the literature
and can be found in any standard text on the subject.
Let {Ji : i ∈ I} be any family of subsets of a complete lattice L and F denote the set
of choice functions for Ji, i.e. functions f : I →

∏
i∈I

Ji such that f(i) ∈ Ji for each i ∈ I.

Then, we say that L is a completely distributive lattice, if

∧{∨
i∈I

Ji

}
=

∨
f∈F

{∧
i∈I

f(i)

}
.

The above law is known as the complete distributive law. Thus, in order theory, a complete
lattice is completely distributive if arbitrary joins distribute over arbitrary meets. Note
that the dual of completely distributive law is valid in a completely distributive lattice.

We begin this section by defining an L-convex sublattice of an L-lattice µ and study its
properties.

Definition 8. Let L(µ,M) be an L-lattice. An L-sublattice η of µ is called an L-convex
sublattice of µ if

η(x) ≥ η(a) ∧ η(b) ∧ µ(x) where a ≤ x ≤ b in M.

The following characterisations of an L-convex sublattice η of µ with the help of level
subsets and strong level subsets of η can be verified easily.

Theorem 6. Let L(µ,M) be an L-lattice and η ∈ L(µ) with ao = tip{η}. Then, η is an
L-convex sublattice of µ if and only if each level subset ηt, ∀ t ≤ ao, is a convex sublattice
of µt. Equivalently, η is an L-convex sublattice of µ if and only if each nonempty level
subset ηt is a convex sublattice of µt.

Theorem 7. Let L be a chain. Let L(µ,M) be an L-lattice and η ∈ L(µ) with ao = tip{η}.
Then, η is an L-convex sublattice of µ if and only if each strong level subset η>t is a convex
sublattice of µ>

t , ∀t < ao. Equivalently, η is an L-convex sublattice of µ if and only if each
nonempty strong level subset η>t is a convex sublattice of µ>

t .

We now provide the following examples of L-convex sublattices in an L-lattice:

Example 1. Let M = ℵ be the chain of natural numbers and L = P (ℵ), the power set of
ℵ, be the Boolean Algebra. Define the following L-subsets of ℵ :

η(n) =

{
∅ if n = 1,

{1, 2, ..., n− 1} ∀n ≥ 2;
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and
µ(n) = {1, 2, ..., n} ∀n ∈ ℵ.

Then η ⊆ µ. Moreover, it is easy to verify that η and µ are L-sublattices of ℵ. Futhermore,
η turns out to be an L-convex sublattice of µ. It is wothwhile to note here that the set of all
level subsets of η form a chain in the lattice M = ℵ. Here, we write Ai = {1, 2, · · · , i− 1}
∀i ≥ 2. Further, note that

ηAi
= Ai and η∅ = ∅.

Thus, we have
A1 = ∅ ⊆ A2 ⊆ A3 ⊆ · · · ⊆ An ⊆ · · · ⊆ ℵ.

Example 2. Let X = {a, b, c} and L = P (X) be the power set of X. Then ⟨L, ∩, ∪, ′⟩
is a Boolean Algebra where ′∪′, ′∩′ and ′′′ denote the ordinary intersection, union and
complement of members of L respectively. Further, It is easy to see that L is Boolean
Algebra with order reversing involution given by :

τ : L −→ L∗, τ(A) = A′.

Let M = {1, 2, 3, 6} denote the set of all factors of ′6′. Then ⟨M,∨,∧, ′⟩, where a ∨ b =
lcm{a, b}, a ∧ b = gcd{a, b} and a′ = 6

a ; ∀ a, b ∈ M , is also a Boolean Algebra. In
the following diagram, (i) and (ii) represent Boolean Algebras M and L respectively.

(i) (ii)

Define the following L-subsets µ and η of M :

µ(A) =

{
2 if A ∈ {∅, {a}, {b}, {a, b}},
6 if A = P (X) \ {∅, {a}, {b}, {a, b}};
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and

η(A) =


1 if A ∈ {∅, {b}},
2 if A ∈ {{a}, {a, b}},
3 if A ∈ {c, {{b, c}},
6 if A ∈ {{a, c}, X}.

Now, note that η ⊆ µ. The set {ηa : a ∈ Im η} of all level subset of η is determined
below :

η1 = M, η2 = {{a}, {a, b}, {a, c}, X}, η3 = {{c}, {b, c}, {a, c}, X} and η6 = {{a, c}, X}.

Further, the set {µa : a ∈ Im µ} of all level subset of µ is determined below :

µ2 = M, and µ6 = {{c}, {b, c}{a, c}, X}.

Now, it is easy to see that η and µ are L-sublattices of M . Futhermore, η forms an L-
convex sublattice of µ. Observe that in this example the set of all level subsets of η does
not form a chain. Infact, the set of all level subsets {ηa : a ∈ Im η} turns out to be only
a poset under the ordering of usual set theoretic containment.

Example 3. Let M = ∅ ∪ Z ∪ {{n} : n ∈ Z}. Then M is a Boolean Algebra with the
following Hasse Diagram :

Further, let L = {A ⊆ R : either A or A′ is finite}. Here A′ is complement of A in R.
It is easy to see that L is Boolean Algebra with order reversing involution given by :

τ : L −→ L∗, τ(A) = A′.

Define the following L-subsets of M :

η(A) =


∅ if A = Z,
R if A = ∅,
{n} if n ∈ Z;
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and

µ(A) =


∅ if A = Z,
R if A = ∅,
{n,−n} if n ∈ Z.

Now, note that η ⊆ µ. The set {ηa : a ∈ Im η} of all level subset of η is determined
below :

ηR = ∅, η{n} = {Z, {n}} and η∅ = M.

Further, the set {µa : a ∈ Im µ} of all level subset of µ is determined below :

µR = ∅, µ{± n} = {Z, {n}}, and µ∅ = M.

Now, it is easy to see that η and µ are L-sublattices of M . Futhermore, η forms an L-
convex sublattice of µ. Observe that in this example the Hesse Diagram of set of all level
subsets of both η and µ coincide with that of Hasse Diagram of the lattice M given above.
Infact, the set of all level subsets {ηa : a ∈ Im η} turns out to be lattice under the usual
set theoretic containment.

The following result is also straightforward.

Theorem 8. The intersection of an arbitrary family of L-convex sublattices of L-lattice
µ is an L-convex sublattice of µ.

The above result is instrumental in defining an L-convex sublattice of µ generated by an
L-subset η of µ.

Definition 9. An L-convex sublattice of L-lattice µ generated by an L-subset η of µ is
defined as the intersection of all L-convex sublattices of µ containing η and is denoted by
[η]cµ. Thus,

[η]cµ =
⋂

{ηi : ηi is an L-convex sublattice of µ, η ⊆ ηi, ∀ i ∈ I}.

The next result provides a complete structure of L-convex sublattice generated by L-subset
η of µ in terms of level subsets.

Theorem 9. Let L be a complete and completely distributive lattice and L(µ,M) be an
L-lattice. Let η ∈ LM with η ⊆ µ and a0 = tip{η}. Define an L-subset η′ of M as:

η′(x) =
∨
t≤ao

{t : x ∈ [ηt]c}, ∀ x ∈ M ;

where [ηt]c is the convex sublattice of lattice µt generated by ηt. Then, η′ is an L-convex
sublattice of µ and η′ = [η]cµ.
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Proof. Since η ⊆ µ, ηt ⊆ µt, ∀ t ∈ L. As µ is an L-lattice, µt is a sublattice of M , ∀
t ≤ tip{µ}. Moreover, [ηt]c ⊆ µt, as [ηt]c is the convex sublattice of µt generated by ηt.
Thus,

η′(x) =
∨
t≤ao

{t : x ∈ [ηt]c}

≤
∨

t≤tip{µ}

{t : x ∈ µt}

= µ(x).

We thus have η′ ⊆ µ. Further, to prove that η ⊆ η′, let x ∈ M and let η(x) = α ≤ a0.
Then,

x ∈ ηα ⊆ [ηα]c.

Therefore, by definition of η′, α ≤ η′(x). That is, η(x) ≤ η′(x). Thus, η ⊆ η′. We now
prove that η′ is an L-sublattice of µ. For any z ∈ M , define a subset Lη(z) of L as follows:

Lη(z) = {t ∈ L/t ≤ a0, z ∈ [ηt]c}.

Clearly, η′(x) =
∨
Lη(x). Let x, y ∈ M , a ∈ Lη(x) and b ∈ Lη(y). We claim that

a ∧ b ∈ Lη(x ∨ y). First note that ηa ∪ ηb ⊆ ηa∧b. Since a ∈ Lη(x) and b ∈ Lη(y), we have
a, b ≤ a0, x ∈ [ηa]c, y ∈ [ηb]c. Therefore, x = p{xi} (a lattice polynomial in variables xi’s.
where xi ∈ ηa, ∀i). Similarly, y = q{yj} (a lattice polynomial in variables yj ’s. where
yj ∈ ηb, ∀j). Thus, x ∨ y is also a lattice polynomial in variables xi’s and yj ’s, where
xi, yj ∈ ηa ∪ ηb ⊆ ηa∧b. That is,

x ∨ y ∈ [ηa∧b]c.

We also have a ∧ b ≤ a0. Thus, a ∧ b ∈ Lη(x ∨ y). This implies that

η′(x ∨ y) ≥ a ∧ b; ∀ a ∈ Lη(x) and b ∈ Lη(y).

Consequently,

η′(x ∨ y) ≥ ∨{a ∧ b/a ∈ Lη(x), b ∈ Lη(y)}
= {∨{a/a ∈ Lη(x)}} ∧ {∨{b/b ∈ Lη(y)}}
(as L is a completely distributive lattice)

= η′(x) ∧ η′(y).

Similarly, it can be proved that

η′(x ∧ y) ≥ η′(x) ∧ η′(y); ∀x, y ∈ M.

Thus, η′ is an L-sublattice of µ. Further, to establish that η′ is an L-convex sublattice of
µ, we shall prove that,

(i)(ii) η′(w) ≥ η′(x) ∧ η′(y) ∧ µ(w) where x ≤ w ≤ y in M .
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For any z ∈ M , let
Lη(z) = {t ∈ L/t ≤ a0, z ∈ [ηt]c}.

Then, η′(x) =
∨

Lη(x). Also let

Lµ(z) = {t ∈ L/ t ≤ tip {µ}, z ∈ µt = [µt]}.

Let r ∈ Lµ(w), s ∈ Lη(x) and t ∈ Lη(y). Then,

r ≤ tip {µ}; s, t ≤ a0, w ∈ [µr] = µr, x ∈ [ηs]c and y ∈ [ηt]c.

Hence, s ∧ t ∧ r ≤ a0 and we have

x ∈ [ηs]c ⊆ µs ⊆ µs∧t∧r;

y ∈ [ηt]c ⊆ µt ⊆ µs∧t∧r; and

w ∈ [µr] = µr ⊆ µs∧t∧r.

Thus, x, y, w ∈ µs∧t∧r. Moreover,

x ∈ [ηs]c ⊆ [ηs∧t∧r]c and y ∈ [ηt]c ⊆ [ηs∧t∧r]c;

and [ηs∧t∧r]c is a convex sublattice of µs∧t∧r generated by the L-set ηs∧t∧r.
Therefore, we have w ∈ [ηs∧t∧r]c (as x ≤ w ≤ y in M). This implies

η′(w) ≥ s ∧ t ∧ r; ∀ r ∈ Lµ(w), s ∈ Lη(x) and t ∈ Lη(y).

That is,

η′(w) ≥ ∨{s ∧ t ∧ r/r ∈ Lµ(w), s ∈ Lη(x) and t ∈ Lη(y)}
= {∨{s/s ∈ Lη(x)}} ∧ {∨{t/t ∈ Lη(y)}} ∧ {∨{r/r ∈ Lµ(w)}}

(as L is a completely distributive lattice)

= η′(x) ∧ η′(y) ∧ µ(w).

Hence, η′ is an L-convex sublattice of µ. Now it is left to prove that η′ is the smallest
L-convex sublattice of µ containing η. For this, suppose θ is an L-convex sublattice of µ
such that η ⊆ θ. Then, ηt ⊆ θt, ∀ t ∈ L. Since θ is an L-convex sublattice of µ, therefore
by Theorem 6, each nonempty θt is a convex sublattice of µt. Therefore, [θt]c = θt. This
implies that

[ηt]c ⊆ θt, ∀ t ≤ a0.

Also, a0 = tip{η} ≤ tip{θ}. Thus, ∀ x ∈ M , we have

η′(x) =
∨
t≤ao

{t : x ∈ [ηt]c}

≤
∨

t≤tip{θ}

{t : x ∈ θt}
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= θ(x).

That is, η′ ⊆ θ. Hence, η′ = [η]cµ.

The next result is significant for establishing the Unique Representation Theorem for
L-convex sublattice of an L-lattice µ. The proof being trivial is omitted.

Theorem 10. Let L(µ,M) be an L-lattice and η ⊆ µ be an L-ideal (L-dual ideal) of µ.
Then, η is an L-convex sublattice of µ.

Before discussing the Unique Representation Theorem for L-convex sublattices in an L-
lattice µ, we provide the structural composition of an L-ideal of µ generated by an L-subset
η of µ in terms of strong level subsets of η. The following result is proved by taking L to
be a dense chain. Note that a dense chain is a completely distributive lattice.

Theorem 11. Let L be a dense chain and L(µ,M) be an L-lattice. Let η ∈ LM , η ⊆ µ
and a0 = tip{η}. Define an L-set η̂ of M as follows:

η̂(x) = ∨t<a0{t : x ∈ (η>t ]},

where (η>t ] is an ideal of µ>
t generated by η>t . Then, η̂ = (η]µ.

Proof. Since η ⊆ µ, η>t ⊆ µ>
t , ∀ t ∈ L. As µ is an L-lattice, µ>

t is a sublattice of M , ∀
t < tip{µ}. Also, as (η>t ] is an ideal of µ>

t generated by η>t , we have

(η>t ] ⊆ µ>
t , ∀ t < a0.

Thus,

η̂(x) = ∨t<a0{t : x ∈ (η>t ]}
≤ ∨t<tip{µ}{t : x ∈ µ>

t }
≤ µ(x).

We thus have η̂ ⊆ µ. To establish that η ⊆ η̂, we prove that η>α ⊆ (η̂)>α , ∀ α ∈ L. Let
α ∈ L and x ∈ η>α . Then, η(x) > α. Since L is a dense chain, ∃ β ∈ L such that
η(x) > β > α. This implies x ∈ η>β and hence x ∈ (η>β ]. Consequently,

η̂(x) = ∨t<a0{t : x ∈ (η>t ]}
≥ β > α.

That is, x ∈ (η̂)>α . This proves that η ⊆ η̂. We now prove that η̂ is an L-ideal of µ. For
any z ∈ M , define a set

Lη(z) = {t ∈ L/t < a0, z ∈ (η>t ]}.

Then, η̂(x) =
∨
Lη(x). Let x, y ∈ M . We claim that for any a ∈ Lη(x) and b ∈ Lη(y),

a ∧ b ∈ Lη(x ∨ y). Suppose, a ∈ Lη(x) and b ∈ Lη(y). Then,

a < a0, b < b0, x ∈ (η>a ], y ∈ (η>b ].
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Since L is a chain, a ∧ b < a0. Now, x ∈ (η>a ], y ∈ (η>b ] implies that

x ≤ x1 ∨ . . . ∨ xn, xi ∈ η>a , ∀ i; and

y ≤ y1 ∨ . . . ∨ ym, yj ∈ η>b , ∀ j.

Then, we have x ∨ y ≤ (∨xi) ∨ (∨yj), which is a finite join of elements of η>a ∪ η>b and
η>a ∪ η>b ⊆ η>a∧b. Therefore,

x ∨ y ∈ (η>a∧b] and a ∧ b < a0.

Thus, a ∧ b ∈ Lη(x ∨ y). Consequently, η̂(x ∨ y) ≥ a ∧ b; ∀ a ∈ Lη(x) and b ∈ Lη(y).
Hence,

η̂(x ∨ y) ≥ ∨{a ∧ b/a ∈ Lη(x), b ∈ Lη(y)}
= {∨{a/a ∈ Lη(x)}} ∧ {∨{b/b ∈ Lη(y)}}
(as L is a completely distributive lattice)

= η′(x) ∧ η′(y).

Now, to verify that η̂(x ∧ y) ≥ µ(x) ∧ η̂(y), we again define the following subsets of L for
z ∈ M :

Lη(z) = {t ∈ L/t < a0, z ∈ (η>t ]} and Lµ(z) = {t ∈ L/t ≤ tip{µ}, z ∈ µt = [µt]}.

Thus, η̂(x) =
∨
Lη(x) and µ(x) =

∨
Lµ(x). If a ∈ Lµ(x) and b ∈ Lη(y), then a ≤ tip {µ},

b < a0, x ∈ µa = [µa] and y ∈ (η>b ]. Therefore,

a ∧ b < a0 and y ≤ y1 ∨ . . . ∨ ym, yj ∈ η>b , ∀ j.

This implies
x ∧ y ≤ y1 ∨ . . . ∨ ym, yj ∈ η>b ⊆ η>a∧b, ∀ j.

We thus have x ∧ y ∈ (η>b ] ⊆ (η>a∧b] and therefore,

a ∧ b ∈ Lη(x ∧ y); ∀ a ∈ Lµ(x) and b ∈ Lη(y).

That is,
η̂(x ∧ y) ≥ a ∧ b; ∀ a ∈ Lµ(x) and b ∈ Lη(y).

Consequently,

η̂(x ∧ y) ≥ ∨{a ∧ b/a ∈ Lµ(x) and b ∈ Lη(y)}
= {∨{a/a ∈ Lµ(x)}} ∧ {∨{b/b ∈ Lη(y)}}
(as L is a completely distributive lattice)

= µ(x) ∧ η̂(y).
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We thus get that η̂ is an L-ideal of µ. Finally, to prove that η̂ is the smallest L-ideal of µ
containing η, suppose θ is an L-ideal of µ such that η ⊆ θ. Then, η>t ⊆ θ>t and θ>t is an
ideal of µ>

t . Therefore, (θ
>
t ] = θ>t . We thus have:

η̂(x) = ∨t<a0{t : x ∈ (η>t ]}

≤
∨

t≤tip{θ}

{t : x ∈ θ>t }

≤ θ(x).

That is, η̂ ⊆ θ. Hence, η̂ = (η]µ.

A similar result holds for L-dual ideal generated by η.

Theorem 12. Let L be a dense chain and L(µ,M) be an L-lattice. Let η ∈ LM , η ⊆ µ
and a0 = tip{η}. Define an L-subset η̌ of M as follows:

η̌(x) = ∨t<a0{t : x ∈ [η>t )},

where [η>t ) is a dual ideal of µ>
t generated by η>t . Then, η̌ = [η)µ.

We now establish the Unique Representation Theorem for L-convex sublattices in an L-
lattice. In the following theorem, O represents the constant L-subset with all truth values
equal to 0 of lattice L.

Theorem 13. Let L be a dense chain, L(µ,M) be an L-lattice, η, θ ⊆ µ such that η is
an L-ideal of µ and θ is an L-dual ideal of µ. Then, η ∩ θ is an L-convex sublattice of µ
if η ∩ θ ̸= O. Further, every L-convex sublattice of µ can be expressed in this form in one
and only one way.

Proof. Let η be an L-ideal of µ and θ be an L-dual ideal of µ. Then by Theorem 10, η
and θ are L-convex sublattices of µ. Since intersection of L-convex sublattices of µ is an
L-convex sublattice of µ, therefore η ∩ θ is an L-convex sublattice of µ provided η ∩ θ ̸= O
(i.e., ∃ x ∈ M such that (η ∩ θ)(x) > 0).
Next, let γ be an L-convex sublattice of µ. We take

η = (γ]µ and θ = [γ)µ.

We prove that γ = η ∩ θ. Clearly, γ ⊆ η and γ ⊆ θ. Therefore, γ ⊆ η ∩ θ. Suppose,
γ ⊊ η ∩ θ. Then, ∃ x ∈ M such that γ(x) < η(x) ∧ θ(x). Let γ(x) = t. Then, η(x) > t
and θ(x) > t. That is, x ∈ η>t and x ∈ θ>t . By Theorem 4, η>t is an ideal of µ>

t and θ>t is
a dual ideal of µ>

t . This implies

η>t = (η>t ] and θ>t = [θ>t ).

Since η = (γ]µ, θ = [γ)µ and η(x) > t, θ(x) > t, therefore by Theorem 11, 12, ∃ r, s < a0,
x ∈ (γ>r ], x ∈ [γ>s ), such that t < r and t < s. Thus we have,

x ∈ (γ>r ] ⊆ (γ>r∧s], t < r; and

x ∈ [γ>s ) ⊆ [γ>r∧s), t < s.

That is, t ≤ r ∧ s. Moreover,
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∃ x1, . . ., xn ∈ γ>r∧s ⊆ µ>
r∧s ∃ y1, . . ., ym ∈ γ>r∧s ⊆ µ>

r∧s such that

a = y1 ∧ . . . ∧ ym ≤ x ≤ x1 ∨ . . . ∨ xn = b.

Since µ>
r∧s is a sublattice of M and (γ>r∧s] is an ideal of µ>

r∧s, we have a, b, x ∈ µ>
r∧s. We

also have a, b ∈ γ>r∧s as γ>r∧s is a sublattice of µ>
r∧s. Now, γ being an L-convex sublattice

of µ, γ>r∧s is a convex sublattice of µ>
r∧s. Consequently, x ∈ γ>r∧s. That is, t = γ(x) > r∧s,

which contradicts the fact that t < r and t < s (as L is a chain). Hence,

γ(x) = (η ∩ θ)(x), ∀ x ∈ M.

That is γ = η ∩ θ. Thus each convex sublattice γ of µ can be expressed in this form. To
prove the uniqueness of this representation, suppose there exists an L-ideal η of µ and an
L-dual ideal θ of µ such that γ = η∩θ. We prove that η = (γ]µ and θ = [γ)µ. Since γ ⊆ η,
therefore (γ]µ ⊆ η.
For reverse inclusion, let x ∈ M and η(x) = t. Then clearly, t ≤ a0. Since γ ⊆ η, therefore
γt ⊆ ηt. If y ∈ γt , then x, y ∈ ηt. This implies x ∨ y ∈ ηt. We also have y ∈ γt ⊆ [γt),
where [γt) is a dual ideal of µt and y ≤ x ∨ y in µt. Therefore, x ∨ y ∈ [γt) and t ≤ a0.
This implies

t ≤ [γ)(x ∨ y) = θ(x ∨ y).

We also have η(x∨ y) ≥ t. Therefore, θ(x∨ y)∧ η(x∨ y) ≥ t. That is, γ(x∨ y) ≥ t. Thus,

x ∨ y ∈ ηt ⊆ (γt].

Note that (γt] is an ideal of µt and x ≤ x ∨ y. Hence, x ∈ (γt] and t ≤ a0. Thus,

η(x) = t ≤ ∨r≤a0{r : x ∈ (γr]} = (γ](x).

Hence, η ⊆ (γ] and therefore, η = (γ]. Similarly, θ = [γ). Consequently, we get the
uniqueness of the representation of γ.

4. Complement of an L-set and L-prime ideal and L-maximal ideal of an
L-lattice

In this section, the important concept of an order reversing involution on a lattice is
discussed. Based on this notion, the complement of an L-lattice is defined. These notions
occur frequently in Lattice Implication Algebras and L-topological spaces [11, 13, 16, 17].
If (L,≤,∧,∨) is a lattice, then L∗(= L) is also a lattice with respect to reverse order “≥”,
where y ≥ x in L∗ if and only if x ≤ y in L. An order reversing involution on a lattice L
is defined as a bijection τ : L → L∗ satisfying τ(τ(x)) = x, ∀ x ∈ L and x ≤ y in L if and
only if τ(y) ≤ τ(x) in L = L∗.

It is interesting to note that in all the examples provided in Section 3, there is an order
reversing involution on the lattice L of truth values.
The following result displays an inherent property of an order reversing involution.
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Lemma 1. If L and L∗ are lattices and τ : L → L∗ is an order reversing bijection, then

τ(a ∨ b) = τ(a) ∧ τ(b) and τ(a ∧ b) = τ(a) ∨ τ(b); ∀ a, b ∈ L.

An order reversing involution defined on a lattice L of truth values leads to the definition
of complement of an L-set as follows:

Definition 10. Let µ ∈ LM and τ be an order reversing involution on L, i.e., τ : L → L∗

is a bijection satisfying τ(τ(x)) = x, ∀ x ∈ L and x ≤ y in L if and only if τ(y) ≤
τ(x) in L = L∗. Define an L-set µ′ : M∗ → L∗ as

µ′(x) = τ(µ(x)), ∀ x ∈ M∗(= M).

Then, µ′ ∈ LM and µ′ is called the complement of µ in LM .

The following lemma establishes the De Morgan’s Laws in LM :

Lemma 2. Let µ, η ∈ LM and τ be an order reversing involution on L. Then,

(µ ∪ η)′ = µ′ ∩ η′ and (µ ∩ η)′ = µ′ ∪ η′.

Proof. Let x ∈ M . Then,

(µ ∪ η)′(x) = τ [(µ ∪ η)(x)]

= τ [µ(x) ∨ η(x)]

= τ(µ(x)) ∧ τ(η(x))

= µ′(x) ∧ η′(x)

= (µ′ ∩ η′)(x).

Hence, (µ ∪ η)′ = µ′ ∩ η′. The proof of the other part follows similarly.

In the next result, it is proved that the complement of an L-prime ideal in M is an L-dual
prime ideal in M .

Theorem 14. Let τ be an order reversing involution on lattice L and µ be an L-prime
ideal of M . Then µ′, the complement of µ in LM , is an L-dual prime ideal of M .

Proof. Let x, y ∈ M . Since µ is an L-prime ideal of M , we have

µ(x ∧ y) ≤ µ(x) ∨ µ(y).

This implies, τ(µ(x ∧ y)) ≥ τ [µ(x) ∨ µ(y)] as τ is an order reversing involution. That is,

µ′(x ∧ y) ≥ τ [µ(x) ∨ µ(y)]

= τ(µ(x)) ∧ τ(µ(y))

= µ′(x) ∧ µ′(y). (1)
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Further, if x ≤ y in M , then µ(x) ≥ µ(y) in L (as µ is an L-ideal of M). This implies

τ(µ(x)) ≤ τ(µ(y)) in L∗.

Thus,

µ′(x) ≤ µ′(y) . (2)

Moreover, as µ is an L-ideal of M , x ≤ x ∨ y and y ≤ x ∨ y in M implies

µ(x) ≥ µ(x ∨ y) and µ(y) ≥ µ(x ∨ y).

Thus, µ′(x) ≤ µ′(x ∨ y) and µ′(y) ≤ µ′(x ∨ y) and hence

µ′(x) ∧ µ′(y) ≤ µ′(x) ≤ µ′(x ∨ y) . (3)

By (1), (2) and (3), we get that µ′ is an L-dual ideal of M . To establish that µ′ is an
L-dual prime ideal of M , note that µ(x ∨ y) ≥ µ(x) ∧ µ(y). This implies

µ′(x ∨ y) = τ(µ(x ∨ y))

≤ τ [µ(x) ∧ µ(y)]

= τ(µ(x)) ∨ τ(µ(y))

= µ′(x) ∨ µ′(y).

Consequently, µ′ is an L-dual prime ideal of M .

By the above theorem, it can be concluded that if L is a lattice with an order reversing
involution τ , then µ is an L-prime ideal of M if and only if µ′ is an L-dual prime ideal
of M . The next theorem, combined with Theorem 14, leads to the following interesting
analogue of a result from classical lattice theory:

An L-ideal η of M is an L-prime ideal of M if and only if η′ is an L-dual
ideal of M . In fact, η′ is an L-dual prime ideal of M .

Theorem 15. Let τ be an order reversing involution on the lattice L and η be an L-ideal
of M such that η′ is an L-dual ideal of M . Then, η and η′ are L-prime ideals of M .

Proof. Suppose η is an L-ideal of M such that η′ is an L-dual ideal of M . We have

η′(x ∧ y) ≥ η′(x) ∧ η′(y); ∀ x, y ∈ M.

This implies

η(x ∧ y) = τ [η′(x ∧ y)]

≤ τ [η′(x) ∧ η′(y)]

= τ(η′(x)) ∨ τ(η′(y))

= η(x) ∨ η(y).
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Thus, η is an L-prime ideal of M . Similarly, we have

η(x ∧ y) ≥ η(x) ∧ η(y); ∀ x, y ∈ M.

This implies

η′(x ∧ y) = τ [η(x ∧ y)]

≤ τ [η(x) ∧ η(y)]

= τ(η(x)) ∨ τ(η(y))

= η′(x) ∨ η′(y).

Hence, η and η′ are L-prime ideals of M .
In fact, in the above theorem, it can be proved that η′ is an L-dual prime ideal of M .

We conclude this paper by discussing an analogue of another well known fact in classical
lattice theory that,

In a distributive lattice with the maximal element 1, every proper ideal is contained in a
maximal ideal.

The next theorem proves a similar result in an L-lattice µ.

Theorem 16. Let L(µ,M) be an L-lattice, where L is a completely distributive lattice.
Let η ⊆ µ be an L-ideal of µ. Then, there exists an L-maximal ideal θ of µ such that
η ⊆ θ.

Proof. Let I = {γ/γ is an L-ideal of µ such that η ⊆ γ}. Let Φ = {γi}i∈Λ be a chain
in I. Then clearly,

η ⊆ ∪{γi} and ∪ {γi} ⊆ µ.

If x, y ∈ M ,

{∪γi}(x ∨ y) = ∨γi(x ∨ y)

≥ ∨[γi(x) ∧ γi(y)]

(as each γi is an L-ideal of µ)

= [∨γi(x)] ∧ [∨γi(y)]
= (∪γi)(x) ∧ (∪γi)(y).

Moreover,

{∪γi}(x ∧ y) = ∨γi(x ∧ y)

≥ ∨[µ(x) ∧ γi(y)]

(as each γi is an L-ideal of µ)

= µ(x) ∧ [∨γi(y)]
= µ(x) ∧ (∪γi)(y).
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Thus, {∪γi} is an L-ideal of µ containing η. That is, {∪γi} ∈ I. Thus, every chain in I
has an upper bound in I. Therefore, by Zorn’s Lemma, I has a maximal element. That
is, ∃ a maximal L-ideal γ of µ such that η ⊆ γ. Hence, γ is the required L-maximal ideal
of µ containing η.

Conclusion

In the present work, the concept of an L-convex sublattice in an L-lattice is studied
in detail and the unique representation theorem for L-convex sublattices is established.
Moreover, the concept of order reversing involution is utilized on the lattice L of truth
values to define the complement of an L-set. The notion of complementation plays a
significant role in the theory of Boolean Algebras, lattice implication Algebras and topo-
logical spaces. In this paper, it is established that the concept of complementation of
an L-set leads to proving some significant results in L-lattice theory. This notion is fur-
ther worthy of attention as it may lead to some remarkable development in the theory of
L-substructures of an L-
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