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Abstract. Different integral transforms have extensive applications in various areas of science and
engineering. This paper discusses some of the new integral transforms of the extended k-generalized
Mittag-Leffler function. We examine integral transforms such as the Euler-Beta, Laplace, Mohand,
Aboodh, SEE, and Sadik transform. Moreover, we also tried to establish the graphical represen-
tations of these transforms.
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1. Introduction:

Integral transforms are essential tools across various scientific and engineering fields,
facilitating the solution of complex problems. The EkG M-L function, a versatile mathe-
matical construct, has found widespread applications in these areas. This paper explores
multiple integral transforms of EkG M-L function, including Euler-Beta transform [46, 49],
Laplace transform [20], Mohand transform [32], Aboodh transform [2], SEE transform [31],
and Sadik transform [44]. Through this exploration, the study aims to deepen the under-
standing of this function and its utility, contributing to advancements in both theoretical
and applied research. The application of these integral transforms provides new insights
and solutions, further enhancing the significance of the EkG M-L function in scientific
and engineering domains. They play an important role in solving differential equations
and analyzing systems in various fields like physics, engineering, and applied mathematics.
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The EkG M-L function, a special function discussed in [5, 21, 30, 37, 45, 54], is noteworthy
for its board applicability and flexibility in addressing problems in fractional calculus and
complex systems. This function generalizes the classical Mittag-Leffler function and has
proven instrumental in both scientific and engineering research. Other integral transforms,
such as the modified Laplace transform and formable integral transform, as discussed in
[48, 55] respectively, also provide effective methods for solving integral and differential
equations. By exploring these transforms, researchers uncover new characteristics and
applications of the EkG M-L function, further enhancing its utility in various research do-
mains. A comprehensive analysis of various transforms and their dualities, such as Euler,
Laplace, Whittaker, and K-transforms has highlighted distinct qualities and applications
of the EkG M-L function [17, 18]. This research underscores the function’s versatility
and theoretical significance within scientific and engineering disciplines. The study also
delves into integral and series representations associated with special functions like gener-
alized Wright hyper-geometric function and Fox’s-H functions [19, 38], providing insights
into the EkG M-L function’s behavior and expanding its potential applications across do-
mains. Such in-depth exploration enhances the function’s utility and opens avenues for its
application in advanced research. Specifically, the EkG M-L function and its extensions
have been applied in modeling phenomena such as anomalous diffusion, membrane protein
mobility, and visco elastic creep in glasses. In fractional calculus applications, including
numerical analysis, physics, and engineering, this function demonstrate remarkable versa-
tility and importance [23]. Furthermore, properties related to fractional calculus, such as
k-Weyl fractional integral and k-extended Euler beta integral transform, have also been
investigated, emphasizing the function’s relevance in mathematical transformations and
computations. Overall, the EkG M-L function is crucial in diverse scientific disciplines,
making it a valuable tool for researchers and practitioners alike [51, 52]. In 1729, the
renowned mathematician Euler introduced the integral function that later became known
as the Gamma function [7, 9, 28]. This function generalizes the factorial function, extend-
ing its domain from positive integers to complex numbers. The Euler Gamma function
[28] is defined as follows:

z! = Γ(z + 1) =

∫ ∞

0
tze−t dt, z ∈ C, ℜ(z) > 0. (1)

This defines z! as an analytic function of z, ∀z, ℜ(z) ≥ 0.
The beta function was introduced by Legendre and further studied by Whittaker and

Watson, with its formulation expressed as follows [12]:

B(z1, z2) =
(z1 − 1)!(z2 − 1)!

(z1 + z2 − 1)!
(2)

The Euler integral of the first kind , also known as the beta function, is a special
function that related to the gamma function. The beta integral, typically represented
with two variables, is given by [29]:
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B(z1, z2) =

∫ 1

0
tz1−1(1 − t)z2−1 dt, such that z1, z2 ∈ C, ℜ(z1) > 0, ℜ(z2) > 0 (3)

The primary characteristic of the beta function is that represents the integral of the
product of two gamma functions. The beta integral is widely used in areas such as prob-
ability theory, statistics, and calculus. It is also applied to evaluate specific integrals and
to compute certain special functions [40].

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
, z1, z2 ∈ C \ Z−

0 (4)

The extended gamma function, extended Beta function and the extended Gauss hyper-

geometric function are used our final results [38]. The extended Gamma function Γ
{Kl}l∈N0
p (z)

[10]is defined as below:

Γ
{Kl}l∈N0
p (z) =

∫ ∞

0
tz−1f

(
{Kl}l∈N0 ;−t− p

t

)
dt where ℜ(z) > 0, ℜ(p) ≥ 0 (5)

The extended Beta function Bk(x, y; p) [16] defined as below:

B
{Kl}l∈N0
k (x, y; p) =

∫ 1

0
tx−1(1 − t)y−1f

(
{Kl}l∈N0 ;

−p

t(1 − t)

)
dt (6)

where min{ℜ(x),ℜ(y)} > 0 and ℜ(p) ≥ 0
and the extended Gauss hyper-geometric function [13] is defined as below:

F
({Kl}l∈N0 )
p (α, β, γ; z) =

∞∑
n=0

(α)nBk(β + n, γ − β; p)

B(β, γ − β)

zn

n!
(7)

where |z| < 1, ℜ(γ) > ℜ(β) > 0, ℜ(p) ≥ 0
Moreover, the sequence {Kl}l∈N0 mentioned above can be reduce to novel extensions

of Gamma, Beta and hyper-geometric functions [13].
Specially, when

Kl =
(x)l
(y)l

if l ∈ N0 (8)

In 2011, Özergin et al. [36] introduced the definitions of the extended Gamma function

Γ
(α,β)
p (z), the extended Beta function B(α,β)(x, y; p) and the extended hyper-geometric

function F
(α,β)
p (a, b, c; z) as below:

Γ(α,β)
p (z) =

∫ ∞

0
tz−1

1F1(α, β;−t− p

t
) dt (9)

where min{ℜ(z),ℜ(p),ℜ(α)} > 0 and ℜ(p) ≥ 0
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B(α,β)(x, y; p) =

∫ 1

0
tx−1(1 − t)y−1

1F1(α;β;− p

t(1 − t)
) dt, (10)

where min{ℜ(x),ℜ(y),ℜ(α),ℜ(β)} > 0 and ℜ(p) ≥ 0

F (α,β)
p (a, b, c; z) =

1

B(b, c− b; z)

∞∑
n=0

(a)nB
(α,β)(b + c, c− b; p)zn

n!
, (11)

where (|z| < 1; min{ℜ(α),ℜ(β)} > 0;ℜ(c) > ℜ(b) > 0;ℜ(p) ≥ 0)
Additionally, when p = 0 then Kl = 0; l ∈ N. Consequently, the equations 5 - 7

reduce to classical gamma, beta, and Gauss hyper-geometric functions [35, 50].
In this paper, several new transforms, such as the Euler-Beta transform [46, 49],

Laplace transform [20], Mohand Transform [32], Aboodh Transform [2], SEE (Sadiq,
Emad, and Eman) Transform [31], and Sadik Transform [44] of EkG M-L function are
being introduced. Additionally, the graphs of these transforms are analyzed. The follow-
ing well-known facts and results are being used throughout this paper.

The EkG M-L function is as follows [21];

E
(ρ,σ,c)
(k,l,m)(x; p) =

∞∑
n=0

Bk(ρ + nσk, c− ρ; p)

Bk(ρ, c− ρ)

(c)(nσ,k)

Γk(nl + m)

xn

n!
(12)

where k > 0; x, l,m, ρ ∈ C, ℜ(l) > 0, ℜ(m) > 0, ℜ(ρ) > 0, σ ∈ (0, 1) ∪ N; p ≥ 0

• Euler-Beta Transform: This transform is also known as Erdelyi – Kober fractional
representation [46, 49] and is defined as

B{f(z);m, b} =

∫ 1

0
zm−1(1 − z)b−1f(z) dz, ℜ(m),ℜ(b) > 0 (13)

• Laplace Transform: The Laplace transform [20] of the function f(z) is defined as

L{f(z)} =

∫ ∞

0
e−szf(z) dz, ℜ(s) > 0 (14)

• Mohand Transform: This transform is denoted by the operator M [32] and is defined
as

M{f(z); p} = p2
∫ ∞

0
e−pzf(z) dz (15)

• Aboodh Transform: Aboodh transform [2] is denoted by the operator A(.) and
defined as below:

A{f(t)} =
1

v

∫ ∞

0
e−vtf(t) dt where t ≥ 0 (16)
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• SEE (Sadiq, Emad and Eman) Transform: SEE transform was introduced by Sadiq,
Emad A. Kuffi, and Eman M [31] and is denoted using S(.) and is defined as below;

S{f(t)} =
1

vn

∫ ∞

0
e−vtf(t) dt where ℜ(v) ≥ 0, n ∈ Z, t ≥ 0 (17)

• Sadik Transform: The Sadik transform [44], denoted by Sa, is defined as follows;

Sa{f(t)} =
1

vβ

∫ ∞

0
e−vtf(t) dt where v ∈ C, α ∈ R \ {0}, β ∈ R. (18)

Furthermore, most of these transforms we found in the form of the extended hyper-

geometric function [21, 35, 41, 50] F
(α,β)
p (a, b, c; z); |z| < 1; min{ℜ(α),ℜ(β)} > 0; ℜ(c) >

ℜ(b) > 0; ℜ(p) ≥ 0.
Furthermore, we present graphical representations of these transforms, which pro-

vide valuable insights into their versatile applications across fields that require complex,
memory-dependent models. The EkG M-L function, an extension of the classical Mittag-
Leffler function, is particularly useful in fractional calculus [3], where it plays a crucial
role in describing systems governed by non-integer order differential equations. The dis-
tinct growth patterns displayed in the graphs reveal unique properties, such as power-law
decay and rapid divergence, which can be tuned by adjusting parameters. This flexi-
bility allows the EkG M-L function to effectively model anomalous diffusion processes
[27, 42], commonly observed in physics, hydrology, and environmental science, where par-
ticle movement deviates from classical diffusion. The graphs illustrate how parameter
variations influence growth, highlighting the function’s adaptability. In materials science,
for example, this adaptability supports accurate modeling of viscoelastic materials, where
traditional exponential functions fail to capture time-dependent stress-strain relationships.
The EkG M-L function also finds applications in control systems with memory effects, such
as in biomedical engineering [6], where it aids in the design of controllers for systems ex-
hibiting long-term transient behavior. In financial modeling [33], the function’s ability to
describe non-exponential waiting times and heavy-tailed distributions is valuable for mod-
eling market volatility and credit risk, particularly in markets exhibiting self-similarity.
Additionally, in epidemiology [25]and population dynamics, the extended M-L function
is useful for capturing delayed effects, such as incubation and recovery periods. Through
these graphical representations, researchers can more easily identify the optimal parameter
configurations for modeling real-world phenomena that exhibit memory and non-linearity,
thereby enhancing the accuracy and reliability of simulations across diverse applications.

2. Important Integral transforms and their graphical representations:

Theorem 1. The following Euler-Beta Transform of the EkG M-L function in
equation 12 holds true:

B{E(ρ,σ,c)
(k,l,m)(xz

l;m, b)} = Γk(b)E
(ρ,σ,c)
(k,l,m+b)(x; p) (19)
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where ℜ(p),ℜ(b),ℜ(k),ℜ(l) and ℜ(m) > 0.

Proof. Using the definition of the Euler-Beta Transform in equation 13, we
can express equation 12 as follows:

B{E(ρ,σ,c)
(k,l,m)(xz

l;m, b)}

=
∫ 1
0 zm−1(1 − z)b−1E

(ρ,σ,c)
(k,l,m)(xz

l; p) dz

=
∫ 1
0 zm−1(1 − z)b−1

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n! z
lndz

After interchanging the order of integration and summation, we can easily say
that the above equation uniformly converges and we can get the below:

=
∑∞

n=0
Bk(ρ+nσk,c−ρ;p)

Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n!

∫ 1
0 zm+ln−1(1 − z)b−1 dz

=
∑∞

n=0
Bk(ρ+nσk,c−ρ;p)

Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n!

(
Γk(nl+m)Γk(b)
Γk(nl+m+b)

)
= Γk(b)

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)(nσ,k)x
n

n!Γk(nl+m+b)

= Γk(b)E
(ρ,σ,c)
(k,l,m+b)(x; p)

Theorem 2. The following Laplace Transform of the EkG M-L function in
equation 12 holds true:

L{zm−1E
(ρ,σ,c)
(k,l,m)(xz

l; p)} =
1

pm
Fp(1, ρ; 1,

x

pl
) (20)

where ℜ(p),ℜ(b),ℜ(k),ℜ(l) and ℜ(m) > 0.

Proof. Using the definition of the Laplace Transform in equation 14, we can
express equation 12 as follows:

L{zm−1E
(ρ,σ,c)
(k,l,m)(xz

l; p)}

=
∫ 1
0 zm−1e−pzE

(ρ,σ,c)
(k,l,m)(xz

l; p) dz

=
∫ 1
0 zm−1e−pz

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n! z
ln dz

After interchanging the order of integration and summation, we can easily say
that the above equation uniformly converges and we can get the below:

=
∑∞

n=0
Bk(ρ+nσk,c−ρ;p)

Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n!

∫ 1
0 znl+m−1e−pz dz

=
∑∞

n=0
Bk(ρ+nσk,c−ρ;p)

Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n!

(
Γk(nl+m)
pnl+m

)
=

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)(nσ,k)x
n

n! pnl+m

= 1
pm

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ) (c)(nσ,k)

(x/pl)n

n!
By using equation 11, we can get the needed result.

Remark 1. When p = 0, then the above result will be∫ 1
0 zm−1e−pzE

(ρ,σ,c)
(k,l,m)(xz

l; p) dz = 1
pm

(
1 − x

pl

)−ρ
.

Theorem 3. The following Mohand Transform of the EkG M-L function in
equation 12 holds true:

M{zm−1E
(ρ,σ,c)
(k,l,m)(xz

l; p)} = p2−mFp(1, ρ; 1,
x

pl
) (21)
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where ℜ(p),ℜ(b),ℜ(k),ℜ(l) and ℜ(m) > 0.

Proof. Using the definition of the Mohand Transform in equation 15, we can
express equation 12 as follows:

M{zm−1E
(ρ,σ,c)
(k,l,m)(xz

l; p)}

= p2
∫ 1
0 zm−1e−pzE

(ρ,σ,c)
(k,l,m)(xz

l; p) dz

= p2
∫ 1
0 zm−1e−pz

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n! z
ln dz

After interchanging the order of integration and summation, we can easily say
that the above equation uniformly converges and we can get the below:

= p2
∑∞

n=0
Bk(ρ+nσk,c−ρ;p)

Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n!

∫ 1
0 zln+m−1e−pz dz

= p2
∑∞

n=0
Bk(ρ+nσk,c−ρ;p)

Bk(ρ,c−ρ) (c)(nσ,k)
xn

n!p(nl+m)

= p2−m
∑∞

n=0
Bk(ρ+nσk,c−ρ;p)

Bk(ρ,c−ρ) (c)(nσ,k)

(
x

pl

)n

n!
By using equation 11, we can get the needed result.

Theorem 4. The following Aboodh Transform of the EkG M-L function in
equation 12 holds true:

A{zm−1e−pzE
(ρ,σ,c)
(k,l,m)(xz

l; p)} =
1

pm+1
Fp(1, ρ; 1,

x

pl
) (22)

where ℜ(p),ℜ(b),ℜ(k),ℜ(l) and ℜ(m) > 0.

Proof. Using the definition of the Aboodh Transform in equation 16, we can
express equation 12 as follows:

A{zm−1e−pzE
(ρ,σ,c)
(k,l,m)(xz

l; p)}

= 1
p

∫ 1
0 zm−1e−pzE

(ρ,σ,c)
(k,l,m)(xz

l; p) dz

= 1
p

∫ 1
0 zm−1e−pz

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n! z
ln dz

After interchanging the order of integration and summation, we can easily say
that the above equation uniformly converges and we can get the below:

= 1
p

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n!

∫ 1
0 zln+m−1e−pz dz

= 1
p

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ) (c)(nσ,k)

xn

n!p(nl+m)

= 1
pm+1

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ) (c)(nσ,k)

(
x

pl

)n

n!
By using equation 11, we can get the needed result.

Theorem 5. The following SEE transform of the EkG M-L function in equation
12 holds true:

S{zm−1e−pzE
(ρ,σ,c)
(k,l,m)(xz

l; p)} =
1

p2m
Fp(1, ρ; 1,

x

pl
) (23)

where ℜ(p),ℜ(b),ℜ(k),ℜ(l) and ℜ(m) > 0.
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Proof. Using the definition of the SEE transform in equation 17, we can
express equation 12 as follows:

S{zm−1e−pzE
(ρ,σ,c)
(k,l,m)(xz

l; p)}

= 1
pm

∫ 1
0 zm−1e−pzE

(ρ,σ,c)
(k,l,m)(xz

l; p) dz

= 1
pm

∫ 1
0 zm−1e−pz

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n! z
ln dz

After interchanging the order of integration and summation, we can easily say
that the above equation uniformly converges and we can get the below:

= 1
pm

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)(nσ,k)

Γk(nl+m)
xn

n!

∫ 1
0 zln+m−1e−pz dz

= 1
pm

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ) (c)(nσ,k)

xn

n!p(nl+m)

= 1
p2m

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ) (c)(nσ,k)

(
x

pl

)n

n!
By using equation 11, we can get the needed result.

Theorem 6. The following Sadik transform of the EkG M-L function in equa-
tion 12 holds true:

Sa

(
zm−1e−pzEρ,σ,c

k,l,m(xzl; p)
)

=
1

pβ+m
Fp

(
1, ρ; 1,

x

pl

)
(24)

where ℜ(p),ℜ(b),ℜ(k),ℜ(l), and ℜ(m) > 0.

Proof. Using the definition of the Sadik transform in equation 18, we can
express equation 12 as follows:

a

(
zm−1e−pzEρ,σ,c

k,l,m

(
xzl; p

))
= 1

pβ

∫ 1
0 zm−1e−pzEρ,σ,c

k,l,m

(
xzl; p

)
dz

= 1
pβ

∫ 1
0 zm−1e−pz

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)nσ,k

Γk(nl+m)
xn

n! z
ln dz

After interchanging the order of integration and summation, we can easily say
that the above equation uniformly converges and we can get the below:

= 1
pβ

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ)

(c)nσ,k

Γk(nl+m)
xn

n!

∫ 1
0 zln+m−1e−pz dz

= 1
pβ

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ) (c)nσ,k

xn

n!pnl+m

= 1
pβ+m

∑∞
n=0

Bk(ρ+nσk,c−ρ;p)
Bk(ρ,c−ρ) (c)nσ,k

(
x

pl

)n

n!
By using equation 11, we can get the needed result.

2.1. Graphical representations and discussions:

By applying various transforms, such as the Euler-Beta transform, Laplace transform,
Mohand transform, Aboodh transform, SEE (Sadiq, Emad, and Eman) transform, and
Sadik transform, the EkG M-L function can be further generalized to different parameters
with an infinite range. In the below graphs X-axis represents the independent variable
and the Y-axis represents the function values.
Figure 1 was obtained after setting p = 0.5,m = 0.5,l = 0.5and ρ = 0.5 in equation 19 to
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24.

Figure 1: p = 0.5,m = 0.5,l = 0.5and ρ = 0.5.

Figure 2 was obtained after setting p = 0.75,m = 0.75,l = 0.75 and ρ = 0.75 in equa-
tion 19 to 24.

Figure 2: p = 0.75,m = 0.75,l = 0.75 and ρ = 0.75

Figure 3 was obtained after setting p = 1.25,m = 1.25,l = 1.25 and ρ = 1.25 in
equation 19 to 24.

In Figure 1, the Euler-Beta Transform of the EkG M-L function shows a pronounced
increase around x = 0.75, diverging more rapidly than the other curves. In Figure 2, while
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Figure 3: p = 1.25,m = 1.25,l = 1.25 and ρ = 1.25

the Euler-Beta Transform of the EkG M-L function continues to rise sharply near x = 0.75,
the other transforms appear closer together, indicating that changes in parameter values
are influencing their growth rates. This suggests that these transforms are sensitive to
parameter adjustments, which can either enhance or moderate their growth. In Figure
3, the Euler-Beta Transform of the EkG M-L function demonstrates an even steeper rate
of growth, starting from a lower position on the y-axis and climbing more sharply as x
increases. Comparing these three figures, it is evident that the Euler-Beta Transform of
the EkG M-L function consistently exhibits the steepest rise, underscoring its sensitivity to
parameter values. The relative positioning of the other transforms shifts across the figures,
reflecting how variations in parameters impact their growth behavior. Collectively, these
graphical representations provide insights into the behavior of the different transforms
under various parameter conditions, illustrating the impact of parameter modifications on
each transform’s growth trajectory.

The graph illustrates the growth behavior of various mathematical functions, where ap-
plying different transforms or parameters results in distinct curves, each exhibiting unique
growth patterns as x increases. As the value of x rises, some curves show exponential or
accelerated growth beyond specific points, highlighting their divergent behavior. This sug-
gests comparing special functions with similar structural forms but differ in parametriza-
tion or the types of transforms applied. The variations in growth demonstrate how these
parameters influence the behavior of each function over time.

2.2. Practical Applications of these Integral transforms:

The EkG M-L function and its integral transformations offer substantial potential for
practical applications across various fields, thanks to the flexibility of the Mittag-Leffler
function family in representing complex, nonlinear, and memory-dependent systems. Key
areas of application include: The EkG M-L function is especially useful in fractional calcu-
lus [4, 15], which extends classical calculus to non-integer order derivatives and integrals.
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It plays a notable role in modeling anomalous diffusion processes—where particles dis-
perse at non-linear rates—making it invaluable in fields such as physics, hydrology, and
environmental science. These transformations provide a more accurate modeling approach
for real-world phenomena that deviate from standard diffusion patterns, including sub-
diffusion in porous media and super-diffusion in turbulent environments[14]. In materials
science, the integral transformations of this function can effectively describe complex, vis-
coelastic behaviors. Traditional exponential-based models often struggle to capture the
time-dependent stress-strain relationships seen in polymers, biological tissues, and other
materials with memory effects. By using these extended functions in the differential equa-
tions governing stress and strain, it becomes possible to simulate delayed elastic responses
with improved accuracy, aiding in material design and testing. The Mittag-Leffler func-
tion also has applications in fractional control systems where standard PID controllers
fall short [11, 22, 24, 26]. Systems with long-term memory effects or complex transient
behaviors—such as those in biomedical engineering or telecommunications—benefit from
controllers that utilize fractional derivatives. The function’s integral transformations facil-
itate the analysis of systems exhibiting power-law frequency response behaviors, support-
ing enhanced system design in adaptive filtering and robust control. In finance, processes
with non-exponential waiting times and heavy-tailed distributions—especially in model-
ing market volatility and credit risk—often require the EkG M-L function. This function
models returns with memory effects or power-law decay more precisely than Gaussian
models. Through integral transforms, researchers can represent complex return dynamics
and option pricing, particularly in markets characterized by long memory or self-similarity
[1, 47]. For population growth and epidemiological modeling, integral transforms of the
extended Mittag-Leffler function are instrumental in accounting for factors like incubation
periods, recovery times, and seasonal variations—factors that traditional exponential mod-
els cannot easily capture. These models support more accurate predictions of epidemic
progress and population trends, ultimately enhancing intervention effectiveness and re-
source allocation. In thermal and electromagnetic wave propagation[8, 34, 39, 43, 53], the
function finds applications where systems do not simply decay exponentially but exhibit
more complex attenuation governed by fractional dynamics. Extended functions enable
the study of wave propagation in inhomogeneous media and non-Fourier heat conduction,
where temperature or electromagnetic field intensity decays non-linearly.

3. Conclusions

In conclusion, this paper emphasizes the important applications of various integral
transforms in science and engineering, with a particular focus on new integral transforms
of EkG M-L function. We have investigated several integral transforms, such as the Euler-
Beta, Laplace, Mohand, Aboodh, SEE, and Sadik transforms. Furthermore, we aimed
to create graphical representations of these transforms to deepen the understanding of
their behavior and applications. The findings presented in this work contribute to the
ongoing advancement of integral transforms, offering valuable insights for researchers and
practitioners in the field.
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A critical aspect of our research involved the creation of graphical representations
of these integral transforms. These visual aids serve to enhance the understanding of
their behavior and practical implications, making complex concepts more accessible to
both researchers and practitioners. Through these graphical analyses, we have provided
insights into how these transforms operate under various conditions and their effectiveness
in solving real-world problems.

Looking ahead, future work in this area can expand on several fronts. One promising
avenue is the exploration of additional novel integral transforms that may emerge from
recent mathematical developments. Further research could also involve applying these
transforms to a broader range of problems, particularly in fields such as signal process-
ing, image analysis, and control systems. Additionally, the integration of computational
techniques to facilitate more complex and multidimensional analyses could lead to new
insights and applications. Ultimately, this work lays the groundwork for ongoing advance-
ments in integral transforms, paving the way for further exploration and innovation in
both theoretical and applied mathematics.
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