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Abstract. The current manuscript aims to present an efficient numerical technique for solving
third-order reaction-diffusion singularly perturbed boundary-value problems. The method is based
on coupling the restarted Adomian decomposition method and the shooting method. The study
further provided a complete outline of the coupled numerical method and used it in tackling
the governing class of third-order differential equations. The efficacy of the proposed method is
demonstrated on test problems. Lastly, a high level of exactitude between the obtained approximate
solution and the exact solution is achieved through comparison tables and figures.
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1. Introduction

Singularly perturbed problems are interesting models that feature the blend of singu-
larity and perturbation term(s) and are characterized by some concealed features of the
describing physical phenomena. Certainly, ”a singular perturbation problem is a problem
that depends on a parameter (or parameters) in such a way that solutions behave non-
uniformly as the parameter tends towards some limiting value of interest” [22]. Further-
more, ”in the early twentieth century, Prandtl described singular perturbations in a seven-
page report presented at the Third International Congress of Mathematics in Heidelberg
in 1904. However, the term singular perturbation was first used by Friedrichs and Wasow
in a paper represented at a seminar on non-linear vibrations at New York University”[4].
In light of the aforesaid, the current study makes consideration of the class of third-order
reaction-diffusion singularly perturbed two-point boundary-value problems that arise in
modeling various sciences and engineering applications, including reaction–diffusion pro-
cesses, fluid dynamics, thermodynamics, aerodynamics, and quantum mechanics to state
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but just a few [11, 20]. In particular, reaction–diffusion processes are widely encountered
in a variety of areas such as in water contamination in aquifers, spread of diseases and
pollutions, ecology, chimerical processes, and transfers in dissimilar media among oth-
ers [16, 17] and the references therein for more on the application of reaction–diffusion
processes in real-life scenarios. Mathematically, several scientists have proposed quite a
number of reliable computational techniques for the solution of such types of equations
exhibiting both singularity and perturbation term(s). Thus, we begin by mentioning these
methods to include the classical approach for recasting the class of second-order singularly
perturbed boundary-value problem (BVP) to a system of coupled first-order differential
equations [9, 14, 19].

In fact, this corresponding system of equations can easily be solved using any of the
known reliable methods for first-order ordinary differential equations [12, 24], where cer-
tain members of higher-order singularly perturbed BVPs were computationally tackled
using diverse approaches. Further, Howes [13] and Yao and Feng [28] made use of the
asymptotic and the lower-upper solution methods, respectively, to solve some interesting
singularly perturbed BVPs of third-orders. In addition, the authors in [25, 26] deployed
the boundary-value technique to tackle the governing third-order problem by transforming
it into a system of equations of lesser orders; read also the works of Babu and Ramanu-
jam [7] and Cui and Geng [12], who coupled the finite element method and an analytical
method, respectively, with the asymptotic approximation method to effectively tackle the
class of third-order singular perturbed BVPs. Furthermore, among the notable numerical
methods for the governing model include the fitted Numerov approach that recasts the
third-order model to second-order by Phaneendra et al. [18], the mixture of approxima-
tions based on polynomials [21], and the DQ method by Bert and Malik [10] among others.
However, the present study analyzes the class of perturbed third-order problems with the
help of the restarted shooting method (RSM). Certainly, this class of perturbed equations
has the perturbation parameter ϵ attached to the higher-order differential term. Besides,
both the convection–diffusion and reaction–diffusion typed models can be obtained respec-
tively from the governing problem upon reducing the order of the higher-order by one or
two, correspondingly [15]. Moreover, the RSM is the mixture of the restarted Adomian de-
composition method (RADM) that successfully solved various functional equations, with
the elegant shooting method. In addition, the governing third-order perturbed BVP is
presided over by the following ordinary differential equation [15, 29]

ϵy′′′(x) + q(x)y′(x) + r(x)y(x) = s(x), a ≤ x ≤ b, (1)

coupled with the following boundary data

y(a) = α, y′(a) = λ, y(b) = β. (2)

where ϵ > 0 is a perturbation parameter that is assumed to be very small, q(x), r(x),
and s(x) are given nice functions; with α, β, and λ as real constants. However, the main
objective of this paper is to employ the restarted Adomian decomposition method and the
shooting method for solving third-order reaction-diffusion singularly perturbed boundary-
value problems. Certainly, via the application of RADM, which the current study among
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others intend to improve its convergence rate through RSM, the given problem in (1) - (2)
are transformed to a system of coupled equations that are subsequently solved recurrently.
In addition, the current study will seek the assistance of several computational methods
to assess the computational efficiency of the RSM in solving the above model, apart from
the known fourth-order Runge–Kutta method. Various tables and comparison figures will
equally be used to portray the effectiveness of RSM. In addition, the exact solution, where
present will be used for comparison with the corresponding RSM solution; the impact of
the perturbation parameter ϵ on the solution will equally be assessed. Lastly, we arrange
the present paper as follows: Section 2 gives the sketch of RSM; Section 3 presents several
numerical examples for the assessment of RSM, while Section 4 gives certain concluding
points.

2. Restarted shooting method

Consider the generalized linear third-order BVP as follows

y′′′(x) = p(x)y′′(x) + q(x)y′(x) + r(x)y(x) + s(x), a ≤ x ≤ b, (3)

coupled with the two-point boundary data as follows

y(a) = α, y′(a) = λ, y(b) = β, (4)

where p(x),q(x), r(x), and s(x) are equally given functions; with α, β, and λ as real
constants. First, the standard shooting method begins by transforming the governing
model outlined in (3) - (4) into two different initial-value problems (IVPs) as follows

u′′′(x) = p(x)u′′(x) + q(x)u′(x) + r(x)u(x) + s(x), a ≤ x ≤ b, (5)

u(a) = α, u′(a) = λ, u′′(a) = 0, (6)

and
v′′′(x) = p(x)v′′(x) + q(x)v′(x) + r(x)v(x), a ≤ x ≤ b, (7)

v(a) = 0, v′(a) = 0, v′′(a) = 1. (8)

Notably, the RADM will then be used directly to solve the aforementioned IVPs. Conse-
quently, the classical Adomian decomposition method (ADM) must be used first, followed
by the RADM. The classical ADM [1, 2, 23] is an energetic semi-analytical method for solv-
ing different forms of both linear and nonlinear ordinary and partial differential equations.
Moreover, in [3, 5, 8], a combination of the Adomian decomposition method (ADM) and
the shooting method are proposed to numerically examine second-order and third-order,
linear and nonlinear BVPs. Solving equations (5) - (6) and (7) - (8) using the classical
ADM, yields the following

u(x) = ϕ1(x) + L−1(p(x)u′′(x) + q(x)u′(x) + r(x)u(x) + s(x)), (9)
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and
v(x) = ϕ2(x) + L−1(p(x)v′′(x) + q(x)v′(x) + r(x)v(x)). (10)

The solutions u(x) and v(x) should be divided into the following infinite series of compo-
nents

u(x) =
∞∑
n=0

un(x), v(x) =
∞∑
n=0

vn(x).

So, the iterative relations are

u0(x) = ϕ1(x) + L−1(s(x)),

um+1(x) = L−1(p(x)u′′m(x) + q(x)u′m(x) + r(x)um(x)), m ≥ 0, (11)

and
v0(x) = ϕ2(x),

vm+1(x) = L−1(p(x)v′′m(x) + q(x)v′m(x) + r(x)vm(x)), m ≥ 0, (12)

where the functions ϕ1(x) and ϕ2(x) in (11) and (12) reflect the terms originating from
the integration of L(u) and L(v) in (5) and (7), respectively, and from applying the given
conditions in (6) and (8). As a result, Lϕ1(x) = 0 and Lϕ2(x) = 0. In addition, the
m+ 1-terms approximant is regarded for numerical purposes as

u(x) = ψ1,m+1(x) =
m∑
k=0

uk(x),

and

v(x) = ψ2,m+1(x) =
m∑
k=0

vk(x).

On the other hand, in reference to the alteration made by Babolian et al. [6], which
modified u0 and v0 to initialize the RADM, one way to accomplish this is to increase the
terms on both sides of (9) and (10). Therefore, assuming G1 and G2 to be the appropriate
terms, which are determined subsequently, one obtains

u(x) +G1 = ϕ1(x) + L−1(p(x)u′′(x) + q(x)u′(x) + r(x)u(x) + s(x)) +G1, (13)

and
v(x) +G2 = ϕ2(x) + L−1(p(x)v′′(x) + q(x)v′(x) + r(x)v(x)) +G2. (14)

Next, upon utilizing the Wazwaz’s modification of the classical ADM [27], one thus obtains
the resulting recurrent scheme for (13)-(14) as follows

u0(x) = G1,

u1(x) = ϕ1(x) + L−1(p(x)u′′0(x) + q(x)u′0(x) + r(x)u0(x) + s(x))−G1,

um+1(x) = L−1(p(x)u′′m(x) + q(x)u′m(x) + r(x)um(x)), m ≥ 1, (15)
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and
v0(x) = G2,

v1(x) = ϕ2(x) + L−1(p(x)v′′0(x) + q(x)v′0(x) + r(x)v0(x))−G2,

vm+1(x) = L−1(p(x)v′′m(x) + q(x)v′m(x) + r(x)vm(x)), m ≥ 1. (16)

Algorithm of RADM
Here, we write down an implementable algorithm for the computational implementation
of RADM by first choosing some small natural numbers m,n.
Step I: Use the classical ADM on (5) and (7) to compute u0(x), u1(x), . . . , um(x) and
v0(x), v1(x), . . . , vm(x)

w1
1 = u0(x) + u1(x) + · · ·+ um(x),

w1
2 = v0(x) + v1(x) + · · ·+ vm(x).

Step II: For i = 2 : n, do
G1 = wi−1

1 ,

u0(x) = G1,

u1(x) = ϕ1(x) + L−1(p(x)u′′0(x) + q(x)u′0(x) + r(x)u0(x) + s(x))−G1,

um+1(x) = L−1(p(x)u′′m(x) + q(x)u′m(x) + r(x)um(x)), m ≥ 1,

and
G2 = wi−1

2 ,

v0(x) = G2,

v1(x) = ϕ2(x) + L−1(p(x)v′′0(x) + q(x)v′0(x) + r(x)v0(x))−G2,

vm+1(x) = L−1(p(x)v′′m(x) + q(x)v′m(x) + r(x)vm(x)), m ≥ 1,

wi
1 = u0(x) + u1(x) + · · ·+ um(x),

wi
2 = v0(x) + v1(x) + · · ·+ vm(x).

End.
Consequently, if we define a new function z(x) that serves as the solution of the original

BVP in (3)-(4)

z(x) = u(x) +
β − u(b)

v(b)
v(x), v(b) ̸= 0, (17)

where u(x) and v(x) represent the solutions to corresponding IVPs in (5)-(6) and (7)-(8) ,
correspondingly. Markedly, the RADM algorithm will be applied in n steps; and in every
step, m terms of the classical ADM with new u0 and v0 values are obtained. It should
equally be noticed that the solutions z0, z1, . . . , zm are used in each step; whereas for the
classical ADM, mn terms are obtained, that is, using z0, . . . , zmn.
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3. Numerical examples

The current section carries out a computational assessment of the devised RSM on
several homogeneous and non-homogeneous linear perturbed third-order BVPs for the
reaction-diffusion problem of the first and second types. Indeed, the solution posed by
the devised RSM has been compared with yet a coupled method, combining the shoot-
ing method with the Runge–Kutta method of the fourth-order (SRKM4), in addition to
the deployment of several other efficient computational methods in the literature; specif-
ically, the methods utilized in [15, 29]. Furthermore, the section further provides certain
supportive tables and figures - Tables 1 –4 and Figures 1-6 – which report the compar-
ison between the RSM and SRKM4 results, in addition to other results obtained using
the methods utilized in [15, 29], through examining their respective error differences with
those of the available exact analytical solutions. The exact solutions of the examples have
been calculated using Maple 18 software. Similarly, this comparison is in line with the
impactful influence of the variation in the perturbation parameter ϵ. Thus, in all the re-
ported tables, the representation ERSM is used to represent the solution obtained by the
devised RSM, while ESRKM4 denotes the solution put forward by the beseeched SRKM4.
Example 1: Consider the non-homogeneous singular perturbation problem for reaction-
diffusion of type 1 as follows:

ϵy′′′(x) + 4y′(x)− 4y(x) = x2, y(0) = 0.5, y′(0) = 0.5, y(1) = 1.47. (18)

Firstly, we transform the boundary value problem into two different initial-value problems
(IVPs)

u′′′(x) = −4

ϵ
u′(x) +

4

ϵ
u(x) +

1

ϵ
x2, u(0) = 0.5, u′(0) = 0.5, u′′(0) = 0, (19)

and

v′′′(x) = −4

ϵ
v′(x) +

4

ϵ
v(x), v(0) = 0, v′(0) = 0, v′′(0) = 1. (20)

Next, guesses are chosen for n = 2 and m = 30 when using the RADM for (19)-(20) .
What is more, the recursive relations are then constructed using the ADM in the first step
as follows {

u0(x) = 0.5 + 0.5x+ x5

60ϵ ,

um+1(x) = −4
ϵL

−1(u′m(x)) + 4
ϵL

−1(um(x)), m ≥ 0.

and {
v0(x) =

x2

2 ,

vm+1(x) = −4
ϵL

−1(v′m(x)) + 4
ϵL

−1(vm(x)), m ≥ 0.

where the approximate solutions of (19)-(20) in first step are acquired in a series expression
as follows

u(x) = G1 =

30∑
m=0

um(x),
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and

v(x) = G2 =

30∑
m=0

vm(x).

In the second step, the RADM is applied, and thus gives the resulting recursive relations
as follows 

u0(x) = G1,

u1(x) = 0.5 + 0.5x+ x5

60ϵ −
4
ϵL

−1(u′0(x)) +
4
ϵL

−1(u0(x))−G1,

um+1(x) = −4
ϵL

−1(u′m(x)) + 4
ϵL

−1(um(x)), m ≥ 1.

and 
v0(x) = G2,

v1(x) =
x2

2 − 4
ϵL

−1(v′0(x)) +
4
ϵL

−1(v0(x))−G2,

vm+1(x) = −4
ϵL

−1(v′m(x)) + 4
ϵL

−1(vm(x)), m ≥ 1.

Then, the solutions of the IVPs in (19) and (20) are thus obtained from the above schemes
upon taking the respective series summations. Finally, the approximate solution z(x) with
m = 60 , when h = 1

60 , is numerically computed in Tables 1 and 2 by using

z(xk) = u(xk) +
1.47− u(1)

v(1)
v(xk).

where xk = kh for k = 0, 1, . . . ,m.

Table 1: The absolute errors for RSM and SRKM4 with different values of ϵ.

x ϵ = 2−3 ϵ = 2−6 ϵ = 2−9

ESRKM4 ERSM ESRKM4 ERSM ESRKM4 ERSM

0 1.0× 10−39 1.0× 10−39 6.0× 10−40 6.0× 10−40 1.2× 10−39 1.2× 10−39

5
60 8.2× 10−9 1.1× 10−39 2.6× 10−7 8.1× 10−38 3.9× 10−5 6.4× 10−6

10
60 2.5× 10−8 4.0× 10−40 4.0× 10−7 2.0× 10−37 4.0× 10−6 3.0× 10−6

15
60 4.2× 10−8 1.3× 10−39 1.9× 10−7 2.0× 10−37 5.3× 10−5 3.5× 10−6

20
60 5.2× 10−8 3.5× 10−39 5.2× 10−7 9.9× 10−38 3.1× 10−6 7.1× 10−6

25
60 4.9× 10−8 4.6× 10−39 3.2× 10−7 7.7× 10−38 4.3× 10−5 2.4× 10−6

30
60 3.2× 10−8 4.7× 10−39 1.2× 10−6 1.7× 10−37 4.8× 10−5 7.8× 10−6

35
60 6.1× 10−9 4.6× 10−39 4.5× 10−7 2.6× 10−37 6.6× 10−6 5.3× 10−6

40
60 2.1× 10−8 4.0× 10−39 8.8× 10−7 2.3× 10−37 1.0× 10−4 6.0× 10−6

45
60 4.2× 10−8 3.0× 10−39 6.3× 10−7 1.2× 10−37 1.6× 10−5 9.1× 10−6

50
60 4.6× 10−8 2.0× 10−39 1.1× 10−6 1.1× 10−37 8.0× 10−5 5.6× 10−6

55
60 3.2× 10−8 2.0× 10−39 1.6× 10−6 6.6× 10−38 6.3× 10−5 1.0× 10−5

1 3.0× 10−39 3.0× 10−39 3.0× 10−39 3.0× 10−39 3.0× 10−39 3.0× 10−39

In this regard, Table 1 reports the resulting absolute error differences incurred by the
devised RSM method and the beseeched SRKM4 when compared with the available exact
solution for different values of the perturbation parameter ϵ. From Table 1, it is observed
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Table 2: Comparison between different methods with different values of ϵ.

Maximum Error
Numerical Methods ϵ = 2−3 ϵ = 2−6 ϵ = 2−9

RSM 6.0× 10−39 1.9× 10−36 1.1× 10−5

SRKM4 5.3× 10−8 1.7× 10−6 1.3× 10−4

IVT [15] 6.2× 10−2 3.7× 10−3 2.3× 10−3

DQ [29] 3.2× 10−20 9.0× 10−11 3.9× 10−4

that RSM greatly outperformed the comparing SRKM4 everywhere except on the end-
point boundaries, which both pose the same error difference. In the same way, Table
2 further shops for more computational methods to equally measure the efficacy of the
devised approach for solving the governing reaction-diffusion problem of type 1. Notably,
the proposed RSM equally happens to be the best method among the four competing
methods, and then followed by the DQ method [29] across all the variational effects of
the perturbation parameter ϵ. Moreover, Figures 1-3 depict the solution curves, making
a comparison between the exact solution, the acquired RSM solution, and the comparing
SRKM4 solution for different values of the perturbation constant. However, all the curves
are noted to be in good agreement with the exact solution; besides, the obtained RSM
solution aligns more with the exact solution on a bigger scale.

Figure 1: Graphical comparison, depicting the exact and contending approximate solutions with ϵ = 2−3.

Figure 2: Graphical comparison, depicting the exact and contending approximate solutions with ϵ = 2−6.
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Figure 3: Graphical comparison, depicting the exact and contending approximate solutions with ϵ = 2−9.

Example 2: Consider the homogeneous singular perturbation problem for reaction-
diffusion of type 2 as follows:

ϵy′′′(x) +
(
1 +

x

2

)
y′(x)− 1

2
y(x) = 0, y(0) = 0.6, y′(0) = 0.23, y(1) = 0.9. (21)

Accordingly, the following two IVPs are considered:

u′′′(x) = −1

ϵ

(
1 +

x

2

)
u′(x) +

1

2
ϵu(x), u(0) = 0.6, u′(0) = 0.23, u′′(0) = 0, (22)

and

v′′′(x) = −1

ϵ

(
1 +

x

2

)
v′(x) +

1

2
ϵv(x), v(0) = 0, v′(0) = 0, v′′(0) = 1. (23)

As proceed, guesses are chosen for n = 2 and m = 30 when using the RADM on (22)–(23),
leading to the recursive relations via the classical ADM follows

u0(x) = 0.6 + 0.23x,

um+1(x) = −1

ϵ

(
1 +

x

2

)
L−1

(
u′m(x)

)
+

1

2
ϵL−1 (um(x)) , m ≥ 0

and

v0(x) =
x2

2
,

vm+1(x) = −1

ϵ

(
1 +

x

2

)
L−1

(
v′m(x)

)
+

1

2
ϵL−1 (vm(x)) , m ≥ 0,

which approximate solutions of (22)–(23) in first step. Further, the attained approximate
solutions in a series form are as follows

u(x) = G1 =
30∑

m=0

um(x),

and

v(x) = G2 =
30∑

m=0

vm(x).
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In the second step, the RADM is applied, and thus gives the respective recursive relations
as follows

u0(x) = G1,

u1(x) = 0.6 + 0.23x− 1
ϵ

(
1 + x

2

)
L−1 (u′0(x)) +

1
2ϵL

−1(u0(x))−G1,

um+1(x) = −1
ϵ

(
1 + x

2

)
L−1(u′m(x)) + 1

2ϵL
−1(um(x)), m ≥ 1

v0(x) = G2,

v1(x) =
x2

2 − 1
ϵ

(
1 + x

2

)
L−1(v′0(x)) +

1
2ϵL

−1(v0(x))−G2,

vm+1(x) = −1
ϵ

(
1 + x

2

)
L−1(v′m(x)) + 1

2ϵL
−1(vm(x)), m ≥ 1

Moreover, the solutions of the IVPs in (22) and (23) are thus obtained from the above
schemes upon taking the respective series summations. Finally, the approximate solution
z(x) with m = 60 , when h = 1

60 , is computed in Table 3 and 4 by using the relation

z(xk) = u(xk) +
0.9− u(1)

v(1)
v(xk)

In the same vein, Table 3 outlines the absolute error differences existing between the exact

Table 3: The absolute errors for RSM and SRKM4 with different values of ϵ.

x ϵ = 2−3 ϵ = 2−6 ϵ = 2−9

ESRKM4 ERSM ESRKM4 ERSM ESRKM4 ERSM

0 4.3× 10−39 9.3× 10−38 2.0× 10−36 2.5× 10−36 4.1× 10−35 1.8× 10−34

5
60 2.5× 10−10 9.7× 10−38 3.2× 10−8 2.6× 10−36 1.9× 10−5 3.0× 10−33

10
60 5.1× 10−10 1.0× 10−37 7.7× 10−8 2.7× 10−36 2.7× 10−5 4.1× 10−33

15
60 7.5× 10−10 1.0× 10−37 1.1× 10−7 2.8× 10−36 2.8× 10−6 6.8× 10−34

20
60 9.2× 10−10 1.1× 10−37 1.2× 10−7 2.9× 10−36 1.5× 10−5 2.5× 10−33

25
60 1.0× 10−9 1.1× 10−37 1.2× 10−7 3.0× 10−36 3.2× 10−5 4.4× 10−33

30
60 9.7× 10−10 1.1× 10−37 1.3× 10−7 3.1× 10−36 4.5× 10−6 1.3× 10−33

35
60 8.4× 10−10 1.2× 10−37 1.6× 10−7 3.2× 10−36 1.6× 10−5 2.8× 10−33

40
60 6.2× 10−10 1.2× 10−37 2.0× 10−7 3.3× 10−36 3.5× 10−5 4.4× 10−33

45
60 3.7× 10−10 1.3× 10−37 2.0× 10−7 3.4× 10−36 2.9× 10−6 1.6× 10−33

50
60 1.4× 10−10 1.3× 10−37 1.6× 10−7 3.5× 10−36 2.3× 10−5 3.5× 10−33

55
60 1.2× 10−11 1.4× 10−37 7.4× 10−8 3.6× 10−36 3.4× 10−5 4.3× 10−33

1 6.6× 10−39 1.4× 10−37 3.0× 10−36 3.7× 10−36 6.2× 10−35 2.7× 10−34

solution and the devised RSM method, and on the other hand, between the exact solution
and the beseeched SRKM4 for different values of ϵ. Certainly, Table 3 revealed that the
proposed RSM is very efficient across the whole solution domain with the exception of the
two boundary end points, which SRKM4 is noted to reveal the least error difference. In
addition, while deploying more efficient computational methods, Table 4 further compares
the devised RSM with SRKM4 and the initial value problem [15] and DQ [29] methods,
the proposed RSM for the solution of the governing reaction-diffusion problem of type 2
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Table 4: Comparison between different methods with different values of ϵ.

Maximum Error
Numerical Methods ϵ = 2−3 ϵ = 2−6 ϵ = 2−9

RSM 1.4× 10−37 3.7× 10−36 4.9× 10−33

SRKM4 1.0× 10−9 2.1× 10−7 4.1× 10−5

IVT [15] 4.5× 10−2 1.6× 10−2 7.9× 10−3

DQ [29] 2.0× 10−24 2.2× 10−15 2.8× 10−7

is equally noted to be the best, followed by the DQ method across all the chosen values ϵ.
What is more, Figures 4-6 depict the solution curves, comparing the exact solution, the
acquired RSM solution, and the contending SRKM4 solution for different values of the
perturbation constant. Besides, the curves are noted to be in good agreement with the
exact solution, with the RSM solution aligning more on a magnified scale.

Figure 4: Graphical comparison, depicting the exact and contending approximate solutions with ϵ = 2−3.

Figure 5: Graphical comparison, depicting the exact and contending approximate solutions with ϵ = 2−6.

4. Conclusions

In conclusion, the current manuscript presents a proficient numerical method to address
a class of singularly perturbed third-order linear BVPs. Specifically; we used the modified
RADM in conjunction with the iterative shooting method to devise a highly effective
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Figure 6: Graphical comparison, depicting the exact and contending approximate solutions with ϵ = 2−9.

strategy called the RSM. The RSM as a reliable computational method has then been
demonstrated on the reaction-diffusion singularly perturbed problems of the first and
second types, respectively. Following the method’s implementation on the demonstrated
models, it was discovered that the current approach outperformed many of the previous
approaches, including the SRKM4 and the computational techniques identified in the
literature [15, 29]; however, SRKM4 outperformed the devised method on the two end-
points of the boundary – see the given accommodating tables. The effectiveness of the
devised method was further evaluated taking into account the noted speedier convergence
and the level of exactitude with the exact analytical solutions in comparison with the other
references. Additionally, one can broadly say that the devised technique can be applicable
in solving various BVPs of both higher orders and perturbation terms. Aside, nonlinear
BVPs could equally be tackled with the proposed methodology when the related Adomian
polynomials are systematically computed for the involving nonlinear terms.
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