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Abstract. This paper introduces a novel extension of Caputo-Atangana-Baleanu and Riemann-
Atangana-Baleanu fractional derivatives from constant to increasing variable order. We generalize
the fractional order from a fixed value in (0,1] to a time-dependent function in (k, k + 1], where
k > 0. The corresponding Atangana-Baleanu fractional integral is also extended. Key properties of
these new definitions are explored, including a generalized Gronwall inequality. We then delve into
the analysis of higher-variable initial fractional differential equations using the Caputo-Atangana-
Baleanu operator with an increasing function, establishing existence and uniqueness results via
Picard’s iterative method. The findings presented in this work are expected to stimulate further
research on inequalities and fractional differential equations related to Atangana-Baleanu fractional
calculus with respect to increasing functions. Concrete examples are provided to illustrate the
practical applications of our results.
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1. Introduction

For a better explanation of chaotic complex systems, fractional calculus has drawn the
attention of numerous authors in a variety of fields over the past three decades. These
fields have many applications in qualitative theories, electrical networks, etc. For more
information, see [16, 18, 22]. The reason why this trend has so many readers is that the
fractional differentiation of the function produces its complete spectrum which includes
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the corresponding integer-order counterpart as a special case. In addition, the use of
these equations and formulas in its mathematical models contributes fundamentally to
real-world applications because it generates full dynamics of the topic under study and
benefits from higher degrees of freedom. Regarding applications of viscoelasticity, physics,
and dynamics, reputable results can be found in [1, 7, 13, 21].

Some scientists and engineers have adapted fractional calculus to singular and nonsin-
gular kernels in order to recognize and explain the genuine phenomena in their respective
domains. A novel definition of a fractional operator with an exponential kernel was stud-
ied by Caputo and Fabrizio [8]. The Atangana-Baleanu (AB) fractional operator was
introduced by Atangana and Baleanu [5] and has a fresh and intriguing definition of a
Mittag-Leffler (ML) kernel. The AB fractional operator was extended to higher arbitrary
orders by Abdeljawad [2]. Following that, a number of researchers examined the qualita-
tive characteristics and approximate solutions of fractional differential equations (FDEs)
utilizing Atangana-Baleanu-Caputo (ABC) fractional operators, Caputo-Fabrizio deriva-
tives, and others applied the technique of FP theory to find the existence solutions to
theses operators; for more information, see [6, 9, 10, 12, 14, 15, 23-26, 28|.

Recently, a fractional derivative of a function with respect to (w.r.t.) another function
with a ML kernel was proposed by Fernandez and Baleanu [11], and it is actually thought
of as a generalized AB fractional operator. By establishing the appropriate AB-fractional
integral of a function w.r.t. another function, authors [20] established a link between the
AB fractional operator and the Riemann-Liouville (RL) fractional integral w.r.t. another
function. Following that, Kashuri [17] introduced a fractional integral operator known as
the Atangana-Baleanu-Kashuri (ABK) fractional integral.

Inspired of the above works, in this article, we increase the fractional derivatives of
ABC and RAB with respect to an increasing function from a fractional order w € (0, 1]
to an arbitrary variable order w(7) € (k, k + 1], k > 0. Several characteristics and uses of
these concepts are also studied. Further, in the framework of the AB fractional integrals,
a brand-new generalized Gronwall inequality is also demonstrated. Moreover, Picard’s
iterative approach is used to establish the existence and uniqueness results of a higher-
variable order ABC fractional issue under initial boundary constraints our paper extends
and generalizes the results of [3]. Finally, illustrative examples are provided to support
our results.

2. Preliminaries

This part is devoted to present some crucial foundational material for fractional calcu-
lus. Let us denote by C*(3,R) the BS of all the kth continuously differentiable functions
k equipped with usual norm ||k|| = sup {|&(r)| : r € & = [, 0]}.

Definition 1. [/ Let ¢» : § — R be an increasing and differentiable function. For the
integrable function £ : § — R, the wth left-sided v—RL fractional integral w.r.t. another
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function ¥ (z), is described as
RLp@ve (2 / ) ()€ (r) dr,

for all z € S = [, 0], where T (w) = [ e "r tdr, @ > 0.

o—g

Definition 2. [5] For the function &€ € H' (5, 0) and w € (0,1], the wth left-sided RL-AB
fractional derivative is defined by

(RLABp=¢) = )j/Lw <1_ww(z — r)“) E(r)dr, z€ S

x

where A(w) is the normalization function with A(0) = A(1) = 1, and Ly is the ML
function given by

~ 4
0 C.
;F (1+wj)’ Re(@) >0, s €

Definition 3. [5] For the function £ € H'(sz,0) and w € (0,1], the wth left-sided ABC
fractional derivative is proposed by

(CABDwg) )/Lw (jﬂ(z — r)“’) g (rydr, 2€S

e

Definition 4. [5] For the function & € H' (5, 0) and @ € (0, 1], the wth left-sided RL-AB

fractional integral is formed as

8

l—-w w

(FLABRZE) 2 = ——€(2) + A@)

A=)
Definition 5. [17] For the function & € H(5,0), (where 1 < q< oo, t €R), and w €
(0,1], the wth left-sided KAB fractional integral is written as

RL
RTE(2), z €S

KABoo. 1l-w w 1 (2T =" w1 o
(ZAPR "E)z—A(w)f(z)jLA(w)F(w)%/r” < 7 > E(r)dr, z€ S, n>0.

Definition 6. [8] Assume that w € (0, 1]. For the function & € H' (s, ), the wth left-sided
—RL-AB fractional derivative under an increasing differentiable function ¢ : & — R with
P'(2) £ 0, for all z € S is given by

(R Dz ) (2) = (1_1:;%; G (1‘_ww<w<z> - w<r>>W) §(r)dr, 2 €9
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Definition 7. /8] Assume that @ € (0,1]. For the function & € H' (s, ), the wth left-
sided 1v—ABC fractional derivative under an increasing differentiable function 1 : & — R
with ¢'(2) # 0, for all z € & is defined by

(42 Dz %) (2) = 2

(1

(w;) / ()L (ﬁﬂwwz) - ¢<r>>W) ¢, (r)dr, z €3,

where &, (r) = &lz)

Definition 8. [20] Assume that w € (0,1]. For the function & € H' (s, 0), the wth left-
sided 1v— RL-AB fractional integral under an increasing differentiable function v : ¥ — R
with ¢'(2) # 0, for all z € & is described as

(APRZVE) (2) = T €+ fioy

Remark 1. It should be noted that

(RLg%ngg) (2), z€ 3.

(i) Definitions 6, 7 and 8 reduce to Definitions 2, 8 and 4, respectively, by taking (z) =
z.

(i) Definition 8 follows immediately from Definition 5, by considering ¥ (z) = %

Lemma 1. [4] Assume that w,v >0 and £ : & — R. Then
(1) BERZY(€(2) = £ (30)" " = mmty (€(2) = € (o)) ™H
(2) RL%fﬂZJ RL%Zﬂﬁé (z) =RL %g—ku,wg (2);
k
(3) ((w(lz)di) RLW;lPé) (2)=¢(2), keN.
Lemma 2. [20] For w € (0,1] and £ : S — R, the relations below are satisfied:

(i) (RLAPRE REABDEYE) (2) = € (2):

(ii) (FEABDZY REABRZE) (2) = € (2).
Definition 9. [22] For the function & € L([0,T]),

(a) the variable order of the RL fractional integral is remembered as

R = sy [ T e

(b) the variable order of the Caputo fractional derivative is given by
C e e 1 : k= (r)~1¢(k)
DF8e) = iy | - T 0
0 Lk —w=(2)) Jo

where w : [0,T] — (0,1], T > 0 is a continuous function.
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3. Derivatives of higher-variable orders

In this section, we consider ¢ : & — R to be an increasing function with ¢'(z) # 0
to investigate the definitions of higher-variables order fractional derivatives and integrals
within the AB framework with regard to a function .

Consider a partition of & = [, o] as

{S1 =[], So=(n, 7], S3=(72,73],--, Sk = (Th—1, 0]}
and assume that @ : § — (k,k + 1] is a piecewise function such that

w1, ifTE%l
wo, if T € &

k
= @u(T)L(1) =
u=1

wy, if T € Sy,

where I, is the indicator function of &, = (741, 7%] and k < w, < k + 1 are constants
with v =1,2,--- , k, such that 79 = » and 7, = 0 and

Lu(7) = 1 for 7 € Sy,
Y21 0 otherwise.

Assume that C*(J,,R) refers to the space of all kth continuously differentiable func-
tions £. Clearly, it is a Banach space under the norm ||| = sup{|£ (2)|: 2z € S = [5,0]}.
Here, we shall write for simplicity t,(7) = w, and 0,(7) = 6, for all T € J,.

Definition 10. Let w, € (k,k + 1] and 0, = wy, — k, for k > 0, u > 1. For the function
© € H'(,0), the wyth left-sided 1)—RL-AB fractional derivative under the function 1)
with ¢'(2) # 0, for all z € & is defined by

<RLABDwu,w @> (2)

1 d
) (A D)

(#m
() At e, (e v ) )
(

1 d>’““ Ay — k)
w’(z d (

kE+1—wy,) ¢ (2)

" / Vi) (M(w(z) - «p(vﬂ))m—k) o (r) dr.
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Definition 11. Let w, € (k,k + 1] and 0, = w, — k, for k > 0, u > 1. For the function
p(k) € H'(s,0), the wyth left-sided 1»—ABC fractional derivative under the function 1)
with ¢'(2) # 0, for all z € & is described as

(CABDfu,wp> (z) = <CABDZu,wng€)> (2)

Ay —%k‘)
(k41 —@)
/ V0 Lt (T2 ) = 0= ) o (),

k
where pf/}k)(z) = ( L di) o(z) and p(o)( ) = 9(2). Ifw, =n €N, then (CABDS“’wp> (z) =
o (2).
Definition 12. Let w, € (k,k + 1] and 0, = w, — k, for k > 0, u > 1. For the function
© € H'(x, 0), the wyth left-sided 1)— RL-AB fractional integral under the function 1 with
V'(2) #0, for all z € § is defined by

(AR5 00) ) = (PR AP ) 0 = (AP M) o
k+1_quL k. wu_k RL Tt
= Aeow—k) R @(2)+m RZY0(2),

where §Ri’¢ takes the form
R / —p) e () dr.

Remark 2. For u > 1, it is clear that

(i) if we take w, = w € (0, 1] in Definitions 10, 11 and 12, then we have Definitions 6,
7 and 8, respectively.

(i) if we put w, = w = k + 1, then w, = 1 and hence the following is true for our
generalization to the higher-variable order cases:

(RLABDfu,z/}p) (z) = <Wt >d>’f (RLABD}{,wp(z)) _ pgpk—i-l) (2),
(CABDfu,wp) (2) = (CABDl,w (k)) () = pfpk-i-l) (2),

(RLAB%Z'u,wp) (z) = (RL%’;w AB%}{:iﬁp) (2) = (RL%ZH,W) (2).
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Lemma 3. For w, = w € (0,1], u > 1, the equations below hold
(i) (REAPRE CABDEVG) (2) = () — ol2).

(ii) (CABDEY REABRZVQ) (2) = p(2) - p(30) L ( £5 (0(2) — ()7 ).
Proof. (i) Utilizing Definitions 7 and 8, we get
<RLAB§RZ;,1/; CAB Df”’” p) (2)
_ A(w) CAB yw )
= ooy (DY) ()

w RLypywp CAB pyw.i
Tw)( RE 200) (2)

S ENEC H;b;y)mmr

e B () S e

_ i( —w )J RLWWH,w@/(Z) n w RLQRW’w = < —w >] RwaquKJ(Z)
; =

j=0 l-—w ” VP'(z) 1-w ” 1-w
— io: i ’ RL%ijrl»w p,(z) _ i —w JH RLéij+w+1 P £ (Z)
PN 8 V(z) g \l-w P'(2)

(ii) Again, utilizing Definitions 7, 8 and the identity

d (¥(2) —¥()"

gt () o) =R RV - o) I e >
one has
(CABDf’w RLAB%Z,UJ@) (2)
=z (3 S o+ 17 (BRE ) ()

P'(2)
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T —w jRL jT+1,1 1 d RLypw
+1—wz<1—w> L (@b’(z)dz)( e p)(z)

7=0

— J ) > Jw > —w Gk joo -+
(1_w> {RLW%(Z> o) [ﬁ( +>J;)w< )’ }‘j§<1_w) Ryt

< —@ )j p(0) [1(2) — v ()]’
1— I'l+ jw)

|
WK

J=0

|
+
1M

—w

— o) - oA (2

(02— w7 )

Lemma 4. Assume that p € C*[3,,R] and ¢ € C¥[S,,RT). For w, € (k,k + 1] and
Ou =wy —k, for k>0, u>1 and all 7 € &y, the following equations are true:

(i) (RLABDfuﬂZJ RLAB%fuﬂﬁp) (2) = p(2).
(ii) (RLAB%z;uﬂP RLABDfuﬂ/)p) (2) = p(2).

(iti) (CABDTY FLABRZWVG) (2) = p(2) = p(56) Lo, -k ( T2y (0(2) = (3= 7).

kel ()

(iv) (FEABRZ™Y CABDZ Vg () = p(2) = 30 P (6(2) — (o)™

m=0

Proof. (i) In light of Definitions 10 and 12 and using Lemmas 1 and 2, for u > 1, we
can write

P(z)dz

= 1 i : RL k)
- <<¢(Z)dz> R0 | (2) = p(2).

(ii) According to Definitions 10 and 12, for u > 1, we have

(RLAB%Zu,zb RLAB pwu.y p) (2)

1 d\*
(RLABDfu,w RLAB%ZM%) () = << > RLABDZu,w RLAB%iu,zp RL%ic{,wp> (2)

k41 —w, ™ o (ras Wk
_ u R Dwu,w W, RLABDwu,z/)
N — k) ( 70 (2) + A(wu T ( 0(2)

- ® (w'1z>jz>k+li(k(+w1u—_ =) / Vo () e

oy — RL o k+1oo ey —
o o) )

(k+1—1wy) P'(z) dz kE+1—w,
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/ e ( o +3(wf(i)k)>>j(wu_k)p(r)dr,

which implies that

<RLAB§R1:u,w RLAB pywu.v ) (2)

e j k+1
- (=) Gra) e

J=0

_§<k+1—_m> (

0

> —(wu — k)Y (0 —
_ Z( ( )) RL%g%(wu k)—&—l,wp(z)

j—O k+1— 1wy

k+1 '
> RL%L(wu—k)—i-l,wp(z)

wU_k T j (T, — Wy —

= zo(Z)-
(iii) Using Definitions 10, 12, Lemmas 1 and 3, for u > 1, one has

(C’AB DY RLAB%ZM#ZJ@) (2)

K
_ <CABDZU,¢; ( 1 d) RLypk. RLABéRiu,wp> (2)

¥(z) dz
_ (C’ABDZu,w RLAB%iu,w@ (2)
— 0l0) - plLa, (g (00e) - )™

—(wy — k)

= p(2) — p(3) Lo,k <1—(wu—k)

(0(2) ~ ).
(iv) Based on Definitions 10, 12 and Lemma 3, for u > 1, we get
(RLAB%Zu,w CAB DEu p) (2)

(RL%k,Qb RLAB%GU,w CABDZu,zppSpk)) (2) = _RL %kw ( (k )( ) — p(/’ﬂ)(%)>

Py (4
E=1 o), k)¢,
= o) - wmf )w(z)—«ﬁ(r»m—%f ) (06e) - vt
m=0
ko m),,
— o) - “”mf () — v
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Lemma 5. Assume that p € C*(3,,R) and ¢ € CF(Sy,, RT) with ¢/(z) # 0. For w, €
(k,k+1],0, =wy—k,A\>k+1and ¢ >0, for k >0, u > 1, the relations below are true:

. Do, (k41— D14+ (p(2)— ()5 TF | (wu—k)D(1+¢) (p(2)—gp(5)) ST
(i) REABRZY (0 (2) — 9 (%)) = ( A('()ﬂu(—k)ll((?—(l-q)—klf)( Dl /)\(z(vu—l)c()ip“((l)—&—cp—igk))) :

.. W, A Alwy—k X (- wy—k J T(1+X 2)— () (Fu—k)FA—k
(ii) “ABDTY (o (2) — 9 (30))" = k-(i-l—wu) J;O (k:—(i-l—wu)) ( IZ((?((;ufk()—i)-))\—k-s-l) .

(iii) CABDEY (o (2) — p ()" =0, 0 =0,1,.... k.

. O, (k11— 2)—p ()" wy—k 2)—p(3))“n
(iv) (RLAB&R% 1) (2) = { A(wuz(l?)(l“()kfl() 2 A(;ﬁ(k))r(ﬁlg)) :

(v) (CABDf“’wl) (2) = 0.

Proof. (i) Using Definition 12 and Lemma 3, for v > 1, we have

RLAB%ZJ“,w (p(z) — p(%))c
o R @y —k B
- e W) —p6) g R () = ()

k+1-w, T(1+()

Ay, — k) T+ + k) (p(2) — g (30))TF
@k __T(1+0) =

Aoy — k)T +C+k) (9 (2) — o (3)) T

_l’_

(ii) From Definitions 3, 11 and Lemma 3, it follows that for u > 1,
CABDZ Y (o (2) — o (50)

k
= cpge () 06 - o)
= el O o) - p (P

NG [, —6, \ T(1+2) (p () — p (5)* "+ o
= O fem Y () P e e o) - o) ar

O TAHNAG) = b\ rpgeit, _
- Y1 - u>§<1eu> R G e (T

A K b T(14)) Ot A
N 1—euz(1—9u> eV GIC R

AMwu — k) o= [ —(@a = k) Y TA+ ) (p (2) — p ()= PHAE
k—i—l—wujz:%(k—i—l—wu) F(j(wy —k)+A—k+1) ’
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(iii) From Definitions 7 and 11, one has
CAEDZ Y (9 (2) = p ()7

k
_ CABppuy ( wt )d) (0(2) — p ()

Lo L(1+0) o
D G ey P e G

= O 1 (e 00 - 00" s 0 0) = () ar

Taking ¢ = ¢ = 0 in portions (i) and (iii), we conclude (iv) and (v), respectively.

4. Generalizing Gronwall’s inequality

This part will begin with the following generalization of Gronwall’s inequality.

Lemma 6. [27] Assume that the function 1 € C1(S,,RT) is increasing with '(z) # 0,
for each z € S and w > 0. Let £(z) be a nonnegative and nondecreasing function (NNF,
for abbreviate), h(z) be a nonnegative function locally integrable (NFLI, for short) on
and o be a NFLI on . If the inequality

z

0(2) < h(z) +((2) / Lo,/ (r) (% (2) = ()™ o (r)dr, z€ S

Ve

holds, then

y<n)+ [ S IR e v o i

for every z € &

Lemma 7. [27] Assume that all requirements of Lemma 6 are true, if the function h(z)
18 nondecreasing on ¥, one has

0(2) < B(z) Lo [((=)T () (¥ () — ¥ ()7, z €.

In this role, we will present a novel Gronwall inequality within the context of the
1 — RL — AB fractional operator.
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Lemma 8. Suppose that the function ¢ € CY(Sy, RT) is increasing with ¢'(z) # 0, for

each z € ¥ and w, = w € (0,1], foru > 1. Assume that O(z) = % is a NFLI
wG(z)

on'S, 2(z) = i@ -(—=)a s o NNF and ¢ is a NFLI on'S, such that

0(2) SU(2) + G2)HABRZY ) (2), z€ S (1)

Then, for each z € &, we have

o( / Z = Z” ) (@ (2) — % ()= 0 (r) dr.

Proof. Utilizing (1), Definitions 1 and 8, one has

0(z) < UE)+G(:) (FHAPRTY0) ()

< U(2) +6(2) llmjg %(— / e (r)dr| .
Therefore,
o) < U(z)A(w)

A@) — (1 - 2)G(2)

wG(z) 1 r N E (Y () i
+A<w>_(1_w)g(z)r(w)Z<¢<> V) (e (1) d

Lemma 6 allows us to obtain

U(2)A(w)
¢ = Ym0 —=a0)

FS =G(2) I UA®) (W) — )P )
> I <A<w> Yy w>G<z>> AMw) - (1-wGE)

S EE 0y ) - w0y @ (1)

IN
@
X
_|_

N —

Corollary 1. In light of assumptions of Lemma 8, if the function ©(z) is nondecreasing
on S, then, we get

0(2) € O(=) L [E(2) (4 () — ¥ ()7), 2 € S.
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Proof. Based on Lemma 8, one can write

IN

0(z) ]

< O(2)Le [E(2) (¥ (2) — ¥ (2))7].
A novel Gronwall inequality in the context of the ¥»—KAB fractional operator will be

concluded here.

Corollary 2. Let w, = w > 0, for u > 1. Assume that ©(z) = AU(& is a NFLI

(@) -(1-w)G(2)

on ', E(z) = WSZ‘;)G@) is a NNF and o is a NFLI on S, such that

0(2) SU(2) + G PRT0(2), z €S,
Then, for each z € &, we get

—

o(z /Z 771 Jwrn : :(Z))]j (2" — T")jw*l O (r)dr.

)

z

Proof. The proof follows immediately by taking 1 (z) = 7" in Lemma 8.

Corollary 3. Via the assumptions of Corollary 2, if the function ©(z) is nondecreasing

on S, then, we get
oM — I\ @
0(2) <O(2) Ly [E(Z) < ; ) ] L Z2€S.

Proof. Taking ¢(z) = 2~ in Corollary 1, we get the proof.
n

5. Solving a fractional differential equation

This part is devoted to presenting the existence and uniqueness of solution to the initial
FDE below:

{ CABDwuﬂ/’ ( ) gb(Z,Q( )) z€ u>1, (2)

Qq(p)( ) _’YZv Oula k
where CABDZ*Y ig the w,th left-sided »—ABC fractional derivative such that w, €

(k,k+1],v € R (i > 0) are constants, ¢ : I x R — R is a continuous function, ¢ : & — R
is an increasing function with ¢/(z) € C*(3y,R") and ¢/(z) # 0, for all z € S and

0(z) € C¥(3,,R) is a recognized function in which gg) (z) = <¢%(Z)d%)l o(z) such that
0
o (2) = ol2).
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In fact, by utilizing Lemma 4 in conjunction with the initial FDE (2) and the z,th
left-sided )-RIL-AB fractional integral operator on both sides of (2), we get

k
= 3" B (0(2) — ) +REAE RV, o2)). )
=0

Now, we shall apply Picard’s iterative technique [19] to demonstrate the existence and
uniqueness of the solution to Problem (2).

Theorem 1. Assume that the assertions below hold:
(1) there exists a constant T > 0 such that

sup [¢(z, 00(2))| < T,

FISR
(ii) there exists a constant P > 0 such that
|6(2,01) — D(2,00)| < Ploi — 02|, forallz €S, 01,00 € CF(3y, R).
(iii) we have the inequality

, ((k: F1- @) (6) ~ 600" (= B) (0() - w<x>>““> <1 @

A — k)T (k + 1) M — k)T (wy + 1)

Then, the problem (2) has a unique solution on

Proof. Tt is evident that the solution to system (2) is the same as the solution to the

FIE (3). Set
Zk: o1 (=) =¥ () (5)
and -
Zkév; h(s))! +EAB RZV (2, 05-1(2)), s € N (6)

o0

Clearly, the series 9o (2) + > (0m — 0m—1) has a partial sum

m=0

( +Z _le

We want to show that the sequence {os (2)} converges to ¢ (z). By a mathematical induc-
tion, for all z € [», v], we can write

los (2) = 051 ()]
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o1 (41 =) (W) =) (@u— k) ((v) — ()™
= TP 1( Mwn— Dk +1) A(ww— Bl (@ + 1) > e

Based on (5) and (6) and Lemma 5 (iv), one has

ot~ ooll = sup |PAPRTV6(z, 00(2))
(k+1—m,) (B(v) =¥(2)" | (wa = k) ((v) = ()™
= T ( Moy —RTE+D) Aoy — kT (@ £ 1) ) '

Hence, for s = 1, the inequality (7) is true. After that, consider the inequality (7) is
satisfied when s = n. Therefore,

lonss = eall = sup |FEAPRE VG (z, 0, () =FEAB RTV (. 001 (2))|

ZES

= sup [FFAPRZY [6(2, 04(2)) — 0(z, 001 ()]

ZES

< FHABRZ (Plloa(z) = on1(2)]))
it [ (L= 0) (0(0) = ()" (= k) ($(v) = ()7
= ¢<TP< @ DA A @+ D) >>
w1 (k1= @) @) =) | (@ = k) W %““
- TP(H)I( Mww— BTG4 1) A<wu—’f )

Hence, the inequality (7) is fulfilled for s = n + 1. Then inequality (7) is true for every
s € Nand all z € [5,v]. Thus, one can write

- et (R 1= @) (B(0) = ()" (= B) ($(v) — ()™ )
2 lles(2) — e () < 2 TP 1( A@u- W0k +1) | A(@a— (@, + 1) ) |

The series on the right side of the aforementioned inequality is convergent as a result of as-
o o0
sumption (4), and so Y ||os — 0s—1]| is also convergent that shows that go+ > ||os — 0s—1||

s=1 s=1
converges.

Put

0
0= 0o +Z ”Qs - Qs—1||7
s=1

it follows that
los — ol = 0, as s — oc. (8)

This indicates that the solution to problem (2) exists. From (8), we get

(., 05-1(.)) — &(., 0(.)|| £ Plos—1 — o] = 0, as s — oo.
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Thus,
lim ¢(z, 05-1(2)) = ¢(z, 0(2)). (9)

S5—00

As s — o0 in (6) and applying (9), we have
k

Yi )
0(z) = 7: (¥(2) = ()" +HAP RZVo(2, 0(2)),
i=0
which is a solution of the initial FDE (2).
Finally, for the uniqueness, assume that p is another solution to Problem (2). Thus,

we get

lo—all = sup|FEATRZVo(z, o(2)) ~REAB RZ (2, 3(2))|

ZES

= sup [FEABRZ (2, 0(2) — 6(2, 5(2)))

ZES

IN

RLABRZwt (Plo(2) — 0(2)]))
k “u
» ((k +1—m@y) (p(v) —¥()" | (@u = k) ((v) — P(5)) ) lo—2ll-

IN

ANow—FTE+D 1 A — kT (@ 1 1)

In light of (4), we conclude that |0 — o||, that is, o(z) = o(z). This completes the proof.

6. Supportive examples

In this part, we support our results by the following examples:
Example 1. Consider the following initial FDE:
CAB D@ (2) = cos (2%) — 25,3,
{ o1) =1, g,(1)=1, '
where (z) = In(z) and

wa(r) = | 098, TelL,
T 12, T e (2,3),

The requirements of Theorem 1 shall be examined as follows:

foru>1.

‘¢(Z7 01) — ¢(z, 02)’ = |cos (z2) — 917(2’) — cos (ZQ) + 927(2)

1 —01(2) 1 —0(2)
_ Lalk) elk)
1—o0i1(z) -0

< 1o - ).

Then, P = % > 0. If we take A(w, — k) = 1, then, we have the following cases:
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(a) If T € [1,2], one has k =1, and

P ((k 1) (9(0) = ()" (0 — B) () — 9(0)™

Aew — BT (k+1) A — B)T (@0 + 1) ) ~ 0171925 < 1.
(b) If T € (2,3], we have k = 3, and

P ((k +1— @) (P(v) — ()" L (Eu = k) (@) - ()"
Ay — BTk + 1) Aww — k)T (g + 1)

) ~ 0.568509 < 1.

Therefore, all axioms of Theorem 1 are fulfilled. Hence, there exists a unique solution
to Problem (10).

Example 2. Consider the following initial FDE:

CABDS_J“’wQ(z) =23 - glgz), z €[0,2], (1)
Q(O) =0, Qi/;(o =0, Qw(o) =2

where (z) = z and

1).2, T E [%, 1],
‘Z pr— ‘)a > .
u( ) { 0.4, T € (1,2}, f w21

Assume that problem (11) has an ezact solution o(z) = 2.

The conditions of Theorem 1 shall be checked as follows:

6(2, 01) — ¢(2,02)] = [2° = 01(2) — 2° + 02(2)]
< loi(2) — 02(2)].

Then, P =1 > 0. If we take A(w, — k) = 1, then, we have the following cases:

(a) If T € [5,1], one has k =1, and

2 ((k 11— ) (9(0) — ()" (0 — K) () — 9(0)™

~ 0.64531 .
Aew — BTk +1) A — B)T (@0 + 1) ) 0.645318 < 1

Example 3. If 7 € (1,2], we have k = 2, and

P ((k 11— @) (0(0) = ()" | (@ — k) ((v) =)™

Ao — BT+ Alme— k) (wm + 1)

) ~ 0.735214 < 1.
Hence, all assumptions of Theorem 1 are fulfilled. Therefore, the problem (11) possesses
a unique solution.

Next, using Picard’s iterative method, we will compute the solution of system (11) as
follows:

0s (2) = 00 (2) +CAB Dg’“’d’ (23 — gs_l(z)) , 00(2) = 23
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Then
01 (Z) _ 23 + CABD(i)Uu,¢ (23 _ QO(Z))
02(2) = 2+ YEDTY (P — 01(2))
03 (Z) = 237
or(z) = 2

This corresponds to the exact solution.

7. Conclusion and open problems

3704

This paper delves into the application of AB fractional operators with higher-variable
orders using increasing functions. We explore the qualitative properties of these operators
and demonstrate the existence of a unique solution for an initial FDE using Picard’s itera-
tion method. Our findings are supported by two illustrative examples. We also introduce
a generalized Gronwall inequality within the framework of AB fractional integrals. This
study contributes to the advancement of fractional calculus and its potential applications.
Future research will focus on applying these extended operators to real-world dynamic sys-
tems, investigating new properties and inequalities associated with them, and exploring

the corresponding right-sided fractional operators for RL-AB, ABC, and KAB.

8. Abbreviations

AB— Atangana-Baleanu

ML— Mittag-Lefler

FDE—fractional differential equations

ABC— Atangana-Baleanu-Caputo
w.r.t.—with respect to
RL—Riemann-Liouville
ABK—Atangana-Baleanu-Kashuri
RAB—Riemann-Atangana-Baleanu
RL-AB—Riemann-Liouville-tangana-Baleanu
NNF—nonnegative and nondecreasing function
NFLI—nonnegative function locally integrable
FIE—fractional integral equation
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