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Abstract. We computed the extended operations for generalized quadratic fuzzy sets and ex-
tended quadratic fuzzy numbers from R to R2. By defining parametric operations between two
α-cuts, which are regions, we derived the parametric operations for two quadratic fuzzy numbers
defined on R2. The outcomes of these parametric operations serve as a generalization of Zadeh’s
extended algebraic operations. We demonstrated that the results obtained from the paramet-
ric operations represent an extension of Zadeh’s extended algebraic operations. Additionally, we
expanded quadratic fuzzy numbers initially defined in two dimensions to three dimensions and
calculated Zadeh’s max-min composition operator for two extended three-dimensional quadratic
fuzzy numbers. We presented an illustrative example of three-dimensional results along with cor-
responding graphs.
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1. Introduction

A quadratic fuzzy number expands upon the concept of traditional fuzzy numbers by
incorporating quadratic functions to represent the degree of membership of an element
in a set. Fuzzy numbers are utilized to model uncertainty and imprecision in various
applications, and quadratic fuzzy numbers provide a more flexible representation through
the use of quadratic functions. These numbers are commonly employed in decision-making
processes, especially in scenarios where there is a need to model and analyze uncertain or
imprecise information. They find applications in diverse fields such as optimization, control
systems, and decision analysis [4, 7]. It’s essential to recognize that various researchers
and practitioners may employ slightly different formulations and definitions for quadratic
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fuzzy numbers. Additionally, the specific context of their application can influence how
they are defined and utilized.

The membership function of a quadratic fuzzy number is composed of a quadratic
function with the maximum value of 1. In contrast, a general quadratic fuzzy set is
a quadratic fuzzy set that may not have a maximum value of 1. We calculated the
extended operations for generalized quadratic fuzzy sets [9] and expanded the quadratic
fuzzy numbers from R to R2 [2]. By defining parametric operations between two α-cuts,
which are regions, we derived the parametric operations for two quadratic fuzzy numbers
defined on R2. The outcomes of these parametric operations serve as a generalization of
Zadeh’s extended algebraic operations.

We have shown that the results of parametric operations represent a generalization
of Zadeh’s max-min composition operations. Furthermore, we expanded the concept of
general quadratic fuzzy sets from R to R2. We performed calculations for the parametric
operations applied to two generalized 2-dimensional quadratic fuzzy sets [8]. Our evi-
dence demonstrates that the parametric operations for two generalized quadratic fuzzy
sets defined on R2 constitute a broader generalization of Zadeh’s max-min composition
operations for two general quadratic fuzzy sets defined on R [6].

In this paper, we extend quadratic fuzzy numbers defined in two dimensions to three
dimensions and calculate Zadeh’s max-min composition operator for two extended three-
dimensional quadratic fuzzy numbers. We provide an illustrative example showcasing
three-dimensional results and present graphs depicting the example.

2. max-min composition operations of Zadeh for generalized quadratic
fuzzy sets defined on R

We start by introducing the α-cut and α-set of the fuzzy set A on R with the member-
ship function µA(x). An α-cut of the fuzzy number A is formally defined as Aα = {x ∈ R |
µA(x) ≥ α} when α ∈ (0, 1] and A0 is determined as the closure of {x ∈ R | µA(x) > 0}.
For α ∈ (0, 1), the set Aα = {x ∈ X | µA(x) = α} is referred to as the α-set of the fuzzy
set A, where A0 represents the boundary of {x ∈ R | µA(x) > 0}, and A1 is equivalent to
A1.

Definition 1. [12] The extended addition A(+)B, extended subtraction A(−)B, extended
multiplication A(·)B, and extended division A(/)B are fuzzy sets with membership func-
tions as follows. For all x ∈ A and y ∈ B,

µA(∗)B(z) = sup
z=x∗y

min{µA(x), µB(y)}, ∗ = +,−, ·, /

Now, we extend the concept to encompass general quadratic fuzzy sets. A general
quadratic fuzzy set is symmetric and may not necessarily attain the maximum value of 1.
The membership function graph of a general quadratic fuzzy set exhibits symmetry with
respect to a certain line defined by x = m.

Definition 2. [9] A fuzzy set A with a membership function
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µA(x) =

{
0, x < x1, x2 ≤ x,

−a(x− x1)(x− x2) = −a(x−m)2 + p, x1 ≤ x < x2,

where m = x1+x2
2 , 0 < a, 0 < p ≤ 1, is called a generalized quadratic fuzzy set and denoted

by [[x1, p, x2]] or [[a,m, p]]+.

Theorem 1. [9] Let A = [[a,m, p]]+ = [[x1, p, x2]] and B = [[b, n, q]]+ = [[x3, q, x4]] be
generalized quadratic fuzzy sets. Assume that p ≤ q and µB(x) ≥ p on [k1, k2]. We can
then deduce the followings:
(1) A(+)B is a fuzzy set with a membership function

µA(+)B(x) =


0 (x < x1 + x3, x2 + x4 ≤ x)

f1(x) (x1 + x3 ≤ x < m+ k1)

p (m+ k1 ≤ x < m+ k2)

f2(x) (m+ k2 ≤ x < x2 + x4)

where

f1(x) =
1

a2 − 2ab+ b2

(
−abm(a+ b+ an+ bn)− abn(am+ bm

+ an+ bn)− ab(p+ q) + a2q + b2p+ 2ab(am+ bm+ an

+ bn)x− ab(a+ b)x2 + 2ab(m+ n− x) ·
√

g1(x)
)
,

f2(x) =
1

a2 − 2ab+ b2

(
−abm(a+ b+ an+ bn)− abn(am+ bm

+ an+ bn)− ab(p+ q) + a2q + b2p+ 2ab(am+ bm+ an

+ bn)x− ab(a+ b)x2 − 2ab(m+ n− x) ·
√

g1(x)
)
,

and g1(x) = ab(m+ n)2 + (a− b)(p− q)− 2ab(m+ n)x+ abx2.

(2) A(−)B is a fuzzy set with a membership function

µA(−)B(x) =


0 (x < x1 − x4, x2 − x3 ≤ x)

f3(x) (x1 − x4 ≤ x < m− k2)

p (m− k2 ≤ x < m− k1)

f4(x) (m− k1 ≤ x < x2 − x3)

where

f3(x) =
1

a2 − 2ab+ b2

(
−abm(am+ bm− an− bn)− abn(an+ bn

− am− bm)− ab(p+ q) + a2q + b2p+ 2ab(am+ bm− an

− bn)x− ab2x2 + 2ab(m− n− x) ·
√

g2(x)
)
,
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f4(x) =
1

a2 − 2ab+ b2

(
−abm(am+ bm− an− bn)− abn(an+ bn

− am− bm)− ab(p+ q) + a2q + b2p+ 2ab(am+ bm− an

− bn)x− ab2x2 − 2ab(m− n− x) ·
√

g2(x)
)
,

and g2(x) = ab(m− n)2 + (a− b)(p− q)− 2ab(m− n)x+ abx2.

(3) If p = q, A(·)B is a fuzzy set with a membership function

µA(·)B(x) =

{
0 (x < x1x3, x2x4 ≤ x)

f5(x) (x1x3 ≤ x < x2x4)

where

f5(x) =
1

2
(−am2 − bn2 + 2p)−

√
abx+

1

2

√
g3(x),

g3(x) =− am2(am2 + 3bn2)− bn2(bn2 + 3am2) + 2(am2 + bn2

− 2p)2 + 8p(am2 + bn2 − p) + 8abmnx− 1

8
√
abx

{
−8(am2

+ bn2 − 2p)3 + 8(am2 + bn2 − 2p)h1(x)− 16h2(x)
}
,

h1(x) =am2(am2 + 2bn2) + bn2(bn2 + 2am2)− 6p(am2 + bn2 − p)− 4abmnx− 2abx2,

h2(x) =abm2n2(am2 + bn2 − 4p)− am2p(am2 − 3p)− bn2p(bn2 − 3p)

− 2p3 − 2abmn(am2 + bn2 − 2p)x+ ab(am2 + bn2 + 2p)x2.

(4) A(/)B is a fuzzy set with a membership function

µA(/)B(x) =


0 (x < x1/x4, x2/x3 ≤ x)

f6(x) (x1/x4 ≤ x < m/k2)

p (m/k2 ≤ x < m/k1)

f7(x) (m/k1 ≤ x < x2/x3)

where

f6(x) =
1

b2 − 2abx2 + a2x4

(
−b2(am2 + p) + 2ab2mnx− ab(am2 + bn2 + p

+ q)x2 + 2a2bmnx3 − a2(bn2 − q)x4 + 2abx(m− nx) ·
√

g4(x)
)
,

f7(x) =
1

b2 − 2abx2 + a2x4

(
−b2(am2 + p) + 2ab2mnx− ab(am2 + bn2 + p

+ q)x2 + 2a2bmnx3 − a2(bn2 − q)x4 − 2abx(m− nx) ·
√

g4(x)
)
,

and g4(x) = b(am2 − p+ q)− 2abmnx+ a(bn2 + p− q)x2.
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3. max-min composition operations of Zadeh for quadratic fuzzy
numbers defined on R2

We extended the concept of quadratic fuzzy numbers from R to R2, introducing 2-
dimensional quadratic fuzzy numbers. Additionally, we formulated parametric operations
for two such 2-dimensional quadratic fuzzy numbers by employing region-valued α-cuts in
R2.

Definition 3. [2] A fuzzy set A with a membership function

µA(x, y) =

{
1−

( (x−x1)2

a2
+ (y−y1)2

b2

)
, b2(x− x1)

2 + a2(y − y1)
2 ≤ a2b2,

0, otherwise,

where a, b > 0 is reffered to as a 2-dimensional quadratic fuzzy number, denoted by
[a, x1, b, y1]

2.

The α-cut Aα of a 2-dimensional quadratic fuzzy number A = [a, x1, b, y1]
2 is the

interior of an ellipse in an xy-plane, including the boundary

Aα =
{
(x, y) ∈ R2

∣∣∣ b2(x− x1)
2 + a2(y − y1)

2 ≤ a2b2(1− α)
}

=
{
(x, y) ∈ R2

∣∣∣ (x− x1)
2

a2(1− α)
+

(y − y1)
2

b2(1− α)
≤ 1

}
.

Theorem 2. [3] Let A be a continuous convex fuzzy number defined on R2 and Aα =
{(x, y) ∈ R2|µA(x, y) = α} be the α-set of A. Then for all α ∈ (0, 1), there exist continuous
functions fα

1 (t) and fα
2 (t) defined on [0, 2π] such that

Aα = {(fα
1 (t), f

α
2 (t)) ∈ R2|0 ≤ t ≤ 2π}.

Definition 4. [3] Let A and B be convex fuzzy numbers defined on R2 and

Aα = {(fα
1 (t), f

α
2 (t)) ∈ R2|0 ≤ t ≤ 2π},

Bα = {(gα1 (t), gα2 (t)) ∈ R2|0 ≤ t ≤ 2π}

be the α-sets of A and B, respectively. For α ∈ (0, 1), the parametric addition, parametric
subtraction, parametric multiplication, and parametric division are fuzzy numbers that
have their α-sets as follows:

(1) parametric addition A(+)pB:

(A(+)pB)α = {(fα
1 (t) + gα1 (t), f

α
2 (t) + gα2 (t)) ∈ R2|0 ≤ t ≤ 2π}

(2) parametric subtraction A(−)pB:

(A(−)pB)α = {(xα(t), yα(t)) ∈ R2|0 ≤ t ≤ 2π},

where
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xα(t) =

{
fα
1 (t)− gα1 (t+ π), if 0 ≤ t ≤ π

fα
1 (t)− gα1 (t− π), if π ≤ t ≤ 2π

and

yα(t) =

{
fα
2 (t)− gα2 (t+ π), if 0 ≤ t ≤ π

fα
2 (t)− gα2 (t− π), if π ≤ t ≤ 2π

(3) parametric multiplication A(·)pB:

(A(·)pB)α = {(fα
1 (t) · gα1 (t), fα

2 (t) · gα2 (t)) ∈ R2|0 ≤ t ≤ 2π}

(4) parametric division A(/)pB:

(A(/)pB)α = {(xα(t), yα(t)) ∈ R2|0 ≤ t ≤ 2π},

where

xα(t) =
fα
1 (t)

gα1 (t+ π)
(0 ≤ t ≤ π), xα(t) =

fα
1 (t)

gα1 (t− π)
(π ≤ t ≤ 2π)

and

yα(t) =
fα
2 (t)

gα2 (t+ π)
(0 ≤ t ≤ π), yα(t) =

fα
2 (t)

gα2 (t− π)
(π ≤ t ≤ 2π)

For α = 0 and α = 1, (A(∗)pB)0 = limα→0+(A(∗)pB)α and
(A(∗)pB)1 = limα→1−(A(∗)pB)α, where ∗ = +, −, ·, /.

Theorem 3. [3] Let A = [a1, x1, b1, y1]
2 and B = [a2, x2, b2, y2]

2 be two 2-dimensional
quadratic fuzzy numbers. Subsequently, the following results hold:

(1) A(+)pB =
[
a1 + a2, x1 + x2, b1 + b2, y1 + y2

]2
(2) A(−)pB =

[
a1 + a2, x1 − x2, b1 + b2, y1 − y2

]2
(3) (A(·)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π}, where

xα(t) = x1x2 + (x1a2 + x2a1)
√
1− α cos t+ a1a2(1− α) cos2 t

and

yα(t) = y1y2 + (y1b2 + y2b1)
√
1− α sin t+ b1b2(1− α) sin2 t.

(4) (A(/)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π}, where

xα(t) =
x1 + a1

√
1− α cos t

x2 − a2
√
1− α cos t

and yα(t) =
y1 + b1

√
1− α sin t

y2 − b2
√
1− α sin t

.

Therefore, A(+)pB and A(−)pB become 2-dimensional quadratic fuzzy numbers, whereas
A(·)pB and A(/)pB do not qualify as 2-dimensional quadratic fuzzy numbers.
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Example 1. [3] Consider A = [6, 3, 8, 5]2 and B = [4, 2, 5, 3]2. Subsequently, the
following observations hold:

(1) A(+)pB = [10, 5, 13, 8]2

(2) A(−)pB = [10, 1, 13, 2]2

(3) (A(·)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π}, where

xα(t) = 6 + 24
√
1− α cos t+ 24(1− α) cos2 t

and
yα(t) = 15 + 49

√
1− α sin t+ 40(1− α) sin2 t.

(4) (A(/)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π}, where

xα(t) =
3 + 6

√
1− α cos t

2− 4
√
1− α cos t

and yα(t) =
5 + 8

√
1− α sin t

3− 5
√
1− α sin t

.

Thus A(+)pB and A(−)pB become 2-dimensional quadratic fuzzy numbers, but A(·)pB
and A(/)pB are not 2-dimensional quadratic fuzzy numbers.

4. max-min composition operations of Zadeh for quadratic fuzzy
numbers defined on R3

We extended the concept of quadratic fuzzy numbers from R2 to R3, thereby intro-
ducing 3-dimensional quadratic fuzzy numbers. Our objective is to formulate parametric
operations between two such 3-dimensional quadratic fuzzy numbers. In R3, α-cuts take
the form of cubics, which makes the traditional calculation methods between α-cuts in-
feasible. Therefore, we adopted a novel approach to reinterpret the existing method and
apply it to cubic-valued α-cuts in R3.

Definition 5. A fuzzy set A with a membership function

µA(x, y, z) =


1−

( (x−x1)2

a2
+ (y−y1)2

b2
+ (z−z1)2

c2

)
, if b2c2(x− x1)

2 + c2a2(y − y1)
2

+a2b2(z − z1)
2 ≤ a2b2c2,

0, otherwise,

where a, b, c > 0 is called the 3-dimensional quadratic fuzzy number and denoted by
[a, x1, b, y1, c, z1]

3.

Note that µA(x, y) forms a cone in R2, but we can not determine the shape of µA(x, y, z)
in R3. The α-cut Aα of a 3-dimensional quadratic fuzzy number A = [a, x1, b, y1, c, z1]

3 is
defined as the following set

Aα =
{
(x, y, z) ∈ R3

∣∣∣ (x− x1)
2

a2
+

(y − y1)
2

b2
+

(z − z1)
2

c2
≤ 1− α

}
=

{
(x, y, z) ∈ R3

∣∣∣ (x− x1)
2

a2(1− α)
+

(y − y1)
2

b2(1− α)
+

(z − z1)
2

c2(1− α)
≤ 1

}
.
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Definition 6. A 3-dimensional fuzzy number, A defined on R3, is termed a convex fuzzy
number if, for all α ∈ (0, 1), the α-cuts

Aα = {(x, y, z) ∈ R3|µA(x, y, z) ≥ α}

represent convex subsets in R3.

Theorem 4. [10] Let A be a continuous convex fuzzy number defined on R3, and Aα =
{(x, y, z) ∈ R3|µA(x, y, z) = α} be the α-set of A. Then, for all α ∈ (0, 1), there exist
continuous functions fα

1 (s), f
α
2 (s, t), and fα

3 (s, t)(0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 ) such that

Aα = {(fα
1 (s), f

α
2 (s, t), f

α
3 (s, t)) ∈ R3|0 ≤ s ≤ 2π,−π

2
≤ t ≤ π

2
}.

Definition 7. Let A and B are two continuous convex fuzzy numbers defined on R3 and

Aα = {(x, y, z) ∈ R3|µA(x, y, z) = α}

= {(fα
1 (s), f

α
2 (s, t), f

α
3 (s, t)) ∈ R3|0 ≤ s ≤ 2π,−π

2
≤ t ≤ π

2
},

Bα = {(x, y, z) ∈ R3|µB(x, y, z) = α}

= {(gα1 (s), gα2 (s, t), gα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π,−π

2
≤ t ≤ π

2
}

be the α-sets of A and B, respectively. For α ∈ (0, 1), we define the parametric addition,
parametric subtraction, parametric multiplication, and parametric division of two fuzzy
numbers A and B as fuzzy numbers with α-sets as follows:

(1) parametric addition A(+)pB:

(A(+)pB)α = {(fα
1 (s) + gα1 (s), f

α
2 (s, t) + gα2 (s, t), f

α
3 (s, t) + gα3 (s, t)) ∈ R3|

0 ≤ s ≤ 2π,−π

2
≤ t ≤ π

2
}

(2) parametric subtraction A(−)pB:

(A(−)pB)α = {(fα
1 (s)− gα1 (s+ π), fα

2 (s, t)− gα2 (s+ π, t),

fα
3 (s, t)− gα3 (s+ π, t)) ∈ R3|0 ≤ s ≤ π,−π

2
≤ t ≤ π

2
},

(A(−)pB)α = {(fα
1 (s)− gα1 (s− π), fα

2 (s, t)− gα2 (s− π, t),

fα
3 (s, t)− gα3 (s− π, t)) ∈ R3|π ≤ s ≤ 2π,−π

2
≤ t ≤ π

2
}

(3) parametric multiplication A(·)pB:

(A(·)pB)α = {(fα
1 (s) · gα1 (s), fα

2 (s, t) · gα2 (s, t), fα
3 (s, t) · gα3 (s, t)) ∈ R3|

0 ≤ s ≤ 2π,−π

2
≤ t ≤ π

2
}

(4) parametric division A(/)pB:
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(A(/)pB)α = {( fα
1 (s)

gα1 (s+ π)
,

fα
2 (s, t)

gα2 (s+ π, t)
,

fα
3 (s, t)

gα3 (s+ π, t)
) ∈ R3|

0 ≤ s ≤ π,−π

2
≤ t ≤ π

2
},

(A(/)pB)α = {( fα
1 (s)

gα1 (s− π)
,

fα
2 (s, t)

gα2 (s− π, t)
,

fα
3 (s, t)

gα3 (s− π, t)
) ∈ R3|

π ≤ s ≤ 2π,−π

2
≤ t ≤ π

2
}

For α = 0 and α = 1, (A(∗)pB)0 = limα→0+(A(∗)pB)α and
(A(∗)pB)1 = limα→1−(A(∗)pB)α, where ∗ = +, −, ·, /.

Theorem 5. Let A = [a1, x1, b1, y1, c1, z1]
3 and B = [a2, x2, b2, y2, c2, z2]

3 be two 3-
dimensional quadratic fuzzy numbers. Subsequently, the following results hold:

(1) A(+)pB =
[
a1 + a2, x1 + x2, b1 + b2, y1 + y2, c1 + c2, z1 + z2

]3
(2) A(−)pB =

[
a1 + a2, x1 − x2, b1 + b2, y1 − y2, c1 + c2, z1 − z2

]3
(3) (A(·)pB)α = {(xα(s), yα(s, t), zα(s, t)) ∈ R3 | 0 ≤ s ≤ 2π,−π

2 ≤ t ≤ π
2 }, where

xα(s) = x1x2 + (x1a2 + x2a1)
√
1− α cos s+ a1a2(1− α) cos2 s,

yα(s, t) = y1y2 + (y1b2 + y2b1)
√
1− α sin s cos t+ b1b2(1− α) sin2 s cos2 t

and

zα(s, t) = z1z2 + (z1c2 + z2c1)
√
1− α sin s sin t+ c1c2(1− α) sin2 s sin2 t.

(4) (A(/)pB)α = {(xα(s), yα(s, t), zα(s, t)) ∈ R3 | 0 ≤ s ≤ 2π,−π
2 ≤ t ≤ π

2 }, where

xα(s) =
x1 + a1

√
1− α cos s

x2 − a2
√
1− α cos s

yα(s, t) =
y1 + b1

√
1− α sin s cos t

y2 − b2
√
1− α sin s cos t

and

zα(s, t) =
z1 + c1

√
1− α sin s sin t

z2 − c2
√
1− α sin s sin t

.

Therefore, A(+)pB and A(−)pB become 3-dimensional quadratic fuzzy numbers, while
A(·)pB and A(/)pB do not qualify as 3-dimensional quadratic fuzzy numbers.

Proof. Since A and B are continuous convex fuzzy numbers defined on R3, by Theorem
4, there exists fα

1 (s), g
α
1 (s), f

α
i (s, t), g

α
i (s, t) (i = 2, 3) such that

Aα = {(fα
1 (s), f

α
2 (s, t), f

α
3 (s, t)) ∈ R3|0 ≤ s ≤ 2π,−π

2
≤ t ≤ π

2
},
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and

Bα = {(gα1 (s), gα2 (s, t), gα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π,−π

2
≤ t ≤ π

2
}.

Since A = [a1, x1, b1, y1, c1, z1]
3 and B = [a2, x2, b2, y2, c2, z2]

3, we have

fα
1 (s) = x1 + a1

√
1− α cos s, fα

2 (s, t) = y1 + b1
√
1− α sin s cos t

fα
3 (s, t) = z1 + c1

√
1− α sin s sin t

and

gα1 (s) = x2 + a2
√
1− α cos s, gα2 (s, t) = y2 + b2

√
1− α sin s cos t

gα3 (s, t) = z2 + c2
√
1− α sin s sin t.

(1) Since

fα
1 (s) + gα1 (s) = x1 + x2 + (a1 + a2)

√
1− α cos s

fα
2 (s, t) + gα2 (s, t) = y1 + y2 + (b1 + b2)

√
1− α sin s cos t

and

fα
3 (s, t) + gα3 (s, t) = z1 + z2 + (c1 + c2)

√
1− α sin s sin t

we have

(A(+)pB)α =
{
(x, y, z) ∈ R3

∣∣∣ (x− x1 − x2)
2

(a1 + a2)2(1− α)
+

(y − y1 − y2)
2

(b1 + b2)2(1− α)

+
(z − z1 − z2)

2

(c1 + c2)2(1− α)
= 1

}
.

Thus

A(+)pB =
[
a1 + a2, x1 + x2, b1 + b2, y1 + y2, c1 + c2, z1 + z2

]3
.

(2) If 0 ≤ s ≤ π,

fα
1 (s)− gα1 (s+ π) = x1 − x2 + (a1 + a2)

√
1− α cos s

fα
2 (s, t)− gα2 (s+ π, t) = y1 − y2 + (b1 + b2)

√
1− α sin s cos t

and

fα
3 (s, t)− gα3 (s+ π, t) = z1 − z2 + (c1 + c2)

√
1− α sin s sin t.

In the case of π ≤ s ≤ 2π, we have

fα
1 (s)− gα1 (s− π) = fα

1 (s)− gα1 (s+ π)

fα
2 (s, t)− gα2 (s− π, t) = fα

2 (s, t)− gα2 (s+ π, t)
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and

fα
3 (s, t)− gα3 (s− π, t) = fα

3 (s, t)− gα3 (s+ π, t).

Thus

(A(−)pB)α =
{
(x, y, z) ∈ R3

∣∣∣ (x− x1 + x2)
2

(a1 + a2)2(1− α)
+

(y − y1 + y2)
2

(b1 + b2)2(1− α)

+
(z − z1 + z2)

2

(c1 + c2)2(1− α)
= 1

}
,

i.e.,

A(−)pB =
[
a1 + a2, x1 − x2, b1 + b2, y1 − y2, c1 + c2, z1 − z2

]3
.

(3) Let (A(·)pB)α = {(xα(s), yα(s, t), zα(s, t)) | 0 ≤ s ≤ 2π,−π
2 ≤ t ≤ π

2 }. Since

fα
1 (s) = x1 + a1

√
1− α cos s, fα

2 (s, t) = y1 + b1
√
1− α sin s cos t,

fα
3 (s, t) = z1 + c1

√
1− α sin s sin t

and

gα1 (s) = x2 + a2
√
1− α cos s, gα2 (s, t) = y2 + b2

√
1− α sin s cos t,

gα3 (s, t) = z2 + c2
√
1− α sin s sin t,

we have

xα(s) = fα
1 (s) · gα1 (s) = x1x2 + (x1a2 + x2a1)

√
1− α cos s

+ a1a2(1− α) cos2 s,

yα(s, t) = fα
2 (s, t) · gα2 (s, t) = y1y2 + (y1b2 + y2b1)

√
1− α sin s cos t

+ b1b2(1− α) sin2 s cos2 t,

zα(s, t) = fα
3 (s, t) · gα3 (s, t) = z1z2 + (z1c2 + z2c1)

√
1− α sin s sin t

+ c1c2(1− α) sin2 s sin2 t.

(4) Let (A(/)pB)α = {(xα(s), yα(s, t), zα(s, t)) | 0 ≤ s ≤ 2π,−π
2 ≤ t ≤ π

2 }. Similarly, we
have

xα(s) =
x1 + a1

√
1− α cos s

x2 − a2
√
1− α cos s

yα(s, t) =
y1 + b1

√
1− α sin s cos t

y2 − b2
√
1− α sin s cos t

,

zα(s, t) =
z1 + c1

√
1− α sin s sin t

z2 − c2
√
1− α sin s sin t

.

The proof is complete.

Example 2. Consider A = [6, 3, 8, 5, 4, 7]3 and B = [4, 2, 5, 3, 6, 4]3. Subsequently,
the following observations hold:

(1) A(+)pB = [10, 5, 13, 8, 10, 11]3
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(2) A(−)pB = [10, 1, 13, 2, 10, 3]3

(3) (A(·)pB)α = {(xα(s), yα(s, t), zα(s, t)) | 0 ≤ s ≤ 2π,−π
2 ≤ t ≤ π

2 }, where

xα(s) = 6 + 24
√
1− α cos s+ 24(1− α) cos2 s,

yα(s, t) = 15 + 49
√
1− α sin s cos t+ 40(1− α) sin2 s cos2 t

and
zα(s, t) = 28 + 58

√
1− α sin s sin t+ 24(1− α) sin2 s sin2 t.

(4) (A(/)pB)α = {(xα(s), yα(s, t), zα(s, t)) | 0 ≤ s ≤ 2π,−π
2 ≤ t ≤ π

2 }, where

xα(s) =
3 + 6

√
1− α cos s

2− 4
√
1− α cos s

yα(s, t) =
5 + 8

√
1− α sin s cos t

3− 5
√
1− α sin s cos t

and

zα(s, t) =
7 + 4

√
1− α sin s sin t

4− 6
√
1− α sin s sin t

.

Thus A(+)pB and A(−)pB become 3-dimensional quadratic fuzzy numbers, but A(·)pB
and A(/)pB are not 3-dimensional quadratic fuzzy numbers.

The membership function of the 3-dimensional quadratic fuzzy number is a function
defined on R3 with values in [0, 1]. In the case of the 3-dimensional quadratic fuzzy
numbers A = [6, 3, 8, 5, 4, 7]3 and B = [4, 2, 5, 3, 6, 4]3, we depict the values of the
membership function using colors, as illustrating in Figure 1 and Figure 2.

Figure 1: A Figure 2: B Figure 3: A(+)pB

Figure 4: A(−)pB Figure 5: A(·)pB Figure 6: A(/)pB

The results of the example are depicted in Figures 3 to 6. The membership function
values for points within A(+)pB and A(−)pB, when intersected by a plane, are demon-
strated in Figures 7 to 12 and Figures 13 to 21, respectively. Although all graphs appear
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similar in shape, a closer look at the bar graph showing the function values next to each
figure uncovers notable differences. It becomes clear that the function values are not
consistent, unlike what is typically seen in one or two dimensions.

Fig. 7: A(+)pBz ≤ 8 Fig. 8: A(+)pBz ≤ 9 Fig. 9: A(+)pBz ≤ 10

Fig. 10: A(+)pBz ≤ 11 Fig. 11: A(+)pBz ≤ 12 Fig. 12: A(+)pBz ≤ 13

Fig. 13: A(−)pBz ≤ −0.15 Fig. 14: A(−)pBz ≤ 0.5 Fig. 15: A(−)pBz ≤ 1

5. Conclusion

We are broadening the scope of quadratic fuzzy numbers from a two-dimensional space
R2 to a three-dimensional space R3. By establishing parametric operations between two
α-cuts, which are subsets of R3, we are able to formulate parametric operations for two
quadratic fuzzy numbers within the R3 space. The significance of this dimensional ex-
pansion lies in its incorporation of Zadeh’s defined max-min operation in two dimensions
[10]. Moreover, as long as the computations of these operations remain consistent, this
dimensional expansion is expected to further the research in fractional programming in
the future [1].
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In [2], the results of quadratic fuzzy numbers in two dimensions have been detailed.
When extended to three dimensions, the operations A(+)B and A(−)B evolve into 3-
dimensional quadratic fuzzy numbers. However, this transformation does not apply to
A(·)B and A(/)B. The inherent well-structured nature of A(+)B and A(−)B allows
them to be utilized in a wide range of fields without needing any alterations. Conversely,
by modifying the forms of A(·)B and A(/)B, they can be adapted for use in various
applications.

Fig. 16: A(−)pBz ≤ 2 Fig. 17: A(−)pBz ≤ 3 Fig. 18: A(−)pBz ≤ 4

Fig. 19: A(−)pBz ≤ 5 Fig. 20: A(−)pBz ≤ 5.5 Fig. 21: A(−)pBz ≤ 6

This result can be applied to demonstrate that the 3-dimensional case is a general-
ization of the 2-dimensional case. While there have been various attempts to expand the
dimension, no studies have successfully achieved expansion while preserving Zadeh’s re-
sults for 1 and 2-dimensional quadratic fuzzy numbers. This paper aims to contribute to
the advancement of applications of quadratic fuzzy numbers by extending their dimension.
The application scope of this paper includes solving the 3-dimensional flow shop scheduling
problem and quadratic fuzzy equations [5, 11], with expectations of further applications
across numerous fields.
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Appendix

The Mathematica commands to obtain the above graphs are as follows.

(Figure 1)

DensityPlot3D[1 - ((x - 3)^2/6 + (y - 5)^2/8 + (z - 7)^2/4), {x, y, z} in

Ellipsoid[{3, 5, 7}, {Sqrt[6], Sqrt[8], 2}], PlotPoints -> 100, ColorFunct

ion -> "SunsetColors", OpacityFunction -> 0.05, BoxRatios -> {Sqrt[6], Sqr

t[8], 2}, PlotLegends -> Automatic]
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(Figure 3)

DensityPlot3D[1 - ((x - 5)^2/10 + (y - 8)^2/13 + (z - 11)^2/10), {x, y, z}

in Ellipsoid[{5, 8, 11}, {Sqrt[10], Sqrt[13], Sqrt[10]}], PlotPoints -> 10

0, ColorFunction -> "SunsetColors", OpacityFunction -> 0.05, BoxRatios ->

{Sqrt[10], Sqrt[13], Sqrt[10]}, PlotLegends -> Automatic]

(Figure 5)

g[a_] := ParametricPlot3D[{6 + 24 Sqrt[1 - a] Cos[s] + 24 (1 - a) (Cos[s])

^2, 15 + 49 Sqrt[1 - a] Sin[s] Cos[t] + 40 (1 - a) (Sin[s])^2 (Cos[t])^2,

28 + 58 Sqrt[1 - a] Sin[s] Sin[t] + 24(1 - a) (Sin[s])^2 (Sin[t])^2}, {s,

0, 2 Pi}, {t, -Pi/2, Pi/2}, PlotStyle -> Directive[RGBColor[0.2, 0.5 + a/2

, 0.5 + a/2], Opacity[0.3]], BoxRatios -> {1, 1, 1}];

tg = Table[g[i], {i, 0, 1.0, 0.01}];

Show[tg]

(Figure 7)

reg1 = ImplicitRegion[0 <= (x - 5)^2/10 + (y - 8)^2/13 + (z - 11)^2/10 <=

1 && z <= 8, {x, y, z}];DensityPlot3D[1 - ((x - 5)^2/10 + (y - 8)^2/13 + (

z - 11)^2/10), {x, y, z} in reg1, PlotPoints -> 100, ColorFunction -> "Sun

setColors", OpacityFunction -> 1, BoxRatios -> {Sqrt[10], Sqrt[13], Sqrt[1

0]}, PlotLegends -> Automatic]

(Figure 10)

reg1 = ImplicitRegion[0 <= (x - 5)^2/10 + (y - 8)^2/13 + (z - 11)^2/10 <=

1 && z <= 11, {x, y, z}];DensityPlot3D[1 - ((x - 5)^2/10 + (y - 8)^2/13 +

(z - 11)^2/10), {x, y, z} in reg1, PlotPoints -> 100, ColorFunction -> "Su

nsetColors", OpacityFunction -> 1, BoxRatios -> {Sqrt[10], Sqrt[13], Sqrt[

10]}, PlotLegends -> Automatic]

(Figure 13)

reg1 = ImplicitRegion[0 <= (x - 1)^2/10 + (y - 2)^2/13 + (z - 3)^2/10 <= 1

&& z <= -0.15, {x, y, z}];DensityPlot3D[1 - ((x - 1)^2/10+ (y - 2)^2/13 +

(z - 3)^2/10),{x, y, z} in reg1, PlotPoints -> 100, ColorFunction -> "Sun

setColors", OpacityFunction -> 1, BoxRatios -> {Sqrt[10], Sqrt[13], Sqrt[1

0]}, PlotLegends -> Automatic]

(Figure 16)
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reg1 = ImplicitRegion[0 <= (x - 1)^2/10 + (y - 2)^2/13 + (z - 3)^2/10 <= 1

&& z <= 2, {x, y, z}];DensityPlot3D[1 - ((x - 1)^2/10+ (y - 2)^2/13 + (z -

3)^2/10),{x, y, z} in reg1, PlotPoints -> 100, ColorFunction -> "SunsetCo

lors", OpacityFunction -> 1, BoxRatios -> {Sqrt[10], Sqrt[13], Sqrt[10]},

PlotLegends -> Automatic]

(Figure 19)

reg1 = ImplicitRegion[0 <= (x - 1)^2/10 + (y - 2)^2/13 + (z - 3)^2/10 <= 1

&& z <= 5, {x, y, z}];DensityPlot3D[1 - ((x - 1)^2/10+ (y - 2)^2/13 + (z -

3)^2/10),{x, y, z} in reg1, PlotPoints -> 100, ColorFunction -> "SunsetCo

lors", OpacityFunction -> 1, BoxRatios -> {Sqrt[10], Sqrt[13], Sqrt[10]},

PlotLegends -> Automatic]


