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Abstract. In contrast to existing research on consensus problems that primarily addresses the
node dynamics of multi-agent systems, this study focuses on achieving consensus among the states
of edges within a network. Initially, the scaled consensus of edge dynamics in hybrid multi-agent
systems is investigated for both undirected and directed topologies. Subsequently, necessary and
sufficient conditions are derived for both directed and undirected topologies to facilitate the design
of consensus protocols aimed at resolving edge consensus challenges. Finally, numerical examples
are provided to substantiate the effectiveness of the theoretical results.
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1. Introduction

In the past several decades, the study of consensus problems within multi-agent sys-
tems has garnered significant attention, owing to their extensive applicability across a
diverse array of disciplines, including swarm robotics, distributed sensor networks, traffic
management systems, online marketplaces, and social networks[10, 15].

Consensus is characterized as the process by which a collective of agents or entities
within a system endeavors to attain an agreement or a unified decision regarding a particu-
lar quantity of interest. The achievement of consensus is critical for promoting coordinated
behavior, collaboration, and decision-making among the agents. As a result, a plethora
of researchers have developed consensus algorithms in recent years, which are essential for
ensuring that all agents within the system converge to a common understanding or state,
thereby enhancing the overall efficiency and effectiveness of the system’s operation (see
examples in [1, 4, 9, 11, 13, 16, 21, 22]).

The aforementioned findings predominantly addressed consensus issues pertaining to
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node dynamics. Nevertheless, in a variety of real-world scenarios, the interactions among
agents are influenced not only by their individual states (nodes) but also by the rela-
tionships that exist between them (edges). The edge consensus problem is defined as
the endeavor to achieve consensus or agreement among the states of edges within a net-
work, rather than concentrating solely on the states of individual nodes or agents. In the
framework of edge consensus, the objective is for the states of all edges in the network
to asymptotically converge to a common value or consensus state through interactions
and information exchange among neighboring edges. Given the significance of under-
standing and achieving consensus at the edge level for applications such as network com-
munication, social networks, and distributed control systems, edge consensus problems
have garnered considerable attention in scholarly research in recent years (see example in
[6, 8, 12, 17, 18, 20]).

According to the above discussion, this paper aims to investigate scaled consensus
problems of edge dynamics in hybrid multi-agent systems (HMASs) under both directed
and undirected topologies. The main contributions of the paper include:

(1) Exploration of edge dynamics in HMASs: The study extends the work of
Zheng et al[23], by examining consensus problems specifically related to edge dynam-
ics in HMASs, which consist of both continuous-time and discrete-time agents.

(2) First investigation of scaled consensus problems: This research is the first to
address the scaled consensus problem of edge dynamics in HMASs, providing new insights
into how edge interactions can be managed to achieve consensus.

(3) Theoretical framework for edge consensus: The paper develops a theoretical
framework that outlines the conditions necessary for achieving edge consensus in both di-
rected and undirected topologies, contributing to the understanding of how edge dynamics
operate within multi-agent systems.

(4) Applications to real-world scenarios: By focusing on edge dynamics, the re-
search highlights the relevance of consensus in practical applications such as network
communication and distributed control systems, emphasizing the need for algorithms that
consider both node and edge interactions.

(5) Numerical simulations: The paper includes numerical simulations to validate
the proposed edge consensus protocols, demonstrating their effectiveness in achieving con-
sensus in various scenarios and reinforcing the theoretical findings.

These contributions collectively advance the understanding of consensus in multi-agent
systems by integrating edge dynamics into the analysis, thereby enhancing the potential
for practical applications in complex networks.

The rest of this paper is organized as follows. Some preliminaries and the problem
formulation are provided in Section 2. In Section 3, the scaled consensus problems of
edge dynamics in HMASs under directed and undirected topology are solved under some
necessary and sufficient conditions. In Section 4, numerical examples are provided to
demonstrate the effectiveness of our main results. Finally, some conclusions are drawn in
Section 5.
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2. Preliminaries and Problem formulations

2.1. Preliminaries

This section articulates fundamental definitions, lemmas, and notations derived from
graph theory and matrix theory that are pivotal for the formulation of our principal
findings (for comprehensive details, refer to[2, 7]).

In the context of this paper, the set of real numbers is denoted by R, the set of
positive integers by N, and the n-dimensional real vector space by R™. Furthermore, R™*"
signifies the collection of n x n matrices. For a matrix A = [a;j]nxn € R™*", the notation
AT represents its transpose. A matrix A = [aijlnxn is classified as nonnegative if all its
elements are nonnegative, which is denoted as A > 0. If A and B are nonnegative matrices,
the relation A > B implies that the matrix A — B is also nonnegative. A matrix P is
characterized as a stochastic matrix if it is nonnegative and the sum of each of its rows
equals 1. Moreover, a stochastic matrix P is deemed indecomposable and aperiodic (SIA)
if there exists a column vector y such that limg_,o P* = 1,47, where 1,, = (1,1,...,1)T
is an n X 1 vector.

Before proceeding, we present several essential definitions, lemmas, and properties as
follows:

Lemma 1. [3] If G is a connected graph, then the line graph of G, denoted L(G), is also
connected.

Lemma 2. [2] Let L represent the Laplacian matriz of an undirected graph G. The
Laplacian matriz L is irreducible if and only if G is connected.

Lemma 3. [5] If a directed graph G contains more than one vertex and is strongly con-
nected, then its line graph L(G) is strongly connected.

Lemma 4. [14] A stochastic matriz possesses an algebraic multiplicity of one for the
eigenvalue X = 1 if and only if the graph associated with the matriz contains a spanning
tree. Furthermore, a stochastic matriz with positive diagonal elements guarantees that
IA| <1 for every eigenvalue other than one.

Lemma 5. [14] Let A = [aijlnxn be a stochastic matriz. If A has an eigenvalue A = 1
with algebraic multiplicity equal to one, and all other eigenvalues satisfy |\| < 1, then A is
classified as SIA, which implies that limy,_,~, A* = 1,,y", where y is a nonnegative vector
that satisfies ATy =y and 11y = 1.

2.2. Problem formulations

Consider an undirected network G = (V, ), with a set of N nodes and M edges, where
E = {(i,j) : if there is an edge between node i and node j} and V = {1,2,..., N}.
The topology of the network is described by the adjacency matrix A = [a;j]nx N, where

1, if (i,)) € &;
Qi — Qi —
7 “ 0, otherwise.
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Different from the undirected network, the directed network means that the edge (7, 5) € £
if node ¢ can receive information from node j. Hence, the topology of a network is described
by the adjacency matrix A = [ai;]nxn, where

{1, it (i,5) € &
aij =

0, otherwise.

For any node 4, its inbound edge (i,1) is adjacent to its outbound edge (j,7) while its
outbound edge (j,1) is adjacent from its inbound edge (i,1). For better description and
understanding, we say that the inbound edge (i, k) is the valid neighbor of the outbound
edge (j,1).

Let z;;(t) and B;; # 0 be the state and scalar scale of edge (i,7) at time ¢, respectively.
Thus, the edge dynamics of each edge can be designed as follows:

Bijiij (t) = waj(t), for (i,7) € &, (2.1)
ﬁijl‘ij(tk_;,_l) = ﬁijl‘ij(tk) + Uij(tk), tr = kh, keN for (Z,]) € &y,

where u;; € R is a consensus protocol. &.,&; C £ are the continuous-time and discrete-
time edge dynamics, respectively. In general, one says that the protocol u;; in (2.1) solves
the edge consensus problems if the following definition is satisfied:

Definition 1. The hybrid system (2.1) is said to reach edge consensus if for any initial
conditions,

tklgnoo HBZ]‘I.Z](tk) - 6ksxks(tk)H - 07 fOT’ all (Z7j>7 (kv 8) e¢ (22)
and
Jim ([ Bijij(t) = Brswrs (W = 0, for all (i, 7), (K, s) € & (2.3)

3. scaled consensus results

3.1. Undirected communication networks

In this work, we solve scaled consensus problem of edge dynamics in HMASs by de-
signing the consensus protocol, u;;, which depends on the states of the edge (¢, 7) and its
neighboring edges at time ¢;. In addition, two edges are neighboring edges if they share
exactly a common ending vertex.

In our protocol, each edge adjusts itself based on the errors between its state and the
states of its neighboring edges. The dynamical equation governing the evolution of the
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states of edges are designed as follows:
ui;(t) = |83 [Zsa\@ s [BisTis (tk) — Bijwij(tr)]
+ 2 en; @islBistis (te) — ﬁijﬂfij(tk)]] ,  for (i,j) €&,
(

uij(te+1) = - |Bijl [ZseNi s BisTis (tk) — Bij®ij(te)]

+ 2 sen; @js[BisTjs(te) — Bijxij(tk)]] . for (i,7) € &,

where h > 0 is the step size and N; = {j|(¢,7) € £} is the neighboring set of node i.

Remark 1. It should be note that, in Eq.(2.1), x;; and z;; both denote the state of the
same edge (i,j). Moreover, in protocol (3.1), we can see that an agent can interact and
update information from its neighbors only at the sampling time ty.

Remark 2. Obviously, if B;; = 1 for all edge (i,j) and E = 0, the protocol (3.1) can be
written as

uij(tkH) =h Z ais[xis(tk) - xij(tk)]
sEN;

+ 3 ajslrgs(te) —zi ()] |, for (4,4) € &, (3.2)
56./\/']'

which was studied in [18].

Before moving on, the following assumptions are provided to obtain our main results:
(A1) The step size h is satisfied :

O<h<m,

where A = ma:E{ZSeMﬁ# ais + Zsej\fj,s¢i ajs}s Bmax = max|B;;], where 3;; be a
nonzero scalar scale of edge (i, j).

Lemma 6. Let L denote the Laplacian matriz of a communication network G comprising
N nodes and M edges. We define fmq, = max |B;;|, where B;; represents a nonzero scalar
associated with the edge (i,7). Assuming that the step size h adheres to condition (A1)
and that |B| = diag(|B;|) with (Bi;) € RM, it follows that the matriz In; + h|B|Q is
strictly irreducible and aperiodic (SIA), where —Q is the Laplacian matriz of the line
graph L(G). Specifically, the limit limy_,oo[Inr + h|B|Q)* = 1ary” holds if and only if the
communication network G possesses a spanning tree. Moreover, it can be established that
Ly + h|B|QTy = y and 13,y = 1, where each component of the vector y is nonnegative.
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Proof. (Sufficiency) Since 0 < h < (ABmaz) ' and using the fact that —Q = L,
one obtains Ips + h|B|Q = Iy — h|B|L = (I — h|B|D) + h|B|A is a stochastic matrix
with positive diagonal entries, where D = diag(dy,...,dys) and A are the degree matrix
and adjacency matrix of G, respectively. Obviously, for all i,j € Zys; @ # j, the (i,7)th
entry of In; — h|B|L is positive if and only if a;; > 0. Then, G is the graph associ-
ated with In; — h|B|L£. Combining Lemma 4 and Lemma 5, gives klirglo[IM — hB|L)k =
kli}r{.lo Inr + h|B |Q]k = 17y”, when G has a spanning tree, where y is nonnegative vector.
Moreover, y satisfies [Ins + h|B|Q|Ty =y, 11,y = 1.

(Necessary) From Lemma 4, if G does not contain a spanning tree, the algebraic multi-
plicity of eigenvalue A = 1 of Iy; — h|B|L is m > 1. Then, the rank of kli_)rgo[IM — h|B|L)*

is not equal to 1, which is not equal to the rank of 1,,y”. This implies that

lim [Ty + h|B|Q)* = lim [Ty — h|B|L]* # 197
k—o0 k—o0
Therefore, Ips + h|B|Q is not SIA. This completes the proof.

In the following, we state the main theoretical results to solve scaled consensus of edge
dynamics using the consensus protocol (3.1).

Theorem 1. Consider an undirected network G with N nodes and M edges, where the
edge dynamics described as (2.1). If the step size h satisfies (A1), then, for any given
initial states of all edges, the protocol (3.1) can asymptotically solve the edge consensus if
and only if G is connected.

Proof. We first show that equation (2.2) holds. From (2.1) and (3.1) we have, for
le (tk)tk-l-l]a

Bijwi(t) = Bijwij(tk) + (¢t — ti)|Bij] [ZSENi is[BisTis (tk) — BijTij(tr)]

+ 2 sen; @js[Ts(te) — xij(tk)]], for (i,j) € &,

3.3
Bijrij(tre1) = Bijrij(te) + h- By [ZseNi s [BisTis(tk) — BijTij(tr)] >

+ 2 sen; @slBisms(te) — /Bijxij(tk)]]» for (i, j) € &q.

Therefore, it follows that
Bijij(thv1) = Bijwij(te) + h - By [ Z/:v ais[Bisis(tr) — Bijaij(te)]
aeN;
+ Zj\; ajs[Bjswjs(tr) — 5@%‘]‘(%)]]7 for (i,j) € &q. (3.4)
SEN;
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Let
Y = (Biyaij) €RM, i=1,2,...,N, i<j and B;; #0.
Then, equation (3.4) can be written as
Y (tpt1) = (L + h|B|QIY (tk), (3.5)

where h is a step size, I)s is an identity matrix, |B| = diag(|5;;]) and @ is a zero-row-sum
symmetric matrix with nonnegative off-diagonal elements and the diagonal elements are
D een o Gis ZseNj’S#i ajs}. Since the step size h satisfies (A1) once obtains that
[Inr+hB] is a doubly stochastic matrix. Moreover, since G is an undirected and connected,
which implies that G contains a spanning tree. Hence, by lemma 6, there exists a column
vector v such that kli_)rn [T + h|B|Q]F = 107 . Thus,

oo

lim Y (tg) = lim [Ty + h|B|Q]*Y (to) = 1a0T Y (t), (3.6)
k—o0 k—o0
which implies that the equation (2.2) holds. Now, we will show that
Jim [|Bijwij(8) = Brswrs (@)l = 0, for all (i, ), (k, s) € Ee.
Consider, for (,7), (k,s) € &,

1Bijzij(t) — Brswrs (O < |Bijaii (1) — Bijwii (ti) || + [1Bijwij (k) — BrsTrs(te)||
+ Hﬁksmks(tk) - /Bksxks(t)H- (37)

From equation (3.3), one obtains, for ¢ € (tx, txt1],

1851 (8) = Bigwas(ti)|| < b 1Bisl | D sl Biswis(tr) — Bigwas (i) |

seEN;

+ Z ajsHBjsxjs<tk) - sz‘rlj(tk)u :

SENj

As t — oo, we have t;, — oco. Thus,
lim {|Bijeij(t) = Bijzi(te)| =0V (i,4) € &
t—o00
Taking the limit as ¢t — oo on both sides of equation (3.7), one obtains
thm ||ﬁz]xw(t) - Bksxks(t)n = 05 V(’L,j), (kv 5) € gc-
— 00

This implies that equation (2.3) holds. Therefore, the system (2.1) under protocol (3.1)
reaches edge consensus.
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3.2. Directed communication networks

To address the edge consensus problems, we employ a transformation of the original
node graph into its corresponding line graph, utilizing the established concept of line
graphs [5]. According to Reference [5], the line graph L(G) of a directed graph G is itself
a directed graph characterized by Zf\i L di vertices and ZZJ\L (didi . edges, where di,
and d’,, denote the in-degree and out-degree of node i, respectively. The transformation
process from a directed graph to its line graph is delineated in three distinct steps [19]:

Step 1: An edge (4,7) in the directed graph is interpreted as originating from vertex
7 to vertex 3.

Step 2: Each directed edge (7, j) is converted into a vertex referred to as (i, j), termed
a generated node.

Step 3: If the directed edge (i1,7;) is a valid neighbor of the directed edge (iz,j2) in
the original node graph, a new directed edge is established between the generated nodes
(i1,7i) and (i2, j2), with (i1, j;) serving as the initial node and (iz, j2) as the terminal node
(refer to examples in Figures 1-3).

Figure 1: A communication network G



C. Park, S. Donganont and M. Donganont / Eur. J. Pure Appl. Math, 18 (1) (2025), 5549 9 of 16

Figure 2: The evolution of the directed graph to its line graph (Step 2)

Assume that all agents can communicate and update their neighbors at the sampling
time tj, then the edge consensus protocol for directed topology can be designed as

uij(t) = |Bij [ZSE/\/J- ajs[Biswis(tr) — ﬁijxij(tk)]] , V(i,4) € &,
(3.8)

uij(ter1) = h-|Bil [Ese\rj ajs[Bistis(tr) — Bz‘jﬂﬁzj(tk)]] , (i, 7) € &,

where all variables are defined as in the previous section.

Remark 3. If 5;; = 1 for all edge (i, j) and & = 0, the protocol (3.8) can be written as

Uij(tg+1) = h- [ > ajslmis(te) — fﬁij(tk)]], (i, 5) € &, (3.9)
sEN;
and if €5 = together with B;j =1 for all edge (i, j), one obtains

uij(t) = [ Z ajs[:vis(tk) — xij(tk)]], V(Z,]) c 56, (310)

seEN;
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Figure 3: The evolution of the directed graph to its line graph (Step 3)
which were studied in [19]. This shows the generalization of our protocols.

Theorem 2. Consider a directed communication network G, where the edge dynamics
described as in (2.1). Then, the consensus protocol (3.8) solves scaled consensus of edge

dynamics if and only if, for any initial state, the following conditions are satisfied:
(A1) The step size h is satisfies

1

0<h< : (3.11)
mami,j{Zje/\/ﬁS;&i ajs}ﬁmax

(A2) the communication network G contains a spanning tree.

Proof. From the system (2.1) and protocol (3.8), we have, for t € (tx, txr1],

Bijrij(t) = Bijii(tr) + (t — tr)| Byl [ZseNj ajs[Bistis(tr) — ﬂz‘jﬂfz‘j(tk)]] , for (i,5) €&,

Bijrij(ter1) = Bijxii(te) + - |Bij] [ZseNj ajs[Biswis(ty) — /Bijxij(tk)]] ,  for (i,7) € &

(3.12)
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Therefore, it follows that

Bijwij(ti1) = Bijzij(te) + - |Bijl - [ > aislBiswis(tn) — Bijwii (1))
sEN;

+ Z ajs[ﬁjsxjs(tk) — Bzymw(tk)]] , for (Z,]) eé&. (313)
sEN;

Let
Y = (Byjay) € REZ XL 5 _1 9 N jeN; By #0.
Then, the system (2.1) with protocol (3.8) can be written as:
Y(tpt1) = [I + hIB|QIY (tr), (3.14)

where T ¢ REL d(i”)i)x(zﬁld(i")i), h is a step size, B = diag(f;;) and @ is a zero-
row-sum symmetric matrix with nonnegative off-diagonal elements and diagonal elements
— Zsej\fj,s;éi ajs}. It follows from (A2) that G contains a spanning tree and the step size
h is satisfied (A1l). Then, by Lemma 6, [I + h|B|Q] is SIA. Hence, there exists a column
vector u such that kh—g)lo[IM + h|B|Q)* = 1)u”. Thus,

lim Y (t) = lim [Ty + h|BIQ]FY (to) = 1aul Y (to), (3.15)
k—o0 k—o0

which implies that (2.2) holds. On the other hand, the proof of (2.3) can be cut since the
proof is similar to the proof of Theorem 1.

4. Simulations and discussion
In order to demonstrate the effectiveness of theoretical results in this work, the

following example is provided.

Example 1. Assume that there are 8 agents denoted by 1 — 8, where the directed network
of communications G is given as in Figure 1. It is easy to see that the network G consists
of 8 nodes and 12 edges.
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In order to solve scaled consensus, we first transform the graph G to its line graph,
denoted by L(G), as shown in Figure 3. According to the communication network G, the
adjacency matrix of G is denoted by A and the Laplacian matrix of its line graph is —@Q,
where

0001 0O0O0T1
10 00 0001
01001000
A= 101 00 0O0O
10001 00 D00
10 001 00O
000 0O0OT1O0O0
0 0000 0 1 0]
and ~ _
-2 0 0 0 o0 1 1 0 0 0 0 O
o -1 06 0 0o o0 0 0 o0 o0 0 1
1 i -2 0 0 O O O 1 0 0 O
o o0 0 -1 0 0 O O 0 o0 0 1
0O 0 1 i1 -2 0 0 0 0O 0 0 O
1 TP 0o 0O 0 -2 0 O 0 0 o0 O
@= o o o o 1 0 -1 0 0 0 0 o0
0o 0 o0 0 0 1 1 -2 0 0 0 0
1 i 0o o o O 0 0 -2 0 0 O
o o0 o o o o o 1 0 -1 0 o0
o o0 o0 o o o o0 o0 1 1 -2 0
6o 6 o o o0 0 o0 0 0 0 1 -1

It can be seen that the line graph IL(G) has 12 nodes and 19 edges as shown in Figure 3.
Let B = (B;;) = (0.2,-0.2,1,—1,1.5,—1.5,0.5,—0.5,1.1,-1.1,0.7, —0.7)7 € R'? and the
initial values are (z;;(t0)) = (1,—1,0.5,-0.5,1.5,—-1.5,-2,2,3, 3,4, —4)7 € R'2. Then,
by choosing h = 0.125 such that

1 1
O0<h< = —,

maxivj{Zjej\/'j,s;éi ajs}ﬁma;r -3

Obviously, IL(G) contains a spanning tree, and hence, by Theorem 2, the scaled edge
consensus problems are solved (see Figure 4). However, if h does not satisfy (3.11), our
protocol cannot guarantee reaching scaled edge consensus as shown in Figure 4 for h = 0.7.
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Figure 4: The state trajectory of each edge using protocol(3.8) with h = 0.125 and h = 0.7, respectively.

In addition, when (8;;) = (1,1,1,1,1,1,1,1,1,1,1,1)7 the scaled consensus problems
are the usual consensus problems(see Figure 5)

State

SF—%

= %

v

State

Time

Figure 5: The state of each edge under protocol (3.8) with (8;;) = (1,1,1,1,1,1,1,1,1,1,1, )7, h = 0.125

and h = 0.7, respectively

of [18, 19] (see Figure 5).

It can be seen that for undirected network, the protocol (3.1) solves scaled consensus
problems if the communication network is connected and the step size is small enough. On
the other hand, for directed networks, our protocol (3.8) proves scaled consensus problems
when the the communication network contains a spanning tree under the small step size see
Figure 4 for the scalar scale 3;; # 1. Moreover, if the scalar scale ;; = 1, the simulations
results show the effectiveness and generalization of our theorems compared with the results
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5. Conclusion

This research investigates the scaled consensus problems of edge dynamics in hy-
brid multi-agent systems (HMASs), focusing on both directed and undirected topologies.
By shifting the emphasis from node dynamics to edge interactions, the study derives
necessary and sufficient conditions for achieving edge consensus and proposes effective
protocols tailored to specific network structures. The findings demonstrate that these
protocols can successfully resolve edge consensus challenges, provided that the network
maintains appropriate connectivity and structure. Numerical simulations validate the ro-
bustness and effectiveness of the proposed methodologies, underscoring their relevance in
practical applications such as network communication, distributed control systems, and
social networks. This work contributes to a deeper understanding of cooperative behavior
in complex networks, enhancing the potential for improved coordination and decision-
making among agents. In future work, the proposed scheme will be taken into account for
time delay with disturbances.
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