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1. Introduction

Let Mn(C) denote the space of all n × n complex matrices. The spectral norm of a
matrix A ∈ Mn(C) is defined by

∥A∥ = max
∥x∥=1

{∥Ax∥ : x ∈ Cn}.

The numerical radius of a matrix A ∈ Mn(C) is defined by

ω(A) = max
∥x∥=1

{|⟨Ax, x⟩| : x ∈ Cn}.

In [22], the author proved that the numerical radius of a matrix A ∈ Mn(C) can be
formulated as

w (A) = max
θ∈R

∥∥∥Re(eiθA)∥∥∥ ,
where Re

(
eiθA

)
denotes the real part of the matrix eiθA. Clearly, we always have

w(A) ≤ ∥A∥ (1)

for any A ∈ Mn(C).
Many generalizations and recent related results of the numerical radius w(·) were

discussed by many authors, some of these results can be found in [3], [7], [10], [12], [11],
[9], [8], [13], [14], [15], [19], and [20].

Some basic properties of the numerical radii and the spectral norms of matrices that
we need in our paper are the following: For A,B ∈ Mn(C), we have the following relations:
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(i) w

([
A 0
0 B

])
= max{w(A), w(B))}

(ii) w(A∗) = w(A)

(iii) ∥A∗A∥ = ∥AA∗∥ = ∥A∥2

(iv)

∥∥∥∥[ A 0
0 B

]∥∥∥∥ =

∥∥∥∥[ 0 A
B 0

]∥∥∥∥ = max{∥A∥ , ∥B∥}.

Recent results concerning inequalities can be found in [1], [2], [4], [6], [5], and [21].

2. Main results

We start with the following theorem.

Theorem 1. Let A,B,C,D ∈ Mn(C). Then

w

([
A B
C D

])
≤

√
max{∥A∗A+ C∗C∥ , ∥B∗B +D∗D∥}+ ∥A∗B + C∗D∥. (2)

Proof. We have

w

([
A B
C D

])

≤
∥∥∥∥[ A B

C D

]∥∥∥∥ (by inequality (1))

=

√∥∥∥∥[ A B
C D

]∥∥∥∥2
=

√∥∥∥∥[ A∗ C∗

B∗ D∗

] [
A B
C D

]∥∥∥∥
=

√∥∥∥∥[ A∗A+ C∗C A∗B + C∗D
B∗A+D∗C B∗B +D∗D

]∥∥∥∥ (3)

=

√∥∥∥∥[ A∗A+ C∗C 0
0 B∗B +D∗D

]
+

[
0 A∗B + C∗D

B∗A+D∗C 0

]∥∥∥∥ (4)

≤

√∥∥∥∥[ A∗A+ C∗C 0
0 B∗B +D∗D

]∥∥∥∥+

∥∥∥∥[ 0 A∗B + C∗D
B∗A+D∗C 0

]∥∥∥∥
(by the triangle inequality)

=
√

max{∥A∗A+ C∗C∥ , ∥B∗B +D∗D∥}+ ∥A∗B + C∗D∥,

as required.

Based on Theorem 1 and its proof, we have several corollaries.
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Corollary 1. Let A,B ∈ Mn(C). Then

w

([
A B
0 0

])
≤

√
max{∥A∥2 , ∥B∥2}+ ∥A∗B∥. (5)

Proof. The result follows by letting C = D = 0 in inequality (2).

To state our next corollary, we need the following lemma [16].

Lemma 1. Let A,B ∈ Mn(C) be normal. Then

∥A+B∥ ≤ ∥|A|+ |B|∥ ,

where |T | is the absolute value of T ∈ Mn(C) which is defined by |T | = (T ∗T )1/2 .

Corollary 2. Let A,B,C,D ∈ Mn(C). Then

w

([
A B
C D

])
≤

√
max{∥A∗A+ C∗C + |B∗A+D∗C|∥ , ∥B∗B +D∗D + |A∗B + C∗D|∥}.

Proof. By inequality (4), we have

w

([
A B
C D

])

≤

√∥∥∥∥[ A∗A+ C∗C 0
0 B∗B +D∗D

]
+

[
0 A∗B + C∗D

B∗A+D∗C 0

]∥∥∥∥
≤

√∥∥∥∥[ A∗A+ C∗C 0
0 B∗B +D∗D

]
+

∣∣∣∣[ 0 A∗B + C∗D
B∗A+D∗C 0

]∣∣∣∣∥∥∥∥
(by Lemma 1)

=

√∥∥∥∥[ A∗A+ C∗C 0
0 B∗B +D∗D

]
+

[
|B∗A+D∗C| 0

0 |A∗B + C∗D|

]∥∥∥∥
=

√∥∥∥∥[ A∗A+ C∗C + |B∗A+D∗C| 0
0 B∗B +D∗D + |A∗B + C∗D|

]∥∥∥∥
=

√
max{∥A∗A+ C∗C + |B∗A+D∗C|∥ , ∥B∗B +D∗D + |A∗B + C∗D|∥},

as required.

Letting C = D = 0 in Corollary 2, we have the following result.

Corollary 3. Let A,B ∈ Mn(C). Then

w2

([
A B
0 0

])
≤ max{∥A∗A+ |B∗A|∥ , ∥B∗B + |A∗B|∥}.
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To state the next corollary, we need the following lemma [18].

Lemma 2. Let A,B,C,D ∈ Mn(C). Then∥∥∥∥[A B
C D

]∥∥∥∥ ≤
∥∥∥∥[∥A∥ ∥B∥

∥C∥ ∥D∥

]∥∥∥∥ .
Corollary 4. Let A,B,C,D ∈ Mn(C). Then

w

([
A B
C D

])
≤

√√√√ 1
2 ∥A

∗A+ C∗C∥+ 1
2 ∥B

∗B +D∗D∥
+1

2

√
(∥A∗A+ C∗C∥ − ∥B∗B +D∗D∥)2 + 4 ∥B∗A+D∗C∥2

.

Proof. By inequality (3), we have

w

([
A B
C D

])

≤

√∥∥∥∥[ A∗A+ C∗C A∗B + C∗D
B∗A+D∗C B∗B +D∗D

]∥∥∥∥
≤

√∥∥∥∥[ ∥A∗A+ C∗C∥ ∥A∗B + C∗D∥
∥B∗A+D∗C∥ ∥B∗B +D∗D∥

]∥∥∥∥
=

√
r

([
∥A∗A+ C∗C∥ ∥A∗B + C∗D∥
∥B∗A+D∗C∥ ∥B∗B +D∗D∥

])
(where r denotes the spectral radius of matrices)

=

√√√√ 1
2 ∥A

∗A+ C∗C∥+ 1
2 ∥B

∗B +D∗D∥
+1

2

√
(∥A∗A+ C∗C∥ − ∥B∗B +D∗D∥)2 + 4 ∥B∗A+D∗C∥2

,

as required.

Corollary 5. Let C,D ∈ Mn(C). Then

w2

([
I I
C D

])
≤ 1 + max

{
∥C∥2 , ∥D∥2

}
+ ∥I + C∗D∥ .

Proof. Letting A = B = I in Theorem 1, we have

w2

([
I I
C D

])
≤ max {∥I + C∗C∥ , ∥I +D∗D∥}+ ∥I + C∗D∥

≤ 1 + max {∥C∗C∥ , ∥D∗D∥}+ ∥I + C∗D∥

= 1 +max
{
∥C∥2 , ∥D∥2

}
+ ∥I + C∗D∥ .

We need the following lemma [17] to give a lower bound for inequality (5).
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Lemma 3. Let A,B,C,D ∈ Mn(C). Then

w

([
A B
C D

])
≥ max

{
w(A), w(D),

w(B + C)

2
,
w(B − C)

2

}
.

Corollary 6. Let A,B ∈ Mn(C) be positive semidefinite. Then

1

2
∥A+B∥ ≤ w

([
A B
0 0

])
.

Proof. Let U = 1√
2

[
I I
−I I

]
, where I is the identity matrix, then U is unitary.

Consequently, we have

w

([
A B
0 0

])
= w

(
U∗

[
A B
0 0

]
U

)
= w

([
A−B
2

A+B
2

A−B
2

A+B
2

])
≥ max

{
w

(
A−B

2

)
, w

(
A+B

2

)
,
w (A)

2
,
w (B)

2

}
(by Lemma 3)

=
1

2
∥A+B∥ .

Corollary 7. Let A,B ∈ Mn(C) be positive semidefinite. Then

∥A∥+ ∥B∥ ≤ w2

([
A1/2 B1/2

0 0

])
+ w2

([
B1/2 A1/2

0 0

])
. (6)

Proof. By Lemma 3, we have

w2

([
A1/2 B1/2

0 0

])
≥

[
max

{
w
(
A1/2

)
,
w
(
B1/2

)
2

}]2

= max

{
∥A∥ , 1

4
∥B∥

}
. (7)

Similarly, we have

w2

([
B1/2 A1/2

0 0

])
≥ max

{
∥B∥ , 1

4
∥A∥

}
. (8)

By adding inequalities (7) and (8) and then using the fact that max(a, b) = a+b+|a−b|
2 ,

we have

w2

([
A1/2 B1/2

0 0

])
+ w2

([
B1/2 A1/2

0 0

])
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≥ max

{
∥A∥ , 1

4
∥B∥

}
+max

{
∥B∥ , 1

4
∥A∥

}
=

5

8
(∥A∥+ ∥B∥) + 1

8
(|4 ∥A∥ − ∥B∥|+ |4 ∥B∥ − ∥A∥|) (9)

≥ ∥A∥+ ∥B∥ .

In inequality (5), by replacing A and B by the positive semidefinite matrices A1/2 and
B1/2 respectively, we have

w

([
A1/2 B1/2

0 0

])
≤

√
max{∥A∥ , ∥B∥}+

∥∥A1/2B1/2
∥∥. (10)

Based on inequalities (7), (8), and (10), we have the following corollary.

Corollary 8. Let A,B ∈ Mn(C) be positive semidefinite. Then

max {∥A∥ , ∥B∥} ≤ max

{
w2

([
A1/2 B1/2

0 0

])
, w2

([
B1/2 A1/2

0 0

])}
≤ max {∥A∥ , ∥B∥}+

∥∥∥A1/2B1/2
∥∥∥ .

In particular, if A1/2B1/2 = 0, then

max {∥A∥ , ∥B∥} = max

{
w2

([
A1/2 B1/2

0 0

])
, w2

([
B1/2 A1/2

0 0

])}
.

Proof. The first inequality follows from inequalities (7) and (8).
In inequality (10), by Interchanging the roles of A1/2 and B1/2, we have

w2

([
B1/2 A1/2

0 0

])
≤ max{∥A∥ , ∥B∥}+

∥∥∥A1/2B1/2
∥∥∥ . (11)

So, we can obtain the second inequality from inequalities (10) and (11).

Corollary 9. Let A,B ∈ Mn(C) be positive semidefinite. Then

max

{
∥A∥+ ∥B∥

2
,
5

8
∥A∥ , 5

8
∥B∥

}

≤ 1

2

[
w2

([
A1/2 B1/2

0 0

])
+ w2

([
B1/2 A1/2

0 0

])]
≤ max{∥A∥ , ∥B∥}+

∥∥∥A1/2B1/2
∥∥∥ .
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Proof. Using inequality (9), we have

w2

([
A1/2 B1/2

0 0

])
+ w2

([
B1/2 A1/2

0 0

])

≥ 5

8
(∥A∥+ ∥B∥) + 1

8
(|4 ∥A∥ − ∥B∥|+ |4 ∥B∥ − ∥A∥|)

=
5

8
(∥A∥+ ∥B∥) + 1

8
(|4 ∥A∥ − ∥B∥|+ |∥A∥ − 4 ∥B∥|)

≥ 5

8
(∥A∥+ ∥B∥) + 5

8
|∥A∥ − ∥B∥|

=
5

4
max {∥A∥ , ∥B∥} . (12)

Using inequalities (6) and (12) we get the first inequality. Also, the second inequality can
be obtained from inequalities (10) and (11).

We end this paper with the following result.

Theorem 2. Let A,B,C,D ∈ Mn(C). Then

w

([
A B
C D

])
≥

∥∥∥∥[ Re(A) B+C∗

2
C+B∗

2 Re(D)

]∥∥∥∥ . (13)

Proof. We have

w

([
A B
C D

])
= max

θ∈R

∥∥∥∥Re

(
eiθ

[
A B
C D

])∥∥∥∥
≥

∥∥∥∥Re

([
A B
C D

])∥∥∥∥
=

1

2

∥∥∥∥[ A B
C D

]
+

[
A∗ C∗

B∗ D∗

]∥∥∥∥
=

1

2

∥∥∥∥[ A+A∗ B + C∗

C +B∗ D +D∗

]∥∥∥∥
=

1

2

∥∥∥∥[ 2Re(A) B + C∗

C +B∗ 2Re(D)

]∥∥∥∥
=

∥∥∥∥[ Re(A) B+C∗

2
C+B∗

2 Re(D)

]∥∥∥∥ ,
as required.

By inequalities (2) and (13), we have∥∥∥∥[ Re(A) B+C∗

2
C+B∗

2 Re(D)

]∥∥∥∥ ≤ w

([
A B
C D

])
≤

√
max {∥A∗A+ C∗C∥ , ∥B∗B +D∗D∥}+ ∥A∗B + C∗D∥.
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3. Conclusion

In this paper, new results related to numerical radii of block matrices were given.
Several particular cases were also given. At the end of the paper, an upper bound and a

lower bound of the numerical radius of the partitioned matrix

[
A B
C D

]
were established.
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