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Abstract. Our aim in this work is to derive conditions and criteria for the oscillation of some dif-
ferential equations of p-Laplace type with a delayed term. Therefore, we develop these criteria that
confirm to us that the equations studied are oscillatory by applying comparison with lower-order
equations and Riccati techniques . Finally, we can elucidate the meaning of the new inequalities
by applying our findings to a few particular cases of the studied equation. Our findings build on
earlier findings that looked at equations with a delay term and operators of the p-Laplace type.
To demonstrate the importance of the acquired results, we provide an example.
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1. Introduction

The study of systems influenced by their historical behavior requires the use of func-
tional equations (FDEs), which are equations where the variables’ current values are de-
pendent on their past or future states. Delay differential equations are important cate-
gories of these equations. These formulas are essential for simulating intricate systems in
disciplines like biology, engineering, and physics. For instance, in control theory, FDEs
regulate feedback systems to maintain stability, and in ecology, they aid in the analysis of
population dynamics based on historical states. Continuous research in DDEs is essential
for creating theoretical underpinnings and some techniques to address real-world issues as
contemporary systems become more complicated [12]-[19].
In our work, we focus on the oscillation of

(
κ (η)

∣∣z′′′ (η)∣∣p−2
z′′′ (η)

)′
+

j∑
i=1

ai (η) f (z (bi (η))) = 0, η ≥ η0, (1)
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where κ ∈ C1 ([η0,∞),R) , κ (η) > 0, κ′ (η) ≥ 0, ai ∈ C[η0,∞), a (η) > 0, bi ∈ C[η0,∞), bi (η) ≤
η, limη→∞ bi (η) = ∞; i = 1, 2, .., j, f ∈ C (R,R) such that

f (η) /ηp−1 ≥ ℓ > 0, for η ̸= 0, p > 1is a constant, (2)

and under the condition ∫ ∞

η0

1

κ1/(p−1) (η)
dη = ∞. (3)

Definition 1. [6] If κ (η) (z′′′ (η))p−1 ∈ C1[ηz,∞), and z (η) satisfies (1) on [ηz,∞),
then a function z ∈ C3[ηz,∞), ηz ≥ η0, is a solution of (1). If a solution of (1) con-
tains arbitrarily large zeros on [ηz,∞), it is said to be oscillatory; if not, it is said to
be nonoscillatory. If all of its solutions are oscillatory, the equations (1) are considered
oscillatory.

The oscillation criteria for equtions with p-Laplace type have drawn a lot of interest
from scientists, engineers, and researchers in the study of the oscillation to DDEs, which
has grown in importance and prominence in recent years. Some advanced models based
on delays differential equations with fractional characteristics have been developed as a
result of this interest and have shown value in a variety of sectors [7]-[2]. This technique is
effective for researching the transmission of ultrasound, mimicking the behavior of proteins
and polymers, and examining the mechanical behavior of human tissues under stress. We
can better comprehend numerous biological and physical processes thanks to these mod-
els, which also enable scientists come up with creative solutions for challenging practical
problems (see [1]-[11]).
In order to apply mathematical methods to practical or real-world issues, the issue must
be stated in mathematical terms. This entails developing a model a mathematical descrip-
tion of the issue. It is known mathematically that derivatives describe rates of change,
so equations that link functions and their derivatives are often included in mathemati-
cal models. These equations, also referred to as differential equations, are used in many
scientific domains, including economics, chemistry, physics, and biology [20]-[21].

The qualitative theory of differential equations has an important place in the study of
applied as well as theoretical mathematics. It introduces dynamical systems, a popular
area of mathematics in recent years, and it is works as an expansion and generalization
of some types of ordinary equations. It also comes in quite handy when dealing with
complicated differential equations that are impossible to solve with traditional techniques.
Making assumptions on the solutions behavior without actually solving them is the basic
idea underlying qualitative analysis of differential equations [16, 23].
In mathematics, a delay differential equation is a kind of FDEs that expresses the deriva-
tive of some function at a given time in types of the function’s values at previous times.
These equations are called hereditary systems, dead time systems, aftereffects systems,
time delay systems. Additionally, there are sophisticated differential equations that can
be used in a variety of real-world scenarios where the rate at which a system’s state where
these changes are based on the current and future situation. The equation can be changed
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to highlight the effects of possible future actions. Population dynamics, mechanical control
engineering and economic issues are a few domains where these equations are frequently
applied. NDEs are used in many areas of natural and technological inquiry[3, 14].
One subfield of qualitative theory, oscillation theory, examines the qualitative character-
istics of differential equation solutions, including stability, oscillation, and others, without
actually solving the problems [8]-[9]. According to [? ]-[15], the solutions of the examined
equation are divided into three distinct classes: oscillatory solutions, positive and negative
eventually solutions. Researchers started studying the equations of fourth-order after the
oscillation for the second-order equations developed, see [17, 22].

Bazighifan and colleagues [6], we employed some techniques to ontain the adequate
and required criteria for the oscillation of(

κ (η)
∣∣z′′′ (η)∣∣p−2

z′′′ (η)
)′

+ a (η) f (z (b (η))) = 0, (4)

under the condition ∫ ∞

η0

1

κ1/p−1 (η)
dη = ∞. (5)

New standards were presented by Bazighifan and Thabet [5] to evaluate the oscillatory of
fourth-order DEs.
Li et al. [13] concentrated on the oscillation of((

z(u−1) (η)
)p−1

)′
+ a (η) f (z (b (η))) = 0, (6)

by utilizing the integral averaging method with Riccati technique and found new criteria
for oscillation.

Theorem 1. ([1]) If

lim sup
η→∞

∫ η

η0

(
µ (s) a (s)− λφ

(µ′ (s))(p−1)+1

(µ (s) bu−2 (s) b′ (s))p−1

)
ds = ∞, (7)

where λ := (1/ ((p− 1) + 1))(p−1)+1 (2 (u− 1)!)p−1 , µ ∈ C1 ([η0,∞) , (0,∞)) and φ > 1,
then every solution of (6) is oscillatory.

Theorem 2. ([4]) Let f
(
η1/p−1

)
/η ≥ 1 for 0 < η ≤ 1, h ∈ (0, 1) such that

lim inf
η→∞

∫ η

bi(η)
a (s) f

(
h

(u− 1)!

bu−1 (s)

κ1/p−1 (b (s))

)
ds >

1

e
, (8)

then (6) is oscillatory.

The goal of researching this work is to enhance and supplement the findings of [18].
The structure of the paper is as follows. We provide a few lemmas in Section 2 that will

be helpful in demonstrating our findings. We provide a new standards of oscillation for
(1) by the use of generalized Riccati transformations in Section 3. Lastly, a few examples
are taken into consideration to highlight the main findings.
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2. Preliminary Results

The lemmas, and presumptions presented in this part are crucial for streamlining the
mathematical computations utilized in this work.

There are just two instances when examining the asymptotic behavior of the positive
solutions of (1).

Case (1) : z(m) (η) > 0 for m = 0, 1, 2, 3;

Case (2) : z(m) (η) > 0 for m = 0, 1, 3 and z′′ (η) < 0.

For convenience, we denote

R (η) :=

∫ ∞

η

1

κ1/p−1 (s)
ds, F+ (η) := max {0, F (η)} ,

ϱ (η) := µ (η)

(
ℓ

j∑
i=1

ai (η)

(
b3i (η)

η3

)p−1

+
εν

(1+(p−1))/p−1
1 η2 − 2ν1p− 1

2κ
1

p−1 (η)R(p−1)+1(η)

)
,

σ (η) :=
µ′
+ (η)

µ (η)
+

((p− 1) + 1) ν
1/p−1
1 εη2

2κ
1

(p−1) (η)R(η)
, σ∗ (η) :=

ς ′+ (η)

ς (η)
+

2ν2
R(η)

,

and

ϱ∗ (η) := ς (η)

∫ ∞

η

(
ℓ

κ (v)

∫ ∞

v

j∑
i=1

ai (s)
bp−1
i (s)

sp−1
ds

)1/p−1

dv +
ν22 − ν2κ

−1
p−1 (η)

R2(η)

 ,

where µ, ς ∈ C1 ([η0,∞) , (0,∞)) and ν1, ν2 are constants.

Remark 1. The generalized Riccati substitutions are defined by us.

ζ (η) := µ (η)

(
κ (η) (z′′′)p−1 (η)

zp−1 (η)
+

ν1
Rp−1(η)

)
, (9)

and

w (η) := ς (η)

(
z′ (η)

z (η)
+

ν2
R(η)

)
. (10)

Lemma 1. [2] Assume that V > 0, U be constant, and v is the ratio of two odd values.
Then

P (ν+1)/ν − (P − a)(ν+1)/ν ≤ 1

ν
a1/ν [(1 + ν)P − a] , Pa ≥ 0, ν ≥ 1

and

Uz − V z(ν+1)/ν ≤ νν

(ν + 1)ν+1

Uν+1

V ν
.
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Lemma 2. [23] Suppose that g ∈ Cu ([η0,∞) , (0,∞)) , g(u) is of a fixed sign on [η0,∞) ,
g(u) not identically zero and there exists a η1 ≥ η0 such that

g(u−1) (η) g(u) (η) ≤ 0,

for all η ≥ η1. If we have limη→∞ g (η) ̸= 0, then there exists ην ≥ η1 such that

g (η) ≥ ν

(u− 1)!
ηu−1

∣∣∣g(u−1) (η)
∣∣∣ ,

for all ν ∈ (0, 1) and η ≥ ην .

Lemma 3. [10] If κ(j) > 0 and κ(u+1) < 0, then

u!

ηu
κ (η)− (u− 1)!

ηu−1

d

dη
κ (η) ≥ 0,

for all j = 0, 1, ..., u.

3. Oscillation criteria

We will define various oscillation criterion for equation (1) in this part.

Lemma 4. Let z be a positive solution of (1) in the end, and for all r = 1, 2, 3, z(r) (η) > 0.
In the case where µ ∈ C1 ([η0,∞) , (0,∞)) , and ζ ∈ C1[η,∞) defined as (9), then

ζ ′ (η) ≤ −ϱ (η) + σ (η) ζ (η)− εη2(p− 1)

2 (κ (η)µ (η))1/p−1
(ζ (η))

p
p−1 , (11)

for all η > η1.

Proof. Let z > 0. From Lemma 2, wefind

z′ (η) ≥ ε

2
η2z′′′ (η) , ε ∈ (0, 1). (12)

By (9), we find ζ (η) > 0 for η ≥ η1, and

ζ ′ (η) = µ′ (η)

(
κ (η) (z′′′)p−1 (η)

zp−1 (η)
+

ν1
Rp−1(η)

)
+ µ (η)

(
κ (z′′′)p−1

)′
(η)

zp−1 (η)

−(p− 1)µ (η)
z(p−1)−1 (η) z′ (η)κ (η) (z′′′)p−1 (η)

z2p−1 (η)
+

(p− 1)ν1µ (η)

κ
1

p−1 (η)Rp(η)
.

Using (12) and (9), we obtain

ζ ′ (η) ≤
µ′
+ (η)

µ (η)
ζ (η) + µ (η)

(
κ (η) (z′′′ (η))p−1

)′
zp−1 (η)



A. Almutairi / Eur. J. Pure Appl. Math, 18 (1) (2025), 5591 6 of 11

−(p− 1)µ (η)
ε

2
η2

κ (η) (z′′′ (η))p

zp (η)
+

(p− 1)ν1µ (η)

κ
1

p−1 (η)Rp(η)

≤ µ′ (η)

µ (η)
ζ (η) + µ (η)

(
κ (η) (z′′′ (η))p−1

)′
zp−1 (η)

−(p− 1)µ (η)
ε

2
η2κ (η)

(
ζ (η)

µ (η)κ (η)
− ν1

κ (η)Rp−1(η)

) p
p−1

+
(p− 1) ν1µ (η)

κ
1

p−1 (η)Rp(η)
.(13)

Using Lemma 1 with P = ζ (η) / (µ (η)κ (η)) , a = ν1/
(
κ (η)R(p−1)(η)

)
and ν = (p− 1),

we get(
ζ (η)

κ (η)µ (η)
− ν1

κ (η)R(p−1)(η)

) p
p−1

≥
(

ζ (η)

µ (η)κ (η)

) p
p−1

− ν
1/(p−1)
1

(p− 1)κ
1

(p−1) (η)R(η)

(
((p− 1) + 1)

ζ (η)

µ (η)κ (η)
− ν1

κ (η)R(p−1)(η)

)
.(14)

From Lemma 3, we have that z (η) ≥ η
3z

′ (η) and hence,

z (bi (η))

z (η)
≥ b3i (η)

η3
. (15)

From (1), (13) and (14), we obtain

ζ ′ (η) ≤
µ′
+ (η)

µ (η)
ζ (η)− ℓµ (η)

j∑
i=1

ai (η)

[
b3i (η)

η3

]p−1

− (p− 1)µ (η)
ε

2
η2κ (η)

(
ζ (η)

µ (η)κ (η)

) p
(p−1)

− (p− 1)µ (η)
ε

2
η2κ (η)

(
−ν

1/(p−1)
1

(p− 1)κ
1

(p−1) (η)R(η)

(
pζ (η)

µ (η)κ (η)
− ν1

κ (η)R(p−1)(η)

))
+

(p− 1) ν1µ (η)

κ
1

(p−1) (η)Rp(η)
.

This implies that

ζ ′ (η) ≤

(
µ′
+ (η)

µ (η)
+

pν
1/(p−1)
1 εη2

2κ
1

(p−1) (η)R(η)

)
ζ (η)− εη2 (p− 1)

2κ1/(p−1) (η)µ1/(p−1) (η)
ζ

p
p−1 (η)

−µ (η)

(
ℓ

j∑
i=1

ai (η)

(
b3i (η)

η3

)(p−1)

+
εν

p/(p−1)
1 η2 − 2ν1 (p− 1)

2κ
1

(p−1) (η)Rp(η)

)
.

Thus,

ζ ′ (η) ≤ −ϱ (η) + σ (η) ζ (η)− (p− 1) εη2

2 (κ (η)µ (η))1/(p−1)
ζ

p
(p−1) (η) .

The proof is complete.
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Lemma 5. Let z be a positive solution of (1) in the end and Case (2) hold, then

w′ (η) ≤ −ϱ∗ (η) + σ∗ (η)w (η)− 1

ς (η)
w2 (η) , (16)

where ς ∈ C1 ([η0,∞) , (0,∞)) .

Proof. Let z ultimately be a positive solution of (1) and Case (2) hold. Lemma 3 gives
us the result that z (η) ≥ ηz′ (η). This inequality can be integrated from bi (η) to η to
obtain

z (bi (η)) ≥
bi (η)

η
z (η) .

From (2), we so have

f (z (bi (η))) ≥ ℓ
b
(p−1)
i (η)

η(p−1)
z(p−1) (η) . (17)

Integrating (1) from η to κ and using z′ (η) > 0, we obtain

κ (κ)
(
z′′′ (κ)

)(p−1) − κ (η)
(
z′′′ (η)

)(p−1)
= −

∫ κ

η

j∑
i=1

ai (s) f (z (bi (s))) ds

≤ −ℓz(p−1) (η)

∫ κ

η

j∑
i=1

ai (s)
b
(p−1)
i (s)

s(p−1)
ds.

Letting κ → ∞ , we find

κ (η)
(
z′′′ (η)

)(p−1) ≥ ℓz(p−1) (η)

∫ ∞

η

j∑
i=1

ai (s)
b
(p−1)
i (s)

s(p−1)
ds

and so

z′′′ (η) ≥ z (η)

(
ℓ

κ (η)

∫ ∞

η

j∑
i=1

ai (s)
b
(p−1)
i (s)

s(p−1)
ds

)1/(p−1)

.

Once more integrating from η to ∞, we obtain

z′′ (η) ≤ −z (η)

∫ ∞

η

(
ℓ

κ (v)

∫ ∞

v

j∑
i=1

ai (s)
b
(p−1)
i (s)

s(p−1)
ds

)1/(p−1)

dv. (18)

By differentiating w (η), we find

w′ (η) =
ς ′ (η)

ς (η)
w (η) + ς (η)

z′′ (η)

z (η)
− ς (η)

(
w (η)

ς (η)
− ν2

R(η)

)2

+
ς (η) ν2

κ1/(p−1) (η)R2(η)
. (19)

Using Lemma 1 with P = w (η) /ς (η) , a = ν2/R(η) and ν = 1, we get(
w (η)

ς (η)
− ν2

R(η)

)2

≥
(
w (η)

ς (η)

)2

− ν2
R(η)

(
2w (η)

ς (η)
− ν2

R(η)

)
. (20)
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By (1), (19) and (20), we get

w′ (η) ≤ ς ′ (η)

ς (η)
w (η)− ς (η)

∫ ∞

η

(
ℓ

κ (v)

∫ ∞

v

j∑
i=1

ai (s)
b
(p−1)
i (s)

s(p−1)
ds

)1/(p−1)

dv

−ς (η)

((
w (η)

ς (η)

)2

− ν2
R(η)

(
2w (η)

ς (η)
− ν2

R(η)

))
+

ν2ς (η)

κ
1

(p−1) (η)R2(η)
.

This implies that

w′ (η) ≤
(
ς ′+ (η)

ς (η)
+

2ν2
R(η)

)
w (η)− 1

ς (η)
w2 (η)

−ς (η)

∫ ∞

η

(
ℓ

κ (v)

∫ ∞

v

j∑
i=1

ai (s)
b
(p−1)
i (s)

s(p−1)
ds

)1/(p−1)

dv +
ν22 − ν2κ

−1
(p−1) (η)

R2(η)

 .

Thus,

w′ (η) ≤ −ϱ∗ (η) + σ∗ (η)w (η)− 1

ς (η)
w2 (η) .

The proof is finished.

Lemma 6. Let z be a positive solution of (1) in the end. If∫ ∞

η0

(
ϱ (s)−

(
2

εs2

)(p−1) κ (s)µ (s) (σ (s))p

pp

)
ds = ∞, (21)

where µ ∈ C ([η0,∞)) and ε ∈ (0, 1), then z doesn’t fulfill Case (1).

Proof. Let z be a positive solution of (1) in the end. By Lemma 4, we see (11) holds
and from Lemma 1 with

U = σ (η) , V = (p− 1) εη2/
(
2 (κ (η)µ (η))1/(p−1)

)
and η = ζ,

we get

ζ ′ (η) ≤ −ϱ (η) +

(
2

εη2

)(p−1) κ (η)µ (η) (σ (η))(p−1)+1

pp
. (22)

Once more integrating from η1 to η, we find∫ η

η1

(
ϱ (s)−

(
2

εs2

)(p−1) κ (s)µ (s) (σ (s))p

pp

)
ds ≤ ζ (η1) ,

which contradicts (21). So, The proof is finished.
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Lemma 7. Let z be an eventually positive solution of (1) and Case (2) hold. If∫ ∞

η0

(
ϱ∗ (s)− 1

4
ς (s) (σ∗ (s))2

)
ds = ∞, where ς ∈ C ([η0,∞)) (23)

then z doesn’t fulfill Case (2).

Proof. Let z be a positive solution of (1) in the end. (16) holds according to Lemma
5. Lemma 1 is used with

U = σ∗ (η) , V = 1/ς (η) , p = 2 and η = w,

We obtainThe formula is

ζ ′ (η) ≤ −ϱ∗ (η) +
1

4
ς (η) (σ∗ (η))2 . (24)

Once more integrating from η1 to η, we find∫ η

η1

(
ϱ∗ (s)− 1

4
ς (s) (σ∗ (s))2

)
ds ≤ ζ (η1) .

This runs counter to (23). The proof is finished.

Theorem 3. Assume that (21) and (23) hold. Then (1) is oscillatory.

The oscillation requirements that result from applying µ (η) = η3 and ς (η) = η to
Theorem 3 are as follows:

Corollary 1. Let (3) hold. Assume that

lim sup
η→∞

∫ η

η1

(
β (s)−

(
2

εs2

)(p−1) κ (s)µ (s) (β (s))p

pp

)
ds = ∞, (25)

for some ε ∈ (0, 1) . If

lim sup
η→∞

∫ η

η1

(
β1 (s)−

1

4
ς (s) (β1 (s))

2

)
ds = ∞, (26)

where

β (η) : = η3

(
ℓ

j∑
i=1

ai (η)

(
b3i (η)

η3

)(p−1)

+
εν

p/(p−1)
1 η2 − 2ν1 (p− 1)

2κ
1

(p−1) (η)Rp(η)

)

β (η) : =
3

η
+

((p− 1) + 1) ν
1/(p−1)
1 εη2

2κ
1

(p−1) (η)R(η)
, β1 (η) :=

1

η
+

2ν2
R(η)

and

β1 (η) := η

∫ ∞

η

(
ℓ

κ (v)

∫ ∞

v

j∑
i=1

ai (s)
b
(p−1)
i (s)

s(p−1)
ds

)1/(p−1)

dv +
ν22 − ν2κ

−1
(p−1) (η)

R2(η)

 ,

then (1) is oscillatory.
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Example 1. Let equation

z(4) (η) +
c0
η4

z

(
1

2
η

)
= 0, η ≥ 1, (27)

where p = 2,κ (η) = 1, c0 > 0, a (η) = c0/η
4 and b (η) = η/2. Hence, we have

R (η0) = ∞, β (s) =
c0
8s

.

If we set ℓ = ν1 = 1, then condition (25) becomes

lim sup
η→∞

∫ η

η1

(
β (s)−

(
2

εs2

)(p−1) κ (s)µ (s) (β (s))p

pp

)
ds = lim sup

η→∞

∫ η

η1

(
c0
8s

− 9

2s

)
ds

= ∞ if c0 > 36.

Therefore, from Corollary 1, we see that (27) is oscillatory if c0 > 36.

4. Conclusion

The asymptotic behavior oscillatory characteristics of a fourth-order DDE with a p-
Laplacian were examined in our work. The goal of this work is to apply the findings of
[18] to equations that have a sublinear delay term and canonical operators. Furthermore,
our work streamlines and builds upon previous discoveries in the literature while also
advancing current knowledge. Building on these discoveries, we created new standards
that ensure all solutions to the examined equations oscillate. This contribution offers a
strong basis for upcoming investigations and is essential for developing the theoretical
framework of delay differential equations. To illustrate the strength of our findings, an
example was provided.
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