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1. Introduction

Convex analysis provides a powerful mathematical framework for analyzing problems in
various fields, especially due to the well-behaved properties of convex sets and functions.
Its uses span a variety of fields, including control theory [56], economics [54], machine
learning [38], and optimization [53]. In control theory [55], systems are often formulated as
convex problems, where the system needs to minimize energy or error subject to dynamic
constraints; in signal processing, it aids in the design of codes that minimize transmission
errors, enhancing communication reliability [24]. Convex analysis is closely related to
economic theory, particularly in the study of utility functions [14], which represent rational
consumer preferences where utility increases with consumption, but at a diminishing rate.
For more recent applications in diverse disciplines of applied sciences, we refer to [22, 26,
27, 59, 64] and the references therein.

Interval analysis is a mathematical methodology that allows numerical algorithms to
address uncertainty more rigorously. It has applications in a variety of domains, including
numerical computation, global optimization, control systems, engineering, and computer
graphics. Borwein et al. [17] initially defined convex interval-valued functions (IVFs)
in 1981, and since then, several researchers have extended and promoted different types
of convexity by using IVFs. For example, include preinvex [48], harmonic convex [41],
Godunova-Levin [5], (h1, ha)-convex [9], log-convex [49], coordinated convex [62], and var-
ious others [21, 31, 34, 39, 40, 43, 51, 52] and the references therein. It’s important to
remember that the partial order relation defines these convex IVFs, meaning that any two
intervals may not be comparable. This indicates that the maximum-minimum problem
cannot be solved since it is impossible to determine which of them is the greatest or small-
est interval using these orderings. Hu and Wang [23] introduced the cr-order, which takes
into account the midpoint and radius of two intervals to address this limitation. This
order is total, meaning that any two interval numbers are comparable. In [61] authors
provided the appropriate optimization conditions for the constrained optimization issue
of interval-valued objective function and provided a novel definition of convex IVF using
cr-order.

Among the several different types of inequalities, the Hermite-Hadamard type inequal-
ity is a fundamental component of convex analysis, offering crucial perspectives and in-
struments for theoretical investigation and real-world applications in numerous scientific
domains. The inequality is defined as follows:

Consider ¢ : Q C Z — % a convex mapping on the interval Q with 1,9 € 2. Then,
the inequality listed below is true:

<I><El+€2> Sg 1 /62(1)(9) dggw, (1)

2 2 — &1 €1 2

The Hermite-Hadamard inequality is frequently employed in optimization problems involv-
ing convex functions. It helps establish bounds on integrals of convex functions, which can
be crucial for finding optimal solutions in various mathematical models. Various authors
study this inequality using different methodologies, including different kinds of interval-
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valued order relations, stochastic and fuzzy-valued mappings, and various kinds of frac-
tional operators. For example, in [50], authors used generalized convex mappings, also
known as preinvex functions, and developed various variations of Hermite and Hadamard
inequalities for interval-valued functions; in [63], authors used h-convex mappings on coor-
dinates in the sense of interval-valued functions and developed Hadamard and Bullen type
inclusions; in [10], authors used (hi, he)-Godunova and Levin functions and developed
Hermite-Hadamard and Jensen type inequalities; in [35], authors used harmonical con-
vex mappings and developed double inequalities using inclusion relation; in [18] Dragomir
developed Hermite-Hadamard’s type inequalities for operator convex functions; in [19] au-
thors show some new generalization of Hermite-Hadamard and Mercer forms of inequal-
ities for geometric—arithmetic convexity by using interval maps. Some other important
results and inequalities connected to these employing different types of fractional oper-
ators, including Hadamard, Atangana—Baleanu, Caputo—Fabrizio and Riemann—Liouville
fractional integrals (see refs. [1, 2, 6, 28, 30, 42, 60]).

As the primary focus of this paper is on cr-interval order relations, recent advances in
center-radius order relations should be recalled using a different type of convex mapping.
In [58], the authors initially presented the idea of cr-order in covex sense. In comparison to
other order relations, this relation is more compatible and possesses a various additional
characteristics that other interval order relations lack. In [25] authors defined a new class
of convex mapping for convex optimizing problems in the context of cr-order based on
their work. In response to these discoveries, Liu et al. [36, 37] derived discrete versions
of Jensen and Hermite-Hadamard inequalities based on two different types of generalized
convex mappings by using cr-order. As a result of using superquadratic functions in a
fractional frame of reference via cr-order relations, Khan and Saad [33] developed sev-
eral novel bounds for various kinds of double inequalities. To explore entropy and mean
characteristics, Fahad et al. [20] used geometric and arithmetic-cr-convex functions.

Afzal et al. [4, 8] created different types of discrete Jensen type and Hermite-Hadamard
inequality utilizing the conventional Riemann integral operator by using the cr-h-Godunova-
Levin function in convex and harmonic convex sense.

Theorem 1 (see [4]). Let h: (0,1) — #Z7T such that h(3) # 0, and ® : [e1,e0] — %f
be an cr-h-Godunova-Levin mapping, €1,e2 € Z, then the inequality stated below holds
true:

1 €2 !

g2 — &1 €1

Sahoo et al. [45] employed fractional integral operators to construct the following
double relation for cr-convex functions:

Theorem 2 (see [45]). Let ® : [e1,e2] — %5 be an cr-convex function on [e1,e2], then
the inequality stated below holds true:
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2

o+ €1 204711—‘(044- 1) o
P <2> =er W <J(s1+€2)+q>(€2) + J(q;fQ)—(I)(el))

D(g1) + P(e2)

jCT 2

Shah et al. [47] employed cr-convex stochastic processes to establish different variations
of Hermite-Hadamard type relations in the Mercer sense.

Theorem 3 (see [47]). Let @ : [e1, 2] x Q2 — ZF be ay-convex cr-interval-valued stochastic
processes then the inequality stated below holds true:

1—¢e¢
gq) <771+772_81+627'>

7(3) 2
1-Brys 5
o g [V @O =)+ 30 [0+ — 1)
P(eq,.) + D(eo,.
=er |:(I)(171,.)+@(7’]2,.)— (1 )2 <2 ):| A.

For some additional results and inequalities obtained using other types of generalized
convex mappings under center radius order relations connected to developed results, please
see the following publications [7, 12, 44, 46] and their references.

This study is regarded fresh and significant since it presents new and original conclu-
sions using center-radius interval order relations. Furthermore, this is the first time that
Hermite-Hadamard and its numerous versions, including product form, weighted form,
and employing symmetric mappings, are produced by Atangana-Baleanu fractional inte-
gral operators under cr-order relation. Additionally, we utilize a number of additional
known results, such as Minkowski, Holder, and Young, in the development of these re-
sults. Furthermore, we provide bounds of these inequalities in terms of special functions
and many applications in terms of special means.

We are especially inspired by the works of these authors [4, 11, 13, 20, 33] to introduced
a new and improved form of several inequalities, which undergo multiple improvements
and reverses in various circumstances. This note is structured into five parts, starting with
an introduction and foundational discussion of the topic related to preliminary. In Section
3, we develop numerous innovative versions of the double inequality, including its product
and weighted forms, using various other well-known inequalities. In Section 4, we tie our
conclusions to special means and demonstrate their applications. Finally, in Section 5, we
provide a precise conclusion and possible future work.

2. Preliminaries

In this section, we present some well-known definitions and outcomes that can be uti-
lized to support the paper’s core findings. Furthermore, we will go over some fundamental
ideas relating to fractional and interval calculus. Some fundamental topics are not fully



J. E. Macfas-Diaz et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 4014-4049 4018

covered here; thus, we refer to [20]. Prior to proceeding, we correct a few notations that
are utilized in the article.

e Z;: space of intervals in %,

e & = ®&: interval maps become dysfunctional;
e C: inclusion interval order relation;

e =,: cr-interval order relation;

e <: standard order relation;

e IVF: interval-valued function;

2.1. Set-valued Analysis

The space containing all subsets of % in n-dimensional interval space Z; .

Hr ={[e1,e2] 1 €1,62 € Z and 1 < &2},
To define the Hausdorff metric in %, use this formula:

H(61752) - maX{d(€1,€2)7d(€2,€1)}, (2)
where d(e1,€2) = sup,¢., d(v, €2), and d(v, €2) = minge., d(v, ) = minge., [V — p|.
Remark 1. The Hausdorff metric (2) can also be expressed as follows:

H([e1, 1], [e2, E2]) = max{le1 — g2, [E1 — &2}
In interval space, we call this the Moore metric.

For instance, if (1 = [e1,81] and (o = [e2,52| are two closed intervals, then the
Minkowski sum, scalar multiplication, and difference are defined as follows:

G+ G={e1+e|e1€C,e2€tand I'¢ = {Te1 | e1 € (1}
and
(1 — G = [e1 — 82,81 — &3],

with the product

(1 ¢ = [min{e1e9, €152, E162, 182}, sup{e1£2, €182, 162, E1€2 }),

G1 . [e1 e &1 &1 €1 €1 &1 €1
— = mn< —,—=, —,— ¢,MaAX{ =, =, —, — )
(2 €9 &2 €3 E2 gy &3 €2 &

and the division

where 0 ¢ (a.
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Definition 1 (see [4]). For any two intervals the center-radius order relation is defined as

G = [e1,7) = e wr) = (52,52, G = [1.53] = (2, @) = (252,552 ), where

we < Qey if we # Qg
wr < Qp, if wp = Q.

Cl jcr C2 <~ {

The relation <.y satisfies the following relational properties for any three intervals (1 =
[i7§] = <w67w7">7 <2 = [67175] = (QC7Q7‘> a‘nd CS = [771;%] = <7707777’> : R@ﬂ@[li'l'l)’lty

Cl =er Cl- Anti—symmetry: Cl =er C2 and C2 =er Cl- Tmnsitivity: Cl =er CZ and CZ =er <3
then (1 =<cr (3 . Comparability: (o <cr (3 or (3 <cr (2.

Theorem 4 (see [4]). Let @ : [e1,e2] — ZF be an interval set-valued map given by
¢ = [®,P]. Then the ® is Riemann integrable on [e1,e2] iff & and ® are Riemann
integrable on [e1, 2] and

/E 162<I>(e)de: [ / 162 ®(e)de, / jZ@(e)de]

We shall refer to the set of all Riemann integrable interval-valued maps on [e1, €3] as

IH(

51782]) :

Theorem 5 (see [4]). Let @, : [e1,e2] — #f given by ® = [@, @], and A = [H, H).
If ©, 5 € IH(|e, &v)), and ®(e) 2 H(e), Ve € [e1,e2], then

£2 €2
/ d(e)de =, / € (e)de.
€1 €1
Example 1. Consider ® = [v+1,2v+ 2] and S = [v*> +2,3v +2], Vv € [0,1].

3v+3 1 243044 3v — v2
_ “; ,¢T:%7%:H++and A = ”2”.

From Definition 1, we have ®(v) <. J(v), V v € [0, 1].

Since,
! 3
/ [v+ 1,20+ 2]dv = [,3] .
0 2

1
77
242 2042)dv = |-, =
/0[U+,v+]v 33

From Theorem 5, we have

.

and

/0 1 B(v)dv < /O 1 A (v)dv.
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Figure 1: Graphical validation of Theorem 5 .

Definition 2 (see [4]). Let ® : [e1,e2] — %5 be an cr set-valued map given by ® = [®, P|;
then, ® is said to be cr-convex if

P(ber + (1 —b)eg) < bP(e1) + (1 —b)D(£2),
holds for all 1,9 € B C Z and b € [0,1].

Definition 3 (see [4]). Let @ : [e1,e2] — % be an cr set-valued map given by ® = [®, P|
and h: (0,1) — Z be non-negative function; then, ® is said to be cr-h-conver if

P(bey + (1 —b)eg) < h(0)P(e1) + h(1 —b)P(e2),
holds for all e1,e9 € B C Z and b € (0,1).

Definition 4 (see [4]). Let @ : [e1,22] — % be an cr set-valued map given by ® = [©, D]
and h: (0,1) = Z be non-negative function; then, ® is said to be cr-h-Godunova-Levin if
De1) | P(e2)

h(b) h(1 —b)’

holds for all 1,69 € B C Z and b € (0,1). The class of all cr-h-Godunova-Levin convex
mappings are denoted by SGX(h, [e1, 52],%;).

P(bey + (1 —b)ea) =Zer

Remark 2. e Ifh(b) = b%, then Definition 4 recovers cr-s-convex functions in [4].
e Ifh(b) =1, then Definition 4 recovers cr-p-functions in [4].
e Ifh(b) =

then Definition 4 recovers cr-convez functions in [45]

1

b
Definition 5 (see [15]). Let ® : [e1,62] — %] be an set-valued map given by ® =
[®, ®]. The interval-valued left-sided and right-sided Atangana-Baleanu fractional integral
of function ® and order ¢ > 0 is defined by
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SI{e(v)) = %M_g)g@(t) + m /E1 B0 (£ —b) db,
1—¢ <

BIL B0} = 50 + 5org / Ca0)6 - v b,

where g1 < 2,6 € (0,1],'(b) = [;°t’~'e™* dt is the special function, B(c) > 0 such that
B(0) =B(1) = 1,|B(<)|[| = 1, and Ba = Ba(p,q) = 5 PP~1(1 — )3~ db is the beta integral

in incomplete sense.

Theorem 6 (see [4]). Let @ : [e1,e2] — A be an interval set-valued map given by
® = [®, |, then we have

ST {0(t)} = [B13{2(t)}, S15{P(t)}]
and

I {0(t)) = [P, {2()}, 1L, {0 (v)}] -
The following inequalities are frequently used to produce our major results.

Theorem 7 (see [3]). (Holder inequality). Let 1 < p and Il) —|—% = 1. Consider two
real-valued functions ® and 3 on [e1,e2] with |®[P,|3|¢ are also integrable on [e1, 2], then

one has ) )
[ w000 < (/ wo)pa)” ([ 1080

Another generalized variant of Holder’s inequality is defined as follows.

Theorem 8 (see [16]). Let two real-valued functions ® and I on [e1,e2] and |®|,|®[|3|2
are also integrable on [e1,¢e2], then one has

/ [®(5)30)|db> < </ |q>(b)|db)1_‘l‘ </ |¢(b)||3(b)|qdb>3 |

Theorem 9 (see [16]). (Young’s inequality). Consider p,q be positive real numbers
satisfying % + ;11 = 1. Then if ®, 5 are nonnegative functions then we have,

and equality holds iff PP = 9.

The following two below Lemmas [29] also play a very crucial role in creating our main
findings.
[see [29]]
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Let & : B° C #Z — Z is a differentiable mapping on 8°, where 1,69 € 8B°, with
g1 < e9. If " € L[e1,e2] (space of all measurable function), then one has

k—1

(@ e0) = o [ (kﬁkﬂ> L3 ((kg Der +(J+1)€2>]

=0 k

1 /82 d(c)ds

g2 —¢€1
—Z S [ / (- ) <b(k‘3)€kl * e
(k—g—1Der+ (U +1)e
+(1—b) 1k 2) db} .

holds. [see [32]] Let &1 < e9,e1,60 € Z1,® : T

— T is a differentiable mapping. If
" € Ley, 9], for each ¢ € (0, 1], then one has

_ [ABI§2+61 {®(e1)} +1 Em 2{@(52)}]

€2 —¢&1

1 (62 —81)<_1 g9+ €1
" E B PE) T e - SRR G® ( > )

(
G

1
= 2+ DB(IT) / w* (b) [@"(ber + (1 —b)ea) + ®”(bea + (1 —b)er)] db,

Ftlbe[0,4),
where w*(h) = { (1- b)<+1,b[€ [222’ 1]

In [57], the authors introduced these type of inequalities that utilize the s-convexity with
the help of Lemma 2.1.

Theorem 10. Let ® : B C Z — X is a differentiable mapping on B°, where 1,9 € B°,
with g1 < 9. If |®'|? is s-convex on [e1, &3] for some q > 1, then one has

!’Bk(q’ 51,52)\ 1
S () ()
" Hq)/ ((k—J)skl +J€2> e ((k—J —Dar+(+ 1)62)

k
1,1 _
holds, where st g~ 1.

Q=

qF
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3. The main results

4023

This section uses the cr-h-Godunova-Levin function to build multiple forms of Hermite-

Hadamard inequality, with several particular cases.

Theorem 11. Let h: (0,1) — %% and h # 0. Let @ : [e1,e9] — % is cr-h-Godunova-
Levin mapping, 1,60 € # 1,61 < e9. If ® € L[e1, &3], then the following relation holds

true:

1\ (e2 —e1)° g9+ &1 1-g¢
n(5) Srrg (57 + B [pe + 26w
< TS (D(0)) + TS, {D(e))

@(61)4-@(62) §(€2_€1)<
= Mo [ g

[ )]

Proof. As ® € SGX(h, [e1, 2], %7 ), we have

where ¢ € (0,1).

V1 + 1y 1
) < 5 ) =er m[@(yl)"i'q)(V?)]v

let 11 =bey + (1 —b)eg, va = bea + (1 — b)eq, the above relation becomes as

h (;) o (52‘2“"1> 2o [(0e1 + (1 )ea) + D(oen + (1 - b)er)].

Multiplying by b~! in (4) and integrating, we have

o)l

b< L& (beg + (1 —b)ey)db|,

that is

h(3 L
(§2) P <€2 —;61> jcr/ bg_lq)(bf:l + (1 — b)52)db
0

1
+/ bs 1P (beg + (1 — b)ey)db.
0
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Multiplying the above relation with (5(2)5(1 )) and adding the expression é(:) [@(e1)+P(e2)],
we get that

1\ (ea—e1)°, [ea+e 1—¢
h <2> B?g)F(lg) <I>< 2 5 1> + 6 [@(e1) + P(e2)]

jgl(BfQ/ Doy + (1 b)es)db

§(€2 —61

S— _ l-¢
S /Ob 1(bey + (1 — b)er )b +

B(o)

In the final two integrals of the preceding relation, let a = be; + (1 —b)eg and B =
bea + (1 — b)ey respectively, we have

1\ (g2 —€1)°, [e2+e¢ 1—¢ kg .
(2) Siar ? (27) + B [oten + ofeal] <2z fotea) + 15 f0(e0),

so the first relation of (3) holds.
Taking into account Definition 4, we have

[@(e1) + P(e2)].

®(ber + (1 — b)ea) =er q;((i? N hz(s_z)b)'

. Multiplying aforementioned result with b~!, and integrating, we have

/1 51D (ver + (1 — b)es)db
0 (5)

Lhs—tdy Lbs—tdy
jcr d(e / + ®(e / '
( 1) 0 h(b) ( 2) 0 h(l — b)
Multiplying both sides of (5) by §(€(2) 5(12) and adding the expression ﬁ(ﬁ(@) to both
sides of the desired relation, we get

slea—e1) [ 1-¢
IB(g)F(g)/O b 1@(b€1 + (1 — b)EQ)db + 7E(§) @(52)
s(eg —e1)° . Lhe—1gp
Sorg 17 [ ©)

L ops=14p 1—¢
+a(es) [ g bJ B )

Making a modification in the previous integral of the preceding relation, a = be 4 (1—b)eq,
then the above relation become as

e )s s—1
SIS, (0} <o (( o oy [ 20

/1 I)<1 idg] 1(_5@(52).
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Again by Definition 4, we have

Ber+ (1= D)e0) S ot 4 o

Multiplying aforementioned relation with b~!, and integrating, we have

1 - 1—g
W/Ob L (bey + (1= b)ey)db + ——B(ey)

B(s)
G(eg —e1)° Lhe=1gp
S BOTG) {%2)/0 0

1 pe—1 _
—|—<I>(61)/0 hb(l _dm + %(g)gcp(gl).

Making a modification in the previous integral of the preceding relation with some dummy
variable , b = beg + (1 — b)eq, then the above relation becomes

AB¢ C(Ez 51 b< 1db
Lops—1qgp 1—¢
e >/o <1—b>]+ma<<>q“(“"

Adding (7) and (8), we can get that the second relation of (3). This finishes the proof

Example 2. Let @ : [1,4] — ZF defined as ®(u)

- [26“ 4 1,3ek + 4} with h(b) =
% ¢ = 5, then we have

1\ (e2 —e1)° go+ €1 1—¢
" (2) B(QT() ( 2 ) * B(g (2 + 2]
~~ [81 77390, 103.32659],
IS (B(2)) + P15, (1))
~ [90.33565, 131.54364].

and

1
<[ (5 ) ¢
e4+€+\/§ﬁ(264+26+2)

. (36 —|—36+1) <2 ff)]

3
~ [96.30783,142.81028].
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Thus, we have
[81.77390, 103.32659] <., [90.33565, 131.54364] <., [96.30783, 142.81028].

Consequently, Theorem 11 is correct.

The different types of settings allow us to get results for other types of generalized
convex mappings, as described in the remark below.

Remark 3. (i) If h()) = L, then Theorem 11 yields an outcome for the cr-s-convex
function for AB integral operators:

gs (2 —21)° o (52 * 51) G 1os [®(e1) + ®(e2)]

B(<)T'(s) 2 B(s)

< BT (B(cy)} + IS, {B(er)) (9)
O(e1) + P(e2) s(ea —e1)® | <(e2 —e1)* I'()I'(s+1)

= [ B() } [l ST TG T TG Tletst))”

(ii) If h(b) =1, then Theorem 11 yields an outcome for the cr-p-convex function for AB
integral operators:

(62—81)<®<82+€1> n 1-g¢

[(I)(El) + @(62)]

B(<)L'(s) 2 B(s)
< BT {@(e2)} + 1L, {@(e1)} (10)
(I)(é‘l) + (I)(EQ) _ 2(62 — 61)<
S[ B(s) Hl T ]

Theorem 12. Let h: (0,1) — %" and h # 0. Let ® : [e1,e2] — ZF is cr-h-Godunova-
Levin mapping, €1,e2 € Z+,e1 < €9 and 1 : [e1,e2] — Z7T is symmetric about % If
O € L[eq,e2], then the following relation holds true:

1 35 13 1 [3) 9 —
Mo (0 pors ey + Oxs )] - Mo (249) LSt 4 36e)

2 2 2 2 ) B()
+ ;@j [B(e1)(er) + B(e2)(e2)] < 21, {(B(ea)} + 15, {(23(er)}
G(ea —e1)° 1 - 1 1

S e [Bler) + 8(e)] x /0 ! [h(b) i h(l_b)] Tbes + (1 — b)er)db
T ;;gj [®(c1)3(e1) + (e2)1(22)],

(11)

where ¢ € (0,1].
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Proof. As ® € SGX(h, [61,62],%;), we have

1

P (82 —2F€1> < - (1) [(I)(bal + (1 —b)eg) + P(bea + (1 — b)al)]. (12)
2

Multiplying above relation with h (%)bg_lj(bsg + (1 —b)ey), and integrating the desired

relation over (0,1), we have

h <;)<1> <52 ‘2“‘:1) /01 5 (bey + (1 — b)ey)db

< /1 b B (bey + (1 —b)es) + Dlbea + (1 — b)er)]Aves + (1 — b)er)db,
0

Let u = beg + (1 — b)eyq, then the above relation becomes

Qe (252) [0 o

1 e o
Sy | e e e w3

n / Cla— el)g—lé(u)J(u)du} .

€1

Making a modification in the previous integral of the preceding relation, v = eo+¢1 —u,

from J(eg + &1 — v) = 3(v), one has

" <;> (e2 —151)‘(1) <€2 JQF 61) /: (8= o) ()
< 1 [ / (s — v) 1 0(v)I(v)dv + /

T (e2—e1) Loy o

€2

(u— al)glé(u)J(u)du] :

Multiplying above relation with §H(B€é)—1§(1§); and adding the expression % [@(g1) + @(e2)]

to both sides of the desired results, we get that

h <;> B(g)gf(g) P <€2 ; 61) /:2 (u— 1) M(w)du + 13%_5
¢ [ / (s — v)10(v)I(v)dv + / o 61)§_1<I>(u).'l(u)du}

“TBONE) L., s

+ ;B{g; [@(e1)I(er) + Be2)(e2)].

From this, it can be follows as

h <1>q> <€2+51> IS (1(e1))

[@(81)3(61) + @(82)3(62)]

2 2

Serey 15, {(@3(e2)} + PIE,{(@3(e1) }-

—Creq ~eg
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Similarly, multiplying h (3)b*~'J(be1 + (1 —b)e2) on both sides of (12) and integrating, we
have

h @)@ <52 ;51> /01 b 1(bey + (1 — b)ea)db

< / Lot [®(21 + (1 —b)ea) + Bloea + (1 — b)e1)]I(ber + (1 — b)ez)db.
0

Let u = be; + (1 — b)ey, then the above result becomes

" G) (e2 —151)<(I> <62 ;€1> /: (62 =" I(w)d

S N [ / (g — u)L(w)I(u)du

(2 —¢e1) ey

. / P ey —u) T D(es + &1 — u):l(u)du] .

€1

Making a modification in the previous integral of the preceding relation, v = g9 + €1 — u,
J(e2 + &1 — v) = I(v), we have

() e (B [ o e

: [/ (o2 — w B (w) I (w)du + / v e e Av)ay]

o (52 - El)g €1 €1

s(ea—e1)°

Multiplying above relation with BT and adding the expression é(—_j) [@(51) + @(52)]
to both sides of the desired result, we get that

" @) IB3(<)§F(<) ? (82 ; 61) /512 (€2 =) Au)dn

+ 18(:; [(13(51)3(51) + (I)(52):|(52)]
jc"m [/62 (g2 —u)* "1 ®(u)I(u)du + /62 (v—e1) ' @(v)I(v)dv
+ 13%‘5 [@(e1)3(e1) + B(e2)(es)].

From this, it can be follows that

n(5)e (252 ) oo e

et I {(@I(e2)} 4 *PIL, {(@I(e1) -

(14)
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Adding (13) and (14), we can get the first relation in (11). Now again taking into account
Definition 4, we have

Boer + (1 9)22) o D 4 o
Bz + (1 9)e0) o o 4
adding the above two relations yields that
Bloer + (1 —b)es) + D(bea + (1 — b)er) < [h(lb) + h(ll_b)] [@(c1) + B(eo)]

Multiplying aforementioned result with bs~1J(beg + (1 —b)ey) and integrating, we have

(/Uvﬂ@wq+41—m@)+@®@+%1—waﬂﬂwz+ﬂ—hﬁﬂﬁ
0

< [B(e1) + B(e2)] /01 ol [h(lb) + h(ll—b)} Ioes + (1 —b)er)db.

Making a modification in the previous integral of the preceding relation, v = e + &1 — u,
from J(eg + &1 — v) = I(v), we have

1 [ / (e — W) 10 (w)I(v)dv + / P - 51)€—1<1>(u)3(u)du]

(62 - €1>g €1 €1

< [®(e1) + B(e)] /01 ol {h(lb) + h(ll—b)] Abes + (1 —b)er)db.

s(e2—e1)°

Multiplying above relation with BOT(S) and adding the expression % [@(51) + @(52)],
we have

. [/52 (e2 — v)SL@(v)I(v)dv + /82 (u— 61)§_1<I)(u):|(u)du]

B()T() LJs, &
N }M—; [®(e1)3(e1) + B(e2)3(e2)]
s(ea—e¢
e IB%(Qg)F(; o)+ o)
1 o 1
<57 [ ) o @
+ %@; B(e1)I(er) + Ble2)I(e2)],

that is

S 15, {(@3(z2)} + 1L, {(23(=1)}
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[
Lot 1
x/ob 1[h<b)+h(1_b)} Ibes + (1 — b)er)dd
+ ——[®(e1)3(e1) + D(e2)I(e2)],

so the second relation holds true in (11). This concludes the proof.

Example 3. Let ® : [1,4] — %3 defined as ®(p) = [2e“+1 3¢/ + %} with hy(b) =
&,77 = 5 and a real-valued symmetric functions are defined as 3(0) =0 — 1 for 0 € [1,%

and 1(0) = —0 +4 for 0 € [3,4], then we consider

1
"l (257) (s, o) + 15, (e
h

1 _ _
22) o <62 —; 81) %(g; [A(e1) +(e2)] + % [@(£1)(e1) + (e2)I(e2)]

S
5\ [1./5 1 /3 5 = 1./5 1 5\ 2
-2 (3) [2J<2>+2ﬁ om0 (G-n) " +93(3) rave fy o0 (o-3) ]d“
~ [73.10130, 106.84792],

and

2‘3122{(‘1’3(62)}“‘3? {(®3(e1)}

f3) st [ e e 3) 2o ()

-1
I Vi 5\ 2
—— [ 2" +1,3eH + X | (—p+4) (p— = d
+2ﬁg[e+,36+3](u+)(u 2)]u
~ [81.16120,111.35182] .

Finally, we have

S(ez —e1)®
B(<)T'(<)

[&(
1
x/o = L](lb) 1_b ]J(ba2+(1 ~ b)er)db
A B (e)2(er) + Blea)(en)]
~ [85.14621, 115.36241] .

(1)61 —|-<I>€2]

B(<)
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This implies that
[73.10130, 106.84792] <., [81.16120,111.35182] <., [85.14621, 115.36241] .

Consequently, Theorem 12 is valid.

Remark 4. (i) If h(b) = b%’ then Theorem 12 yields an outcome for the cr-s-convex
function for AB integral operators:

to (249 s ey + 1, (360

o eat+er)1—¢
-2 1<I>( 2 5 1) M[J(al) + 1(e2)]
1—-¢

+ m [@(61)3(61) + @(62)1(62)]
<orey 15, {(®3(e2)} + "I, {(@3(e1)} (15)

G(eg —e1)*
_CTW[%I) + B (ey)]

x /1 pSTL* + (1 —)*]3(bes + (1 — b)er)db
0
1-g

B(<)

+ [@(61)3(81) + @(52)3(52)]_

(ii) If h(b) =1, then Theorem 12 yields an outcome for the cr-p-convex function for AB
integral operators:

3 (25 [z, e + 15, (3]
1 <€2 + 51) L) + 3(ew)]

2 2 ) B(s)
n %{5 [®(21)3(e1) + P(e2)I(e2)]

Zore, 12, {(@3(e2)} + *IE, {(@I(e1)}

25(eg —e1)°
_CTW [‘I)(El) + (I)(62)]

1
« / 5 (bes + (1 — b)er)dv
0

1—¢
+ ——(®(e1)I(e1) + D(e2)I(e2) |-
B(C)[(l)(l) (£2)3(e2)]
Using Holder and Young inequalities, we present a novel refinement of (H-H) fractional
integral inequalities when the function ® is twice differentiable and belongs to the class of
cr-Godunova-Levin mappings, based on the identity in Lemma 2.1.
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Theorem 13. Let h: (0,1) — %" and h # 0. Let @ : [e1,e9] — %] is cr-h-Godunova-
Levin mapping, 1,60 € #T,e1 < 9. If ®" € L[e1, &3] and |®"| is also cr-h-Godunova-
Levin function, then the following double relation hold true:

1
Fﬂwxﬂarnwlaéwﬂ
)

€2 — €1
_ (52—511)13%(0 [®(e1) + ®(e2)] — (g —e1)°t (62 N 61)

2571B(¢)T(s) 2
S TR 1Y e e
a1 1
T o v 16

where ¢ € (0,1].

Proof. Firstly, from Lemma 2.1, we have
1
B (060} 0 T (B
)

€9 — €1
L [®(e1) + B(2)] — (2 —er)t (82 + 51)

 (e2—e1)B(s) 27 1B()I'(<) 2
Zor ij‘;;()g / [ (0)] [|” (be1 + (1 — b)ea) | +]@" (22 + (1 — b)ey)|]db. (17)

As |®"| is cr-h-Godunova-Levin function, we have

€2 —¢&1

R [ABI<52+51 CICHIES R S ICH }]
_ ;[Q)(&)—F@(@)] (g — 1)t <52 +81>

(€2 —€1)B(S) 1 271B()I'(<) 2
s ([
- Bl e
/ 56 ]
¥ / 1y ] db}
(e2—e1)!

:(g + 1)B()I()
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, 4014-4049 4033
2 [197(en)] | 197 (e2)]
{/ob @
T [127(e2)] | 19"()]
R *h(l—b)]db}
_ (52_51)§_1 " " % c 1 1
~ g el e [T |

Remark 5. (i) If h(b) = b—ls, then Theorem 13 yields an outcome for the cr-s-convex
function for AB integral operators:

1
— ABI22+51 {®(en)} +4 e2+sl 2{@(62)}]
9 — &1

1 (g3 — 1)t ea+e
- m[@(ﬁ) + ‘5(52)} o 2<_21153(§1>p(§)q) < : 2 1)
(e2 —e)!

= ot B e

(%)§+s+2
m +B%(§+27S+1) .

(ii) If h(b) =1, then Theorem 13 yields an outcome for the cr-p-convex function for AB
integral operators:

I (0} + R T (0 }}
1 (e2 —e1)"” ! gg+¢
_m@(el”q’(@” aere® (557
(%)gﬂ (g2 — 1)t

SEr 6Ty B [P EH e,

Theorem 14. Let h: (0,1) — %% and h # 0. Let @ : [e1,e9] — % is cr-h-Godunova-

Levin mapping, 1,60 € #T,e1 < 9. If ®" € L[e1,e9] and |®"| is also cr-h-Godunova-
Levin function, then the following double relation holds true:

1
[Pt ) + R T 0
1 )

S € €
RGeS ”(52” 2(<QIB<<1>P<> ( 5 )
< 2‘“ D)7 P[\@"(e 12" ()]
_cr(§+1 §P+P+1 1 2

1

’ [(/01 (o) ) i (/01 (1 )] ’ as)




J. E. Macfas-Diaz et al. / Eur. J. Pure Appl. Math, 17 (4) (2024), 4014-4049 4034
where s € (0, 1], % + é =1

Proof. According to Lemma 2.1 and taking into account Hoélder’s inequality and apply
it to relation (17), we have

e R IC) BRI e
)

Eo — €1
1 (g — 1)t g2 te
- e e )~ g ()
(62 — 1)

<o St B(:); </ (b |de>; [(/01|<1>”(b51 + (- b)sQ)lqdb> :
+ (/01|<I>” beg + (1 — b)sl)qdb> ] . (19)

As |®”|4 is an cr-h-Godunova-Levin mapping, we have

1
P%;ﬂdm&»+@ﬁﬁ @624
92 —€&1

)

1 (g2 —e1)s 1 gat+¢€
_m[¢(61)+¢(62)] 2g21B(§1)I‘() ( : 9 1)

DNCEE S A M
= o+ DBOTE) \ep+p 1
B, [ ()l ]
X{{A (56 + b))
(et | [0
AL R+ ) }'

Then, we apply the fact that

Z;uk—i—vk 1<Zu€1+2v
k=

for 0 < ey < 1,u,ug, - ,u, > 0,vy,ve, -, v, > 0. This further implies as follows:

Qe

1 ABc
[ e s o)

1 (g2 — 1)t €2 +¢€
‘@rﬁnmo@@“+“@”‘%im5mqé<221)

(62— 1) ( (1) )5

Ser (s+DB)I() \sp+p+1
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(e t/‘|¢”62|q ;
ThO) h(1—b
|(I)” 3 1 |<I>”( )|q o
€1 1
————db
</ > +</o h(1—b) )]

Sl (LT IlJU‘I’”( )|+ (e2)]]
(s +1B()T(s) \sp+p+1 €1 €2

(o) ([ )]

The finishes the proof.

Remark 6. (i) If h(b) = b%, then Theorem 14 yields an outcome for the cr-s-convex
function for AB integral operators:

1
o [Pr () + B T o)
2 €1 2

1 ( 2’51)< 1 g9+ €1
e e e - g e (250

o 1\s+1 % L
(€2 —e1)? ((%) ) (197 (1)[2+]@" (£2)[4] =

=T G+ DBOT) | s +2
(l)<+s+2 q
7§2+ 5 5 (¢ +2,541) (20)

(ii) If h(b) =, then Theorem 1/ yields an outcome for the cr-p-convex function for AB
integral operators:

1 AB ¢
o [Prn (e + B T o)
)

1 (g2 — 1)t €2 +¢
_m[é(a)—i-@(m)] 2§21B(<1)I‘() < : 9 1)

DINECTE N € M
= (s + DB(C(S) <+ 2 2

Q=

(21)

Theorem 15. Let h: (0,1) — %" and h # 0. Let ® : [e1,e3] — ZF is cr-h-Godunova-
Levin mapping, 1,60 € BT ,e1 < 9. If ®" € L[e1,e9] and |®"| is also cr-h-Godunova-
Levin function, then the following double relation holds true:

1
ABI§52+61 {q)(el)} + 52+51 2{¢(€2)}
€2 —¢€1 2
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(6 — 1)t g2 +¢e1
e e e - e ()

(g2 —e1)s! ( (2)(§+1)(°‘ 0) (q—1) ) B
(

S e+ DBOTE) | s+ 1)(a—p) +q—1
3 hPHPdh L psptegy |3
L 5t h(l—b)] ’ 22)

Proof. By using the Holder’s inequality and taking into account relation (17), we have

1

Q=

X [|8" (1) [94+|" (22)[%] o

where ¢ € (0,1],q >p > 1.

[ ) B 0

o — €1
1 (g — 1)t eate1)  (e2—er)?
T [Blen+ ‘I’(E?” e () = e
/ |we (b ] U@”(ba +(1- b)€2)|+|¢//(b62 +(1- b)al)”db

_ c 1
DG 51 </ s (b yq1db>
2(s + 1)B

(/0 [ws () [P|®" (ber + (1 — b)fz)!qdb>é

+ </01\w§(b)\1’]¢>”(b62 +(1— b)al)lqdb> ;] .

As |®”]? is cr-h-Godunova-Levin mapping, one has

[P e B e

9 — €1
(62 — El)g_l o (52 +€1) . (82 — 61)§_1
= 2(

1
(€9 — gl)B(g) 2571B(¢) (<) 2 ¢+ 1)B(s)I(s)

/ |we (b s |Jwe (b ] [|®" (ber + (1 — b)eg)|+|@" (bea + (1 —b)er)|]db

[@(81) + ‘I)(Eg)] —

82 — 81)

jmﬂ?(w 1 ]B%(:)Fl( </ w* (b \31—11)db>121 x K 01 |W§(b)|pL‘I(’;>(€1)\qdb

[0 (0) P (e2) |2 QPR ()3 | [t ORI (e) 9\ |
+/0 (1) >+</0 () +/0 (1) )]
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—p 17%
BCEC (1)(<+1)<%) (q—1) , 3 bP+Pdb
2+ DB (<<2+ CEDETEE veor| [* g

L (1 — b)P+Pdbh , 3 hSPPdh L (1 — b)P+Pdb :
+/2 h(%) ) He (52)q</0 h(1—b) +/; h(1—") )]

, 2 pSPR(h 1 (1 — b)sP+pdp , 2 b+
+ |(I) (62)|q</0 h(b) +/; h(b)) —|—|(I) (61)|q</0 TN

h(1—b)
S N\ e (B E) o)
T TR TG+ DBONG) | b+ 1)(a—p) +q—1

[ B emtedy 3 ptedy |
< (187 (e0) 412" )| [ [ ]
0 0

=

h(>) h(1—b)

Remark 7. (i) If h(b) = %, then Theorem 15 yields an outcome for the

CT-S-conves
function for AB integral operators:

;[
(e2 —e1)B(s)

1 ABs
ﬁ |: 152+51 {(I)(gl)} + 52+€1 {(I) 82 }:|
)

0 — e1)5 L € €
<I>(51)+<I>(62)] 2(<21B(g1)r(g) <2—|2— 1)

1— 1
< (g — 1)t (2)(g+1) ’
T+ DBOIE) \ (s+1)(a-p) + q-— 1

(7)§p+p+s+1
2

q

X |0 (e1) |34+ (e2)]%] =

—_— + sp+p+1,s+1
sp+p+s+1 B%(p p )

(ii) If h(b) =1, then Theorem 15 yields an outcome for the cr-p-convex function for AB
integral operators:

1 AB ¢

P [ I€2+€1 {®(e1)} +4 52+€1 2, 1P(e2 }]
;[ )
(e2 —€1)B()

o — g1)5 L € 5
P(e1) + P(e2)] — 2(<21153(g1)p(g) <2; 1>

R S DG TN
=T G DBOTG) | s+ 1a—p) +q_1 §P+p+1> (19" (e1)[3+]@" (e2) 4] =.

Q=
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Theorem 16. Let h: (0,1) — %" and h # 0. Let @ : [e1,e9] — %] is cr-h-Godunova-
Levin mapping, €1,692 € ZT,e1 < e9. If |®"|€ Le1,e2] and |D”| is also cr-h-Godunova-
Levin function, then the following double relation holds true:

o [Prn () + B T 0
)

92 —€&1

1 (g —e1)s7t €2+ €1
_ m [q)(El) + q’(@)] 2-1B()L(<) ( 92 )
< (g2 —e1)s1 (3)*F™ '
~" 2(c+ 1)B(s)L(<) | (sp+p+1)p

Lo " ! 1 1
w2l eorHe @ [ (5 + sy ) o

where ¢ € (0,1].

Proof. By using the Holder’s inequality and taking into account result (17), based on
the Young’s result: ab < %ap + ébq, we obtain

€9 — &1

! (62_51§1 52‘1‘61
e e o] g (U5
( €9 — 51)§ 1 P
=er 2(§—|— 1 (§)F |: / ‘W ’ db

1

As |®”|% is cr-h-Godunova-Levin, one has

_ [ABICE2+51 {Pe0)} +8ee 15, {0 }}
)

€2 —¢&1

_ 1 (62—81€ 1 <€2+€1>
(62 —e1)B(s 271B(6)T(<) 2

)
<, A2z e) s (b) P
Q(gf\;"(s(f))\zdb { /<1>"<ez>qdb
HE/ ) +/0 h(1—b)
"(gq)|2 "(e1)|
/0 yq>(thdb / [ 151_|bdb]}
)

_ (2! (3)7" 1[@”( 1)|2+|D" (e2)]9]
“3l + DBOT() | (p+p+ Dp ' q 2

b [ABIE:WI CICHIES awl e }}
)

[ (e1) + @(52)}
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[ i) o}

The proof is completed.

4039

Remark 8. (i) If h(b) = bls’ then Theorem 16 yields an outcome for the cr-s-convex
function for AB integral operators:

b [ABI§2+51 {®@(e1)} +1 52+61 12, {®(e2)}

€2 —¢€1
! eq)s1 ot
_ m[@(81)+¢(52)] 2(< 1IB%(<1)F( )(I)( 2; 1)
(g2 —e1)! (l)<P+p . ) //
= G+ DB(OT() {(gpjp+ % T 11D (07 (e1) 3" (e2)19] b

(ii) If h(b) =1, then Theorem 16 yields an outcome for the cr-p-convex function for AB
integral operators:

1
P [ABIE2+51 {P(e)}+2 S 12, {(2))
€2 —¢&1

1 (g — 1)t ga+e1
- m[q}(ﬁ) + (I)(@)] 96— 113(: I'(s )(I) ( 2 >
(€2 —€1)s! { BT 1
(

Ser (g n I)B(G)F(g) sp+p+ 1)p + a[|q)”(51)|q+|(1)//(52)’q] } :

Theorem 17. Let h: (0,1) — %" and h # 0. Let ® : [e1,e3] — ZF is cr-h-Godunova-
Levin mapping, €1,60 € ZT,e1 < €2 and [h()]? € L£1[0,1],® € Ly[e1,e2]. If |®'| is an
cr-h-Godunova-Levin mapping on [e1,€3], then the following relation

q—1

k—1 q—1 1
€9 —¢ 1\ q 1—2b |, [ (k—9)e1 + 722\ |2
B(®,e1,00) [ = S 2 [(2) (/0 |h(b) |‘¢ (( a)kl ]2>
J=0

+/01 Ptl(l_—QE‘) ‘q), ((k—y—1)51k+ (]—1—1)52) qdb>é]

holds, where 1 < p and % + é =1.
Proof. Let @ > 1 and using identity from Lemma 2.1 and taking into account Power-

db
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mean inequality, then we have

’%k(®7€17€2)’
k—1 1
€2 — €1 omvay (1 (K—2)El + e k== + 0+ Ve
Zer ;—0 e < /0 (1— 2b)® (b s +(1-b) . db
1—1
q
jcr (/ |12b]db>
2k2
7=0

1

T\
db)

+(1-

</

As || is cr-h-Godunova-Levin function, we have

< (k ])61 + J€2 ( b) (k_j - 1)61 + (.] + 1)€2>

k

| By (P, e1,€2)]

k—1

jcr;%;fl [/01 - 2b|db] " [/01 11— 2| (h(lb) ‘q,, ((k—y)akl +Jg2> a
@ ((k—J — 1)51k+ () + 1)€2> q> dbrl

o ((k—.])51 +Jez> a

k
q
»)

@’ <(k_])51+‘7€2> :

1
h(1—b)

:12622;251 </01 n —2b|db>1_‘1* (/01 | -
+/01 1(1—_2E|) o <(k—J—1)€1k+ (y+1)52>
_ 2822;251 [(;) (/O |1h—(b§b\ :

[ (e ey
e

k
Corollary 1. Setting h(b) = % and ® = ® in Theorem 17, we get

_|_

db

Q=

db

[Bi(®,1,0)] = i 2 ( & <<k—ﬂ>€1+m> T ‘CD, ((k—y —Der +(+ 1)€2>
o 7=0 k2(2)2+% o k

which has been obtained by authors in [29)].

q)}l
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Corollary 2. Setting h(b) = bls and ® = ® in Theorem 17, we get

k—1 1
E2 —¢&1 1 S a
B (@,1.22)] < ( " )
" ; k2923 \25(s+1)(s+2)  (s+1)(s+2)
1
y H‘I)/ ((k—a)el + ET> 4 Y ((k—e —Der+ (e + 1)52) q} .
k k
which has been proved by authors in [57].
Theorem 18. Let h: (0,1) — %" and h # 0. Let @ : [e1,e9] — %] is cr-h-Godunova-
Levin mapping, €1,692 € Z%,e1 < €2 and [h(h)]* € £1]0,1],® € Ly[e1,e2]. If |P'| is also
cr-h-Godunova-Levin mapping on [e1,€2], then the following relation

k—1

B (D, 1, 82)| <o ]Z:; 522;281 <1j-p);
" </01 <h(1b) ‘Cb/ ((k_])gkl HQ) . h(ll— b) ‘q)/ <(k_]_ 1)61; (7 + 1)€2> q) dbﬂ

holds, where Cll + % =1
Proof. Assume that 1 < p. Taking into account Lemma 2.1 and the Holder inequality,
one has

By (B, 1, £9)| <er :i;; 22 [(/01 (1 — 25)3' <b(k‘~7)5k1+352 P 1)61; s 1)52> ‘ db)}

1
_ . 1
E9 — €1 P
2o ) o [( - 2deb>
7=0

([

As |®'|% is cr-h-Godunova-Levin mapping, one has
/1 & b(k_]>€1 + 72

0 k

< /1 L g (k—7)e1 + Je2
— Jo \h(») k

Therefore, we deduce

qdb>}1] |

o <b (k—g)er +9b (1-5) (k—y — 1)5; +0+ 1)b>

1—
+ ( .

q+ h(ll— b) “1)' <(k_j - 1)€1k+ = 1)52) D “

) (k—g—De1+ 0+ 1)52) ’ &b
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|%k(@7€17€2)|

5 €9 — €1 1 %
=er 1 —2bPd
= z_: 2 </0| b| b)

’ </01 <h<1b> ‘q)/ <(k_j)€£ Hg?) E h(ll—b> ’fb’ <(k_‘7 - 1>51k+ (s + 1)52) q) db) ‘1‘]

q+ h(ll—b) ’q)’ <(k_3— 1)511{+ (7 + 1)52)

y </01 (h(lb) ‘q), <(k—3)6£ +J€2) q) db)él .

Remark 9. Setting h(b) =b~% and ® = ® in Theorem 18, then we get Theorem 6 in [57].

4. Applications to special means

The following section relates some of our main results with special means, and illus-
trates some of their applications. Let 1,69 € Z,

(i) The arithmetic mean:

€1+ é&9
A=A(e1,e9) := 5 ,€1,€9 > 0.
(ii) The harmonic mean:
28182
H=H(ey,e9) := ,€1,€9 > 0.
( ) €1+ €2
(iii) The logarithmic mean:
L= L(ey, ) i €1, ifeg =e9 169> 0
T methey HaFen '
(iv) The p-logarithmic mean:
&1, if E1 = &9
Ly = Lp(er,e2) := pptt g 5 ¢ pe€ Z\{—1,0},e1,e2 > 0.
|:(P+1)(62—61)] ) Ie 7& €2,

Let e1,60 € Z,0 < €1 < €9, and m € N,m > 2. Then, the following
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=0 J

er v (E2=cum </1 11— 2b‘db> <(k—3)61 +.762>(m_1)q
22" 32 o hO) k

3=0

([ ) (s

holds, for all 1 <., g.

Proof.

This proof is proven using Theorem 17 with the following settings ®(b) = b™,b €
[e1,e2],m € Nym > 2.

Let e1,60 € Z,0 < e1 < g9, and m € N,m > 2. Then, the following

ziA (((k_")i +m>‘j <<k—; “ Vet 1)52)m> L)

k—1 1
= 62 —81 1 P
- 9232 <P+ 1)

J=

() () [ i) (e

holds, for all 1 <., g.
Proof. This proof is proven using Theorem 18 with the following settings ®(b) = b™,b €
[81752]7m € Nam > 2.

5. Conclusion

The primary contribution in this paper to present the different variants of double
inequalities by using fractional integral operators involving special functions. Recently,
authors in [4, 11, 13] developed several relevant results by using classical integral oper-
ators and partial standard order relation. Additionally, we use a number of other well-
known inequalities, including Holder’s, Young’s, and Minkowski’s, to extend these upper
bounds for Hermite-Hadamard inequality. Furthermore, these types of results involving
Godunova-Levin mappings and fractional operators are not initiated, and we believe that
our study opens up a whole new path for other relevant classes of Godunova-Levin func-
tions, including s-Godunova-Levin, tgs-Godunova-Levin, Harmonic, and various others.

In the future, we suggest that readers extend these inequalities to probabilistic and
fractional stochastic settings, where randomness is incorporated into the functions them-
selves or into the bounds, so they can use them more effectively in risk analysis, finance,
or uncertainty quantification. Furthermore, generalizing Hermite-Hadamard inequalities
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to multiple variables, especially in convexity spaces like convex domains in R", may yield
inequalities useful in multivariate optimization, machine learning, and control theory.
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