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Abstract. Non-inclusive irregular vertex labeling is a labeling on a graph where the vertex labels
are real numbers that have weights. The weight is defined as the sum of the labels of the connected
nodes. The main problem in labeling graphs is how to find the formula so that the required labeling
rules can be applied. To find this formula, researchers must try to label various kinds of graphs
to find labeling patterns. A Heuristic Algorithm is an algorithm that can always provide solutions
and is approximate. One type of heuristic algorithm is a genetic algorithm, where this algorithm
will generate random numbers as candidate solutions and after going through several selection,
evolution and evaluation processes the most appropriate value for the solution will be found. This
research discusses the implementation of a genetic algorithm to label graphs (all types of graphs)
in a computerized manner based on non-inclusive irregular labeling. It is hoped that this program
will help researchers find non-inclusive irregular labeling formulas, without having to label graphs
manually.

2020 Mathematics Subject Classifications: 05C78

Key Words and Phrases: Genetic Algorithm, Graph Theory, Non-inclusive Vertex Irregular
Labeling

1. Introduction

Graph labeling is the assignment of labels, usually represented by integers, to elements
of graph (vertices and edges). Marr dan Wallis [2] explained that if the domain of the
function is the set of vertices, then it called vertex labeling. Slamin [3] introduced a
concept of new labeling which is vertex irregular d-distance vertex labeling. Bong et al.
[4] then generalized the concept to inclusive and non-inclusive vertex irregular d-distance
vertex labeling. We will limit our research from distance d to distance 1 in this paper. Let
k be positive integer. A non-inclusive vertex irregular labeling of graph G with vertex set
V is an assignment : V — {1,2,...,k} such a way that the weight calculated are distinct.
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The weight wt(x) of vertex x in G is defined as the sum of the labels of all vertices adjacent
to x (distance 1 from x),

wt(z) = Lyen(z) ()

with N(z) is the set x neighbors. The smallest integer k in this labeling is the distance
irregularity strength of G and denoted as dis(G). The difference between inclusive and
non-inclusive vertex irregular labeling depend on the way to calculate the vertex weight
whether the label of vertex we calculate its weight is included or not. Consequently,
the first concept that Slamin introduced is categorized as non-inclusive vertex irregular
labeling.

Representation of graph normally modeled by circles and lines, but this model is not
suited for big sized graph. Another way to represent graph is with listing the adjacent
vertices for every vertex in the graph, called adjacency matrix and denoted as A(G).
Elements of A(i,7) = 1 if there exist edge that connect vertex i and vertex j, otherwise
A(i,7) = 0. Li [5] explained that there are several ways to increase storage space efficiency
in graph data. For example adjacency matrix of undirected simple graph always symmetric
in its main diagonal. So, we can cut off the upper or lower triangular matrix to reduce its
storage space.

Genetic algorithm is a searching method inspired from Darwin’s theory of evolution,
which states that the survival of a creature is influenced by the strong rule to produce
offspring of the next generation [6]. Based on theory of evolution, genetic algorithm can
be used to find a solution to optimization problems [7]. Genetic algorithm has been used
widely in the fields of science and technology. Its famous applications are finding opti-
mal solutions to multi-objective optimization problems [8]. Genetic algorithm consists of
generate initial popolation chromosome, evaluate fitness function, and genetic operations
which are selection, crossover, and mutation [9]. Genetic operation will produce new chro-
mosome that will be the next generation [10]. This method already used in various fields,
especially in optimization problems [11, 12, 13]. In [14], genetic algorithm also used in
covid-19 problems with graph as the representation of the problem.

In previous research, genetic algorithms were used to solve the labeling of inclusive
irregular vertex. In this research, genetic algorithms are used to solve the problem of
labeling non-inclusive irregular vertex.

2. The Method

The following are steps to solve the problem of labeling non-inclusive irregular points
using a genetic algorithm.

1. Change the graph to be labeled into an adjacency matrix (A) as shown in Figure 1
as the example.

2. Generate chromosomes with n genes as random numbers (0-n), with n being the
number of points on the labeled label. Chromosomes here can be interpreted as
possible solutions. Figure 2 shows possible solutions/chromosomes
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Figure 1: Graph and Adjacency matrix
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Chromosome 1 : |1|1|2|2|1|

Chromosaome 2 : |1|2|1|1|1|
Chromosome 3 : |1|2|1|2|1|
Chromosome 4 : | 1 | 2 | 1 | 1 | 2|

Figure 2: chromosome/possible solution

3. Find the weight of each point by multiplying the adjacency matrix by a random
number (chromosome). Figure 3 is the process of calculating the weight value of
each vertex.

4. Multiply each row of the adjacency matrix by the chromosome weight (A.*Wi).
Figure 4 shows the result of multiplying the adjacency matrix by chromosome W1.

5. Evaluate the results of the matrix multiplication in step 3. If in one row of the
matrix, there are the same numbers > 0 then the chromosome is not a non-inclusive
vertex labeling and the process continues to step 5. If in each row of the matrix,
there are no same numbers > 0 then the chromosome is a non-inclusive vertex
labeling solution and the process ends. In Figure 4, column 4 equal to column 5
shows that this chromosome is not a solution column 4 shows that column 1 equal
to column 3,s0 this chromosome is not a solution Based on the explanation above,
it can be concluded that this chromosome is not a non-inclusive vertex labeling
solution. Because the chromosome does not meet the labeling rules, the process
continues to step 5.

6. Cross chromosomes 1 and 2 by exchanging the third gene with the first gene and the
fourth gene with the third gene. The same thing is done for the cross chromosomes
3 and 4. Figure 5 shows the crossover process and results.
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Figure 5: The Crossover Process and Result

7. We analyze chromosome 6 by calculating the weight matrix W (6) as in step 4.
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1110 1 3 4205 \-{
01110 0 4 2 7 0 Ly

7 5

From the results of the multiplication between the adjacency matrix and the weight
matrix, it can be seen in Figure 6 that there are no identical numbers in each row,
so it can be said that chromosome 6 is a solution to non-inclusive labeling.

If the analysis results show that the chromosome is not a non-inclusive labeling, repeat
steps 1 to 6 until the iteration is fulfilled. If the iteration has been fulfilled but the
chromosome that satisfies the labeling rule has not been found, then it can be said that
the graph cannot be labeled according to the irregular non-inclusive rule.

3. Results

This section discusses implementation of genetic algorithm on non-inclusive vertex
irregular labelings for graphs in several existing researches. We modeled the graph in the
form of an adjacency matrix and stored the data using Microsoft Excel as an intermediary.
Figure 6 shows the lower triangle of the adjacency matrix of the cycle graph o,

With the help of MATLAB, the data is processed and genetic algorithm is applied to
find the solution of non-inclusive irregular vertex labeling problems.

Figure 7 is the output of the genetic algorithm program for vertex irregular labeling
using MATLAB. We set the number of chromosomes by 4 and mutation rate of 0.1. Figure
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Figure 6: Cycle graph C1o data

7 shows that there are 4 chromosomes in the last generation population which are potential
solutions to the labeling problem. Of all chromosomes, the one that has the best fitness
value and has no weight error is selected as the final solution. The following table are
labelings using genetic algorithm application with the same rules as Figure 7 labeling in
several previous researches [3, 15].

This labeling is not unique, meaning that a graph can have more than one possible
non-inclusive irregular labeling. If in step 6 of the methodology above the process is not
stopped even though the labeling has been found (the process stops only if the iteration
is fulfilled) then there is a possibility that more than one labeling is found.

4. Discussion

This research using the genetic algorithm to solve non-inclusive vertex irregular labeling
of graph. There are some process for determine the non-inclusive vertex irregular labeling
using the genetic algorithm namely the first step a graph G represented to be adjacency
matrix, second step using genetic algorithm procedure. The final step, we get the non-
inclusive vertex irregular labeling from genetic algorithm procedure but we need show
using the lower bound of non-inclusive vertex irregular.

The selection process is carried out on each generation to selected the best chromo-
somes. This research is using tournament selection method as the selection process. The
crossover process aim is to produce new offspring chromosomes. Chromosomes that have
gone through selection process will be paired in a crossover process. The crossover process
is conducted at a predetermined point. The mutation process conducted on each genes in
offspring chromosomes based on the predetermined mutation rate, which is 0.1. A random
number will be taken and if the number is less than or equal to the mutation rate, the
gene will mutated. After the mutation process is complete, 2 offering chromosomes are
obtained which will enter the new population. The previous population will erase the 2
worst chromosomes based on their fitness value and replace them with 2 offspring chromo-
somes after the mutation process. The initial generation population or generation 0 will
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Labeling Result: [ 2 5 2 5 4 4 7 1 7 1 6 2 ]

Vertices Weight: [ 7 4 10 6 9 11 5 14 2 13 3 8 ]
Chromosome : 1
Graph labeling : [ 2 5 2 4 4 4 7 1 7 1 6 2 ]
Vertices Weight: [ 7 4 9 6 8 11 5 14 2 13 3 8 ]
Chromosome H
Graph labeling : [ 2 5 2 4 4 4 7 1 7 1 6 2 ]
Vertices Weight: [ 7 4 9 6 8 11 5 14 2 13 3 8 ]
Chromosome : 3
Graph labeling : [ 2 5 2 5 4 4 7 1 7 1 6 2 ]
Vertices Weight: [ 7 4 10 6 9 11 5 14 2 13 3 8 ]
Chromosome H
Graph labeling : [ 2 5 2 4 4 4 7 1 7 1 6 2 ]
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Figure 7: The vertex weight of C1o in MATLAB

become the population of generation 1 after the genetic algorithm process.

Each generation will choose one chromosome that has the highest fitness value as the
solution labeling. The first generation result of genetic algorithm was not producing good
results. All chromosomes still have labeling errors that cause repeated weights. The
evolution process will be repeated until it gets the result that close or equal to optimal.
If the fitness value of solution of one generation is equal to the previous generation, then
the fitness value of solution is said to be convergent. If the convergence has reached a
certain value but the labeling errors still exist, then it will be assumed that the graph G
has no labeling with dis(G) = k. If this happens, then the algorithm needs to increase its
dis(G) to dis(G) = k+ 1. Changes in the value will occur in the next generation mutation
process. This process will always repeated until the optimal solution is found. In this case
the process of evolution stops at the 9th generation.

The application of genetic algorithms to non-inclusive vertex irregular labeling of graph
resulting produce a solution to the problem. The pursuit for labeling solutions using
human assistance can take a relatively long time, especially in graphs with a large number
of vertices and without patterns. Genetic algorithms can be applied with the help of
computer as one option to find solutions to problems.
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Tablk 1. Results of genstic algorithms implementation, in previous, researchs.

Previous. .
—Researches, Genetic Algorithm, Solution Time
_ﬁ? dis Estimation

K 3 3[1]2 10s

K, 4 [2]1[3]4] 335

Ks 5 s[1]3[a]2 1 min 24 s

K, 6 [2]5]4]1]6]3] 3 min 29 s

P3 ) - 3s

P, 2 8s

P 3 1]1]3[2]3 245

Pg 3 [3]1]3]2]2]2] 39s

P, 4 [4]1]2]2]3]2]4] 1 min 36 s

Cy 00 - 5s

Cs 3 1[3]1[3]2 20s

Cs 4 [1]a]2]5]3]2] 1min30s

C, 5 [4]1]5]1]5]4]2] 2min2s

Cs 5 [1]s5]2]1]3]1]3]4] 2min 18s

Co 5 [3]1]1[1]s5]2]5]5]4] 3 min

Cio 6 [1]4]1]4]3[6[3]6]2]3] 10 min 47 s

Cyy 7 [2]5]3]7]6]la]l7]6]7]1]1] 9 min 44 s

Cyiz 7 [21713]7]4als5]7]5]l6]1]2]2] 10 min 51 s

Ci3 7 [2]1]1]1]e6]s5]7]5]7]6[5]2]4] 13 min 39 s

Ws 3 [1]3]1]3]2]1] 35s

W, 4 [4]3]2]4]1]5]3] 2min4s

w, 5 [4]3[3]2]4a]l1]5]3] 2 min37s

Wy 5 [4]3]s5]2]s[1][3]1]4] 3min 17 s

W, 5 [s12l1]1[1]5]a]ls5]5]13] 4min7s

Wio 6 [2]6]3]5]3][4]2]4]1]6]1] 9 min 37 s

Wis 7 [1]2]7]3]7]3]1]4]1]6]2]5] 12 min 45 s

Wis 7 [4]al6]3]6]l7ls5]2]1]2]7]1]7] 14 min 31 s

Wqs 7 [7]1]7]4]6[7]1]7]5]2]7]1[3]1] 17 min 12 s

5. Conclusion

The Based on the explanation above, it can be concluded that; Genetic algorithms
can be used to label the vertex of graphs according to non-inclusive irregular rules. If
conventional methods take a very long time to label graphs, then with this algorithm the
time needed is only a matter of seconds. If in conventional methods the labeling pattern
can only be used for specific graphs, then with this method the labeling can be applied to
all types of graphs or is universal.
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