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Abstract. Let C : F — FE be a bounded linear operator on a complex Banach space E and
K : ]0,4+00[— C a locally integrable function. The aim of this paper, based on the theory of K-
convoluted C-cosine functions, is to study the approximation theorem for K-convoluted C-cosine
functions by showing the relation between the convergence of the sequence of C-resolvent and the
exponentially bounded sequence of K-convoluted C-cosine functions.
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1. Introduction

Throughout this paper E denote a non-trivial complex Banach space, L(E) denotes
the Banach algebra of bounded linear operators from E into E, C' is an injective element
of L(E). For a linear operator A acting on E, D(A), N(A), R(A) and pc(A), denotes its
domain (equipped with the graph norm), kernel, range and the C-resolvent set of A, defined
by pc(A) :={A € C| R(C) C R(\N[—A) and X\ —Aisinjectivein B(E)} and if A € pc(A)
then we denoted by Rc(), A) the C-resolvent defined by Ro(\, A) = (A — A)~1C. If
t € R, |t] =sup{n € Z,n < t} denotes the integer part of t. K is a complex-valued locally
integrable function in [0, 400 (ie K € L}, ([0, 40oc[)), not identical to zero such that:

e (P): K is Laplace transformable, that is to say there exists 8 € R so that L(K)(\) =
f+°° e MK (t)dt < +oo for all A € C with Re(\) > . Put abs(K) := inf{Re()) :
L(K)(\) < +oo}.

e (Q): For all A > abs(K), L(K)(\) # 0.
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e (R): 0 € supp(K) (According to Titchmarsh’s theorem [[2]], for every ¢ € C([0, +o0],
the assumption
for all ¢ € [0, +o0], fg K(t — s)p(s)ds = 0 implies ¢ = 0).

For example the following function is a kernel:

e if t >0 and K(0) =0

KO = omp

see [1]. We can define on [0, +oo], the absolutely continuous function by
t
forall t >0, O(t) := / K(s)ds,
0

then
forallt>0, ©'(t) = K(t) a.et € 0,400
We let

I°(E) = {(zk)ken : 2k € E and sup | xy |< o0}
keN

the Banach space equipped with the norm

| (&) ken [|= sup | zx |
keN

for all sequence x = (zx)ken € [°°(E) and ¢(E), the closed subspace of [*°(E), defined by

¢(B) ={(zr)ken: xx € E and lim zy exists}.
k—o0

See [1] for more details.
In this work we will use the theory of integration in the sense of Bochner.

2. K-convoluted C-cosine function

A strongly continous operator family (C(t)):>0 such that:
e Forallt >0 C(t)A C AC(?),
e Forallt >0 C(t)C C CC(t),

Forallz €e Fandt >0

J3(t — 5)C(s)zds € D(A) and A [} C(s)xds = C(t)x — O(t)Cx,

There exist M > 1, there exist w > 0: for all t >0, | C(t) ||< Me“t,
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is called an exponentially bounded K —convoluted C'—cosine function with subgenerator
ta—l

A. We can prove that CA C AC see [9]. For example, if K(t) = oy for some a >
0 a K—convoluted C'—cosine function on F is called an a—times integrated C'—cosine
function on E see [10] and [13] for more details. We say that (C(t)):>0 is non-degenerate
if additionnally C'(¢t)z = 0 for all ¢ > 0 implies that x = 0, since C' is injective then each
K —convoluted C-cosine function is no degenerate (see [11], [3], [6], [12], [8], [7] and [4]).

If (C(t))t>0 is K—convoluted C-cosine function then the following formulae holds:

t

t+s t s
QC(t)C(s)a::{/o —/0 _/0 VK(t+ s — )Cradr + | K(s—t+n)C@)Ca (1)

[t—s]

s [t—s|
+ K(t—s+r)C(r)Cxdr + / K(|t—s|4r)C(r)Cxdr
[t—s] 0
for all t,s > 0 and = € E, see chapter 2 theorem 2.1.13 of [5]. R
For a K—convoluted C'—cosine function (C(t));>0, we define its integral generator A :

D(A) c E — E by
DA ={zeE:(3y, € E): C(t)x —O(t)Czx = /t(t — 8)C(8)yzds for all t > 0}
0

and Az = y, for all z € D(fl) A is a closed operator which is an extension of any
subgenerator of (C(t));>0, C AC = A and (C(t))s>0 is uniquely determined by one of
its subgenerators see [9]. In the rest of this part, let M > 0, w > max(0, abs(K)) and let’s
put w; = max(w, abs(K)). Suppose that (A, D(A)) is closed linear operator and (C(t)):>0
is strongly continuous operator family and for all t > 0 || C(t) ||< Me“! then we have the
following useful properties:

(i) e (i) Assume that A is a subgenerator of an exponentially bounded, K —convoluted
C'—cosine function (C(t))¢>0 then

D2 RO) > wn L)) £ 0} € polA), )
and
2 1 My
A2 = A)Cw = L(K)(A)/o eNMOWadt, 7€ B,R() > wr, LIK)(A) £0.

(3)
For more details see [9] and [5].
e (ii) Suppose that the family (C(t))¢>0 satisfies the two conditions (2)-(3), then
(C(t))t>0 is an exponentially bounded, K —convoluted C'—cosine function with
subgenerator A. For more details see [9] and [5].

e (iii) Assume that (2)-(3) hold only for real values of X’s, then (C(t))¢>0 is still
an exponentially bounded, K —convoluted C'—cosine function with subgenerator
A. For more details see [[9]].
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(i) Put for all 2 € E and A > w, Ryew = xygeoy Jo € MC(t)zdt. Then for all

Ap>wandalz e E, (A —p?)Re2Rpx = R sz — Ry2Cz if the formula (1)
holds for all z € E and s > 0. For more details see [13].

Remark 1. (i) If for allt > 0, CC(t) = C(t)C then for all A > w, CRy2 = R)2C.
Indeed for all x € E and all A > w we have:

1 +00 Y

IR Y o
- T /O Ce MO (b)zdt

1 Foo

= C/ e MO(t)xdt
NEE)) Jo Q

= CR)\zx.

(ii)) We assumed that for all A\, > w and all x € E,
— 20v,2 = 200 — 20,
(A2 =P )Ry2R 2 = R,2Cx — R)2C
then for all \,p > w Ry2R,2 = R,2Ry2. Indeed for all x € E and all A\, 1 > w we
have
0 = (R}Cz—R,Cx)+ (R,Cx — RCx)
(12 = N)Ry2R 2z + (N — p*)R,2 Ry
= (M= p*)(R2Ry ez — Ry2R,2)
(i1i) We assumed that CC(.) = C(.)C and for all \,;n > w and all x € E,
(A = *)Ry2R,2 = R,2Cx — Ry2Cu,
then
e N(R)2) is independent of A > w. Indeed for all A > w, all © € E such that Ry2x =
0 and for all p > w we have
0 = CR)\Qw
= R)\QCJJ
= (RyCx — Rusz) + Rﬂzcx
= (,UJ2 - )\Q)RA2R#21‘ + Rysz
= (/1,2 - /\Q)RM2R>\2$ + Ruzcx
0+ RM2C.$
R,2Cx
= CRx,

hence R 2x = 0 since C is injective.
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o If R(Ry2) C R(C) then R(Ry2) is independent of X\ > w. Indeed for all X\ >
w, all y € R(Ry2) such that y = Ry2x and for all > w we have

CR2(z + (p? — 2\ ty)

hence y = Ry2(x + (p

forall \,p>w, forally € R(R)2), thereis a unique xy2,7,2) € E?

CR2x + (1 — N*)CR,2C™ 1y
2 )\2)R200_1y

R:Cx + (1

R,2Cx + (M2

QCx + (M2
2C$+(R)\20x— 2C$)

R)\QC.’IJ
CR)@Z‘
Cy,

N)R,2y
M)R,2 Rz

2= X)C71y) € R(R,2) since C is injective.

e If R(Ry2) C R(C) and there exists p > w such that N(R,,
is a linear operator (A, D(A)) such that Rc(\, A) =

On the other hand, if we put

W =

then we have :

W:

Itis (p*y — Cx,2) =

the operator (A, D(A)) by D(A)

Ry2R,2((1?

RAQRuZ((MQQ —Curp2) —

Ry

2) = {0} then there

Indeed

(N2y — Cxy2)),

— )\z)y —C(z,2 — 7)2))
(12 = N)Ry2R 2y — CRy2 R 2 (
(Rx2Cy — R,2Cy) —
(vay R,2Cy) —

T2 — Ty2)
(CRy2y — CR2y)
(R\2Cy — R,2Cy)

Y= R)\QLU)\Q = R

(Ay—Cuxy2) since Ry2R 2 is injective, so we cane defined

CR,)

(y)

Ny — Ay

(NI = A)y

as result Ry2 = (\2I — A)71C = Rc ()2, A).

= R(R,2) and for all y € R(R)2),
Ny — CR;21y, since Ry2 € B(E), moreover for all y € R(Ry2) we have

Ay =

(iv) If (C(t))i>0 is K-convoluted C'—cosine function with subgenerator (A, D(A)) such

that for all t >0, || C(t) ||< Me“t, then for all A > w, Ry2

= Re(\2, A).

n

2T

/1'2'
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3. Main results

Theorem 1. Let (C(t))i>0 be a K—convoluted C—cosine functions with subgenerator A.
For each n € N, let (Cp(t))t>0 a K—convoluted C—cosine function with subgenerator
(A, D(A,)) and suppose that there exist w > 0 and M > 0 such that for all t > 0
and all v € E, | C(t)x ||< Me*t and for alln € N || Cp(t)z ||< Me*t. If we put
w1 = max(w + 1,abs(K)), then the following statements are equivalent:

(i) There exist \g > wi) : for all x € E nEI-sr—looRC()\%’An)x = Rc(M\%, Az and

(Cn()x)nen is equicontinuous.

(ii) There exist A\g > wy : for all y € R(C)) hrf (VT — Aty = (VT — A) "y and

forallx € E, (Ch(.)x)nen is equicontinuous.

(i1i) For all A > wy, for all y € R(C)), E&n (NI — Ap) "ty = (VT — A)~ Yy and for all

x € E, (Cp(.)T)nen 18 equicontinuous.

(iv) For all X\ > wy, for all,z € F, ll)ril Ro(N%, Ap)z = Re(V%, Az and (Cr () nen

1S equicontinuous.

(v) For allt >0, for allr € E, liril Cn(t)x = C(t)x, the convergence is uniform on
n—-—+0o0

any compact of [0, 400].

Proof. 1 = 2 |
Like Rc(A3, A,) = (M3 — A,)7C and Re(MA3,A) = (\2I — A)~1C, then the proof is
obvious.
2=3]
Let’s pose

U={A>w: L(K)(A) # 0} (=|wr, +o0)
and
V={\cU: foralyeR(C), lim (NI —A,) ly= (- A) "1y}

n—-+o0o

According to the statements of (2), V' is a nonempty set.
Let be A € V fixed and n € N, then for y in the open set Oy, where

_ 1
Ox:={ne U] (0 = M) W'T = An) ™t < 3},
we have || (p? )\2)(/\21 Ap)7H< 3 < 1soI—(u?—A2) (N — A,)" ! is invertible, the

series Z p? = AN - A,)~ )k is uniformly convergent and
k>0

(I — (1% = N)(N’T — A,,) Z{ — A (NI — A4,)" 1k
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But
WI—A, = (= M)+ (N1 A4,)
= (P =N)NT—-A4,)""+1)(NI-A4,)
= ((T= = N)NT—-A)7") (VT - 4,),

(W =A™ = (V= A7 (( — (1 = ) = AT

= (NI-A4p) Z YN — 4,)7h)"
= k+1
DGR A (OF S
k=0
and for all y € R(C)
= k+1
- 27 A=l _ 1 2 2k ((\27 _ A -1
Jim (T — A7y = ngglooz;(u NP (NPT =A™y
= k+1
= D dim (= X)F (W= A)7) "y
k=0
=2 k+1
= D W= (T =47y
k=0
+o0 k
ORI AT (- ) (2 - A7)y
k=0
= (WI-A)"y
(because Erf | (1% = AN — A,) 7 [[< 1).

So we can conclude that for all A € V there exists an open set Oy such that Oy C V;
therefore V is an open set.

Let be (Ak)ken a sequence in V such that lim Ay = A and X € U, let’s show that \ € V.

k—4o00
Like for n € N, the open set O} := {u € U :|| (u® = A?)(u*I — A,) 7! ||< £} contains A ther-
= k+1
fore there exists Ay, € U such that Ag, € O} but (\21-A,) 1 =Y ((A2 S22 T - An)*l)
k=0

whose series converges uniformly on O} and as the function 8 — (321 — A,)~! is con-
tinuous from Jwi, +-00[ to B(£) then

I k41
lim (A1 —A,)"" = lim Y (()\2 AR T - An)‘1>

n—-+o0o n—-+0o0o
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+oo
. —1\k+1
= nEI—EOO()\Z - A%:())k (()\I%OI - An) 1)
+;O k+1
= D (=) (AT =47
k=0
= ()‘2‘[ - A)ilu

the last equality is due to the following inequality

: 1
lim ] (A = AR )T = An) 1< 5 < 1,

n——+oo

so A € V. Therefore V is relatively closed from U.

Finally the set V is both an open and a closed of the connected set U, whence V =

3=14|

Obvious.

4=75|

Suppose that the conditions of statement 4 are satisfied.
Let x € E be fixed. We define, for each n € N, the following functions:
fo:RT = E, t— Cp(t)z.

fiRT = I®(E), t = (fult))nen-

F, Jwi, +oo[— E, A= AL(K)(\)Rc(\2, Ay)z.

F :Jwi, +o0[—= [®(E), A= (F(AN)nen).

gn :RY = B, tes [((t—s)fa(s)ds.

g:RT = E, t— (gn(t))nen-

(i) e a) fiswell defined.
Let t be a positive real.
We have

foralln € N, || fu(t) IS M || 2 || e,

soforallt>0
| (Ffa))nen o< M || 2 || e < +00,

8 of 15

U.

therfore the function f is well defined, and since the sequence ( f;,)nen is equicon-

tinuous, the function f is continuous.
e b) F has value in ¢(E).
Let A in wy, +00].
We now have Theorem 1, for all n € N,

Fa(X) AL(K)(N) R (A2, Ap)z

+o00
= / e MO (t)adt

0

+oo
= / e M fL(t)dt,
0
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Forall n €N, || F,(\) ||< 212l theref
so For all n € N, || F,()\) [|[< 5=, therefore

[ FA) oo = [I (Fa(A))nen lloo
M|z |
A — w1
< +o0,
and by hypothesis

lim F,(\) = lim AL(K)(MRc(M\% Ap)z = AL(K)(\)Ro(\2, A)x

n—-+00 n—-+0o

which give F'()\) € ¢(E).
e ¢) F € C®(Jwi, +00[,I®(E)) and for all k € N for all A > w; F®()\) € ¢(E).
Let £ and h be a positive reals. For all n € N we have

lan(®) || < / (t—5) || fuls) | ds
M x|

< tev?t
w
M|z | w1y
- w
o Ml
- w

S0 || 9(t) llso=I (gn()men lloo< Mzlewnt < 4og
which gives that g(t) € [*°(E). And for all n € N:

fu(s)ds ||

t+h
0

t+h
lgnlt+h)—gu(®) | = | / (t — ) fuls)ds + b /

t+h t+h
n / | fuls) || ds + /0 | fuls) | ds}
M |2 [ )

IN

w1

So || g(t+h) —g(t) |< %”x”e“’(t*h), from where g is continuous at ¢. So the
function g is well defined and continuous.

On the other hand, the function I; : RT — R™, ¢+ ¢ is continuous and for all
A > 0 we have

+o0 +o00 1
g0 = [ s = [T se s = L)) = 35
0 0

then the proposition 1.6.4 from [1] give L(I; * f)(\) exists for all A > w; and

L(lax f)(A) = LLa)NL(F)(N)
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1
= SLHW
1 +oo Y
1 +oo Y
= 2 (6 fn(t))neth
0

1, [T
= ([ O

but

Llg* f)(A) =

from which follows the equality F'(\) = A2L(g)(\), according to Theorem 1.5.1
of [1], L(g) (so F') is infinitely differentiable on Jw;, +00[ and since ¢(E) is closed
of [*°(F) then

For all k e N, for all A €lwi, +o0], F®(\) € ¢(E).

o d) nEIfoo Cp(t)xdt = C(t)x.
We have

L

k
SCPHEOE) € o(B),

Forallt > 0, thereexistky € N: forall k >k, (—1)

it is that for all ¢ > 0 there is k; € N such that

(DO By,

is a sequence of elements of ¢(E). f is continuous on RT, so each t > 0 is a
Lebesgue point of f, the Post-Widder theorem (see theorem 1.7.7 of [1]) give

fort >0 - By
= 1l YR INEHLEGR) (Y _ k41 (k) R
F(6) = tim ()P (E)FP(E) = lim ()P (5T (S). But o(E)

is closed then f(t) = (fn(t))nen € c(E) therefore Erf fn(t) exist and this

; eL ok
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for all ¢t > 0 but f,(0) = C,(0)) = 0, then if we noted by h the function

lim f,(¢t), t>0;
h:RY = E t— h(t) = ’6%+00 0 Then (fy)nen is a sequence of
: t=0.

equicontinuous functions which converges pointwise to h, then h is continuous
in RT. The convergence dominate theorem give that

+o00 +oo
lim e MO, () adt = / e Mh(t)dt,
n—-+00 0 0

but

ARV 2

li O, = i L(K ,Ap
Jm ; e MOy, (t)zdt THHEOO)\ (K)(MN)Re(M )z

= AL(K)(A)Rc(N\?, A)z,

then

“+o0o
AL(K)NRe(V2, Az = / e Mh(t)dt,
0
but {A?: X\ > w; and L(K)(A\) # 0} C pc(A), then by the properties 1.(b)
and 1.(c), we can deduce that h is K-convoluted C-cosine function generated
by A, and like (C(t))¢>0 is uniquely determined by one of its subgenerators,
then h(.) = C(.)x, it is EIE Cp(t)x = C(t)z, and this for all ¢ > 0.

(ii) Let H be a compact of 0,400 and z € E.
Like H C [0,sup (H)] then it suffices to prove that the convergence is uniform on
the compact [0,sup(H)]. For that let ¢ > 0, (Cp(.)x)nen is equicontinuous at all
t € [0,400] s0 (Cn(.)T)nen is equicontinuous in [0,sup(H)] which is compact, then
(Cn(.)Z)nen is uniformly equicontinuous in [0, sup(H )] which implies the existence
of n > 0 such that

(Vs,t>0) |[t—s|<n= (VneN) || Cp(t)z — Cy(s)x ||< g. (4)
For ng = L%J +1 € N*, we have 22201 ) (is therefore for all n > nyg, sup(H)

no n =
% < n). For all i € {0,....,n0}, t; = ni'osup(H) € [0,sup(H)]. So for each
t € [0,sup(H)] there is i € {0,...,ng — 1} such that ¢; < t < ¢;41. For all i €
{1,...,n0}, (Cp(ti)z)nen is a Cauchy sequence since it is convergent, therefore there
exist m; € N* such that for all n,m > m; || Cp(t;)r — Cp(ti)z || < 5.

If we posed Ny = [max {m;}, then for all m,n > Ny and all ¢t € [0,sup(H)],
<i<no

there exist ig € {0,...,no — 1} such that ¢;, < ¢t < t;,41, and then if A, , =||
Chn(t)x — Cp(t)x || we have

Apm = || Cn(t)x — Cpltiy)x + Cp(tiy)r — Cn(tiy)x + Co(tig)x — Cr ()2 ||

)
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< [ Cu(B)x = Cultig)x || + || Cultiy)z — Cmltip)x || +
| C(ti)x — C(t)2 ||

< ot | Culti)z = Cunlti)z || + || Cunlti) = Cn(t)z |
(because |t —ti, |<n)
< % + %4— | Cr(tiy)x — C(t)z || (because m > Ny > my;)
< S454° (because |t —t;, |<n)
3 3 3
< e

So the uniform Cauchy criterion implies that (Cy,(.)x)nen converge uniformly on H
towards C(.)z).

5=1|

Let x € Ej; like (Cy(.)z)nen converge uniformly of any compact in [0,4o00| then
(Cn(.)x)nen is equicontinuous in [0, 4o0c[. Let A > wy, then for all n € N, we have
AL(K)(A\)Rc(N2, Az = f0+°° e MC),(t)dt. The convergence dominate theorem give

that
2 O xt
li L(K A, = 1 O,
Jm AL(K) (M)A Be (X, An)a Jm e Cn(t)xdt
+o00
= / e MO (t)xdt
0

= AL(K)(A\)Rc(N\%, A)z.

Corollary 1. Let (C(t))t>0 be an a—times integrated cosine function (for some a > 0)
with generator A, and for eachn € N, let (Cy,(t))i>0 an a—times integrated cosine function
with generator (An, D(A,)) such that:

there exist w > 0, there exist M > 0: for all t >0, for all x € E, || C(t)x) ||< Me“*
and for all n € N) || Cp(t)z) [|< Me*".
Then if we put w; = max(w + 1,abs(K)), the following statements are equivalent:

(i) There exist \g > wy such that for all x € E,

lim R(\3, An)z = R(\3, A)x

n—-+0o00
and (Cy()x)nen is equicontinuous.
(11) There exist \g > wi such that for all y € R(C),

lim (V2T — A,) ly= (T —A)y

n—-+o0o

and for all x € E, (Cy(.)x)nen is equicontinuous.



Y. Bajjou, A. El Amrani, A. Blali / Eur. J. Pure Appl. Math, 18 (1) (2025), 5560 13 of 15

(i1i) For allt >0 and x € E, lim C,(t)x = C(t)x, the convergence is uniform on any

n—-+o0o

compact of [0, 400l

Proof. Let a > 0. Then if K(t) = % and C' = I, then the a—times integrated cosine
function is a K-convoluted C-cosine function on E, thus Theorem 1 gives the results.

Corollary 2. Let (C(t))i>0 be a K—convoluted C—cosine function with subgenerator A

and for each n € N let (Cy,(t))t>0 a K—-convoluted C—cosine function with subgenerators
(A, D(A,)) such that there exist

w >0, there exist M >0: for all t,h >0, | C(t+h) — C(t) ||< Mhe*t+)

and for allm €N, || Cp(t+h) — Cu(t) ||< Mhe*(t+h)
Then if we put w; = max(w + 1,abs(K)), the following statements are equivalent:

(i) There exist Ao > wy such that L(K)(X\g) # 0 and for all x € E,

lim Rc(M3, An)z = Ro(N, A)x.

n——+0oo

(ii) There exist Ay > wy such that L(K)(X\g) # 0 and for all y € R(C),

lim (A1 — A,) ly = (V2T — A)~y.

n——+oo

(i1i) For all X\ > wy such that L(K)(X) # 0), for all y € R(C),

lim (A2 — A,) ly = (W21 — A)~y.

n—-+00
(iv) For all A > wy such that K(X\) # 0, for all x € E,

lim Rc(\, Ay)z = Ro(\2, A)z.

n—-+o0o

(v) For allt >0 and all x € E, 11)1}_1 Cpn(t)xr = C(t)z, the convergence is uniform on

any compact of [0, +oo.
Proof. The condition
There exist (w, M) € RtxR}, foralln € N, forallt,h >0 | C,(t+h)—Cp(t) ||< M he*tHh)
implie that for t = 0 and h > 0,
| Cn(R)) ||< Mheh < Me@HDh < ppeerh

and for all x € E, (Cp(.)x)nen is equicontinuous, then Theorem 1 gives the result.
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Theorem 2. Suppose that (C(t))i>0 is a strongly continuous operators family such that
for allt > 0, || C(t) ||[< Me*t and CC(.) = C(.)C. For all x € E and A\ > w, put
Ryex := m f0+oo e MO(t)xdt.

For each n € N, note (An,D(Ay,)) the subgenerators of some K—convoluted C— cosine
function (Cy(t))t>0, such that

e i) There exist w > 0 there exist M > 0: for all n € N || Cy(t)) ||< Me“".

e i) For allx € E) (Cn(.)x)nen is equicontinuous.

e iii) There exist X\ > w such that im Rc(\?, Ay)z = Ryex, R(Ry2) C R(C) and
N(Ry2) = {0}.

Then there is a linear operator A which is subgenerator of a K—convoluted C— cosine
function (C(t))i>0 such that for allt >0 and all z € E,

lim C,(t)z = C(t)z,

n—-+o0o
the convergence is uniform on any compact of [0, +o0].

Proof. As lim R()\?, A,)xz = Ry2x then by Theorem 1 and Remark 1, we have for

n—-+o0o

all \,u > w and all n € N,
(A2 — ) )R(N%, A R(p?, Ay) = R(A2, A,)Cx — R(M%, A,)Cx,
then passing to the limit as n tends to 400, we get for all A\, u > w
(A2 = p*)Ry2R 2 = R,2Cx — Ry2Cu.
The remark 1 implies that there is a linear operator A (D(A) = R(R)2)), such that

Ry2r = (A2 — A)~1Cx = Rc(\%, A). By definition we know that

AL(K)(N)Ro(V2, Ay)x = /O o e MO, (t)xdt,

but

lim AL(K)(A)Rc(M2, Ap)z = AL(K)(A\)Ry2x

n—-+00
= AL(K)(A\)Rc(N\?, A)z,
by the proof of Theorem 1, we obtain that El}_l Cn(t)z = C(t)x, hence AL(K)(A\)Rc(\2, A)x =

J,7° e MC(t)zdt, then A is subgenerator of K —convoluted C'—cosine function (C(t))i>0,
such that lirf Cn(t)r = C(t)x for all z € E, and the convergence is uniform on any
n——+0o0

compact of [0, 4o0].
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4. Conclusion

Among the things that math people like is finding necessary an sufficient conditions
so that the limit of a sequence of mathematical objects having specific properties has
same properties. Thi is exactly what we did in this article, it is to find necessary and
sufficient conditions so that the limit of equicontinuous sequence K-convoluted C-cosine
functions (respectively the C-resolvent operators) is also equicontinuous K-convoluted
C-cosine functions ( respectively C-resolvent operators) and treated the equivalence be-
tween the convergence of equicontinuous sequence K-convoluted C-cosine functions and
the convergence of the associated C'—resolvent sequence.
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