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Abstract. For a simple graph G = (V (G) , E (G)), a total double Italian dominating function is
a function f : V (G) → {0, 1, 2, 3} with properties that every vertex v ∈ V (G) with f (v) ∈ {0, 1},∑

u∈N [v] f (u) ≥ 3 and every vertex v ∈ V (G) with f(v) ̸= 0 has a neighbor u with f(u) ̸= 0.

The weight of a total double Italian dominating function is the sum ωG (f) =
∑

v∈V (G) f (v) ≥ 3
and the minimum weight of all the total double Italian dominating functions on a graph G is the
total double Italian domination number, denoted by γtdI (G). In this paper we explore further
the concept of total double Italian domination. We characterize graphs G with smaller values for
γtdI(G). Also, we characterize the total double Italian dominating function on the join, corona,
edge corona, and complementary prism of graphs. Exact values or bounds are also determined for
their respective total double Italian domination number.

2020 Mathematics Subject Classifications: 05C69
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1. Introduction

Since its introduction in 2004 by Cockayne et al. [12], Roman domination is one of
the most well-studied concepts in graph theory. For a comprehensive understanding of its
origins, historical development, and significance in the field along with recent advances,
we refer to [1, 2, 10, 13, 16–19, 21, 22, 24, 25]. Building on the foundations of Roman
domination, Chellali et al. [13] introduced a broader concept known as Italian domination
(also referred as Roman-{2} domination). Meanwhile, Beeler et al. [10] extended the idea
even further by developing the notion of double Roman domination, a stronger variant
that inspires new research in the field.
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In 2020, Mojdeh et al. [19] introduced the concept of double Italian domination (or
Roman {3}-domination) which is an optimization of the double Roman domination. In
the same year, Shao et al. [26] initiated the study of total double Italian domination and
have shown its relationship to other domination parameters.

This present paper investigates further the total double Italian domination, particularly
in graphs under the join, corona, edge corona and complementary prism of graphs.

Throughout this paper, all graphs considered are undirected, finite and simple. See
[3, 4, 9] for all the basic graph terminologies that are not defined but used in this paper.

For a graph G = (V (G), E(G)), the open neighborhood of a vertex v ∈ V (G), denoted
by NG(v), consists of all the vertices adjacent to v and its closed neighborhood, denoted
by NG[v], is the open neighborhood of v together with vertex v. The degree of v, de-
noted by degG(v), degG(v) = |NG(v)|. The minimum degree, δ(G) of G is the minimum
degree among the vertices of G. The maximum degree of G, denoted by ∆(G), is the
maximum degree among the vertices of G. For S ⊆ V (G), NG(S) = ∪v∈SNG(v) and
NG[S] = S ∪NG(S).

Let G and H be graphs with disjoint vertex sets. The join of graphs G and H is
the graph G +H with vertex set V (G +H) = V (G) ∪ V (H) and edge set E(G +H) =
E(G)∪E(H)∪{uv : u ∈ V (G)∧ v ∈ V (H)}. The corona of G and H, G ◦H, is the graph
obtained by taking one copy of G and |V (G)| copies of H and then joining the ith vertex
of G to every vertex of the ith copy of H. The edge corona, denoted by G ⋄H, of G and
H is a graph obtained by taking one copy of G and |E(G)| copies of H and joining each
of the end vertices u and v of each edge uv of G to every vertex of the copy Huv of H.
The complementary prism, denoted GG, is formed from the disjoint union of G and its
complement G by adding a perfect matching between corresponding vertices of G and G.
The gluing of G and H along a common subgraph K is the graph G ⊔K H by combining
G and H through K. Graphs C4 ⊔P3 C4 and C4 ⊔K2 K3 are given in Figure 1. We refer to
[5] for a detailed information on the gluing of graphs.

A set S ⊆ V (G) is a dominating set of G if NG[S] = V (G). The domination number
of G, denoted by γ(G), is the smallest cardinality of a dominating set of G. A set S
of vertices in a graph G is called a total dominating set if NG(S) = V (G). The total
domination number γt(G) of G is the minimum cardinality of a total dominating set of
vertices in G. A dominating set of G of cardinality γ(G) is referred to as γ-set of G. A total
dominating set ofG of cardinality γt(G) is called a γt-set ofG. We refer to [6, 11, 14, 15, 20]
for the fundamental concepts, some recent developments and applications of domination
and total domination in graphs.

For a positive integer k, a set D ⊆ V (G) is called a k-dominating set if each
v ∈ V (G) \D is adjacent to at least k vertices in D. The k-domination number γk(G) is
then defined to be the smallest cardinality of a k-dominating set of G. M. Chellali et al.
in [8] presented an outstanding survey of results in k-domination in graphs.

A subset S ⊆ V (G) is a vertex cover of G if for every edge uv ∈ E(G), u ∈ S or v ∈ S.
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The smallest cardinality of a vertex cover is the vertex cover number of G, and is denoted
by β(G). Excellent references for vertex cover include [7, 23].

A double Italian dominating function (or DIDF ) of G is a function
f : V (G) → {0, 1, 2, 3} having the property that for every vertex v ∈ V (G), if f(v) ∈ {0, 1},
then

∑
u∈N [v] f(u) ≥ 3. The weight of a DIDF is the sum ωG(f) =

∑
v∈V (G) f(v), and

the minimum weight of a DIDF f is the double Italian domination number, denoted
by γdI(G). A DIDF function f : V (G) → {0, 1, 2, 3} is a total double Italian dominating
function (or TDIDF ) of G if for each v ∈ V (G) with f(v) ̸= 0, there exists u ∈ V (G) such
that f(u) ̸= 0 and uv ∈ E(G). The minimum weight of a TDIDF of G is the total double
Italian domination number of G, and is denoted by γtdI(G). We write f ∈ TDIDF (G) to
mean that f is TDIDF of G. Any TDIDF f of G with weight γtdI(G) is referred to as
γtdI -function of G.

For a function f : V (G) → {0, 1, 2, 3}, let (V0, V1, V2, V3) be the ordered partition
induced by f , where Vi = {v ∈ V (G) : f(v) = i} for i ∈ {0, 1, 2, 3}. Then we can write
f = (V0, V1, V2, V3). The weight of f is defined by ωG(f) = |V1|+ 2|V2|+ 3|V3|.

More precisely, f = (V0, V1, V2, V3) ∈ TDIDF (G) if each of the following holds:

(i) For each v ∈ V0, at least one of the following holds:

(a) |V1 ∩NG(v)| ≥ 3;

(b) |V1 ∩NG(v)| ≥ 1 and |V2 ∩NG(v)| ≥ 1;

(c) |V2 ∩NG(v)| ≥ 2;

(d) |V3 ∩NG(v)| ≥ 1.

(ii) For each v ∈ V1, at least one of the following holds:

(a) |V1 ∩NG(v)| ≥ 2;

(b) |(V2 ∪ V3) ∩NG(v)| ≥ 1.

(iii) For each v ∈ V1 ∪ V2 ∪ V3, |(V1 ∪ V2 ∪ V3) ∩NG(v)| ≥ 1.

2. Preliminary results

Proposition 1. [26] If G is a connected graph of order n ≥ 2, then
γtdI(G) ≥ 3 and γtdI(G) = 3 if and only if G has at least two vertices of degree
∆(G) = n− 1.

Proposition 2. [26] If G has only one vertex of degree ∆(G) = n− 1, then γtdI(G) = 4.

Theorem 1. [26] If G is a graph with δ(G) = δ ≥ 2, then γtdI(G) ≤ |V (G)|+ 2− δ, and
this bound is sharp.

Proposition 3. Let G be a nontrivial connected graph of order n ≥ 4. Then γtdI(G) = 4
if and only if one of the following holds:
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(i) G has exactly one vertex of degree ∆(G) = n− 1;

(ii) γ(G) ≥ 2 and G has a 3-dominating set D with |D| = 4 and δ(⟨D⟩) ≥ 2.

Proof : Suppose that γtdI(G) = 4. If γ(G) = 1, then by Proposition 1 and Proposition
2, G contains exactly one vertex of degree n − 1, and (i) holds. Suppose that γ(G) ≥ 2.
Let f = (V0, V1, V2, V3) be a γtdI -function of G. Since γ(G) ̸= 1, V2 = V3 = ∅ and
|V1| = 4. Put D = V1. Then δ(⟨D⟩) ≥ 2. If V0 = ∅, then G = C4. If V0 ̸= ∅, then
3 ≤ |NG(v) ∩ V1| ≤ 4 for every v ∈ V0. In any case, D is a 3-dominating set of G. Thus,
(ii) holds.

Conversely, if (i) holds, then the desired result follows from Proposition 2. Suppose
(ii) holds. By Proposition 1 and Proposition 2, γtdI(G) ≥ 4. On the other hand, since
f = (V (G) \ D,D,∅,∅) is a total double Italian dominating function on G,
γtdI(G) ≤ |D| = 4. Therefore, γtdI(G) = 4. ■

In Statement (ii) of Proposition 3, it is not necessary that γ3(G) = 4. To see this, note
that if G = C4 +K3, then γtdI(G) = 4 while γ3(G) = 3.

It can be verified that if G is connected of order n = 4, then γtdI(G) ̸= 5.

Proposition 4. Let G be a nontrivial connected graph of order n ≥ 5. Then γtdI(G) = 5
if and only if one of the following holds:

(i) G ∈ {C5,K2,3,K3 ⊔K2 C4,K2 + (K1 ∪K2)} (see Figure 1);

(ii) n > 5, γ(G) ≥ 2, G does not contain a 3-dominating set D with |D| = 4 and
δ(⟨D⟩) ≥ 2, and one of the following holds:

(a) G contains a 3-dominating set D with |D| = 5 and δ(⟨D⟩) ≥ 2;

(b) G contains a 2-dominating set D with |D| = 3 and ⟨D⟩ is connected.

(c) G contains a 2-dominating set D with |D| = 4 such that there exists v ∈ D for
which uv ∈ E(G) for all u ∈ V (G) \D with |NG(u)∩D| = 2. Moreover, ⟨D⟩ is
connected and xv ∈ E(G) for every x ∈ D \ {v} with |NG(x) ∩D| = 1.

Proof : Suppose that γtdI(G) = 5. By Proposition 1 and Proposition 3, γ(G) ≥ 2 and
G does not contain a 3-dominating set D with |D| = 4 and δ(⟨D⟩) ≥ 2. If n = 5, then
G ∈ {C5,K2,3,K3⊔K2C4,K2+(K1 ∪K2)}. Assume that n > 5. Let f = (V0, V1, V2, V3) be
a γtdI function of G. By Proposition 1 and Proposition 3, V3 = ∅. Consider the following
cases:

Case 1: Suppose that |V1| = 5 and |V2| = 0. Since n > 5, V0 ̸= ∅. Then
3 ≤ |NG(u) ∩ V1| ≤ 5 for every u ∈ V0. Hence, D = V1 is a 3-dominating set on G.
Since |NG(v) ∩ V1| ≥ 2 for every v ∈ V1, δ(⟨D⟩) ≥ 2 and (ii)(a) holds.

Case 2: Suppose that |V1| = 1 and |V2| = 2. Since n > 5, V0 ̸= ∅. Thus D = V1 ∪ V2

is a 2-dominating set of G. Moreover, since f ∈ TIDF (G), ⟨D⟩ is connected. Therefore,
(ii)(b) holds.
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Case 3: Suppose that |V1| = 3 and |V2| = 1. Put V2 = {v}. Then for each u ∈ V0, either
|N(u) ∩ V1| = 3 or 1 ≤ |N(u) ∩ V1| ≤ 2 and uv ∈ E(G). Hence, |N(u) ∩ (V1 ∪ V2)| ≥ 2.
Thus, D = V1 ∪ V2 is a 2-dominating set of G. Observe that, if |N(u) ∩ (V1 ∪ V2)| = 2,
then uv ∈ E(G). By the definition of f , ⟨V1 ∪ V2⟩ has no isolated vertex. If u′ ∈ V1 such
that d⟨S⟩(u

′) = 1, then u′v ∈ E(G). Thus, (ii)(c) holds.

Conversely, if G ∈ {C5,K2,3,K3 ⊔K2 C4,K2 + (K1 ∪K2)}, then γtdI(G) = 5. Now,
suppose that n > 5, γ(G) ≥ 2, G does not contain a 3-dominating set D for which |D| = 4
and δ(⟨D⟩) ≥ 2. Then by Proposition 3, γtdI(G) ≥ 5. Assume that (ii)(a) holds. Let
V0 = V (G) \ D, V1 = D, V2 = ∅, and V3 = ∅. Then f = (V0, V1, V2, V3) is a TDIDF
on G with ωG(f) = 5. This means that γtdI(G) = 5. Assume (ii)(b) holds. Take x ∈ D.
Let V0 = V (G) \D, V1 = {x}, V2 = D \ {x}, and V3 = ∅. Then f = (V0, V1, V2, V3) is a
TDIDF on G with ωG(f) = 5. Hence, γtdI(G) = 5. Assume (ii)(c) holds. Let v ∈ D.
Then f = (V0, V1, V2, V3) where V0 = V (G) \D, V1 = D \ {v}, V2 = {v}, and V3 = ∅ is a
TDIDF on G with ωG(f) = 5. Thus, γtdI(G) = 5. ■

C4 ⊔P3 C4 = K3,2 K3 ⊔K2 C4 K2 + (K1 ∪K2)

Figure 1: Examples of graphs G with γtdI(G) = 5

3. On the join of graphs

In this section, we denote by f |G the restriction of the function f on the subgraph
G of a graph H. The following proposition characterizes all TDIDF on the join of two
nontrivial connected graphs.

Proposition 5. Let G and H be nontrivial connected graphs. Then f = (V0, V1, V2, V3) is
a TDIDF on (G+H) if and only if one of the following holds:

(i) f |G ∈ TDIDF (G);

(ii) f |H ∈ TDIDF (H);

(iii) f |G /∈ TDIDF (G), f |H /∈ TDIDF (H), and each of the following holds:

(a) For every v ∈ V0 ∪ V1,

(1) ωH(f |H) ≥ 3− f |G(NG[v]), whenever v ∈ V (G) and f |G(NG[v]) < 3;

(2) ωG(f |G) ≥ 3− f |H(NH [v]), whenever v ∈ V (H) and f |H(NH [v]) < 3.

(b) For every v ∈ V1 ∪ V2 ∪ V3,
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(1) (V1 ∪ V2 ∪ V3) ∩ V (H) ̸= ∅, whenever v ∈ V (G) and NG(v) ⊆ V0;

(2) (V1 ∪ V2 ∪ V3) ∩ V (G) ̸= ∅, whenever v ∈ V (H) and NH(v) ⊆ V0.

Proof : Let f = (V0, V1, V2, V3) be a function on V (G +H). Assume that (i) holds for f .
Let v ∈ (V0 ∪ V1) ∩ V (G+H). If v ∈ V (G), then

3 ≤ f |G(NG[v]) =
∑

x∈NG[v]

f(x) ≤
∑

x∈NG+H [v]

f(x) = f(NG+H [v]).

Suppose that v ∈ V (H). Since f |G is a TDIDF on G, Proposition 1 implies that
ωG(f |G) ≥ 3. Hence,

f(NG+H [v]) =
∑

x∈NG+H [v]

f(x) =
∑

x∈NG+H [v]\V (G)

f(x) +
∑

x∈V (G)

f(x) ≥ 3.

Now, let v ∈ V1 ∪ V2 ∪ V3. If v ∈ V (G), then since f |G ∈ TDIDF (G), there exists
u ∈ ((V1 ∪ V2 ∪ V3) ∩ V (G)) \ {v} such that vu ∈ E(G) ⊆ E(G +H). If v ∈ V (H), then
∅ ̸= (V1∪V2∪V3)∩V (G) ⊆ NG+H(v). Thus, f ∈ TDIDF (G+H). Similarly, if condition
(ii) holds for f , then f ∈ TDIDF (G + H). Suppose (iii) holds. Let v ∈ V0 ∪ V1. If
v ∈ V (G) such that f |G(NG[v]) < 3, then by (iii)(a), ωH(f |H) ≥ 3 − f |G(NG[v]). Since
f(NG+H [v]) = f |G(NG[v]) + ωH(f |H), f(NG+H [v]) ≥ 3. Similarly, if v ∈ V (H) with
f |H(NH [v]) < 3 then f(NG+H [v]) ≥ 3. Since v is arbitrary, f(NG+H [v]) ≥ 3 for each
v ∈ V0 ∪ V1. Let u ∈ V1 ∪ V2 ∪ V3. If u ∈ V (G) with NG(u) ⊆ V0, then by (iii)(b),
(V1 ∪ V2 ∪ V3) ∩ V (H) ̸= ∅. This means that NG+H(u) ∩ (V1 ∪ V2 ∪ V3) ̸= ∅. Similarly,
NG+H(u) ∩ (V1 ∪ V2 ∪ V3) ̸= ∅ for each u ∈ V (H) with NH(u) ⊆ V0. Thus, ⟨V1 ∪ V2 ∪ V3⟩
has no isolated vertex. Therefore, f ∈ TDIDF (G+H).

Conversely, suppose that f ∈ TDIDF (G+H). Suppose neither (i) nor (ii) holds for
f , i.e., f |G /∈ TDIDF (G+H) and f |H /∈ TDIDF (G+H). Since f |G /∈ TDIDF (G+H),
either there exists v ∈ [(V0 ∪ V1) ∩ V (G)] with f |G(NG[v]) < 3 or ⟨(V1 ∪ V2 ∪ V3) ∩ V (G)⟩
has an isolated vertex or both. Assume that there exists v ∈ [(V0 ∪ V1) ∩ V (G)] with
f |G(NG[v]) < 3. Since f ∈ TDIDF (G+H), ωH(f |H) ≥ 3− f |G(NG[v]). Thus, (iii)(a(1))
holds. Similarly, (iii)(a(2)) follows. On the other hand, assume that ⟨(V1∪V2∪V3)∩V (G)⟩
has an isolated vertex. Let u ∈ [(V1 ∪ V2 ∪ V3) ∩ V (G)] such that NG(v) ⊆ V0. Since
⟨V1 ∪ V2 ∪ V3⟩ is isolated vertex-free, (V1 ∪ V2 ∪ V3) ∩ V (H) ̸= ∅. Thus, (iii)(b(1)) holds.
Similarly, (iii)(b(2)) follows. ■

Corollary 1. Let G and H be nontrivial connected graphs. Then

3 ≤ γtdI(G+H) ≤ min{6, γtdI(G), γtdI(H)}. (1)

Proof : The lower bound follows immediately from Propositon 1. To show the upperbound,
take u ∈ V (G) and v ∈ V (H). Then f = (V (G) \ {u, v},∅,∅, {u, v}) is a TDIDF on
G + H, with ωG+H(f) = 6. Thus, γtdI(G + H) ≤ 6. Let f = (V0, V1, V2, V3) be a γtdI -
function of G. By Proposition 5, g = (V0 ∪ V (H), V1 ∪ V (H), V2 ∪ V (H), V3 ∪ V (H)) is a
TDIDF on G with ωG+H(f) = ωG(f). This means that γtdI(G+H) ≤ γtdI(G). Similarly,
γtdI(G+H) ≤ γtdI(H). ■
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Corollary 2. Let G and H be nontrivial connected graphs. If there exists a γtdI-function
f = (V0, V1, V2, V3) of G+H such that either f |G is a TDIDF on G or f |H is a TDIDF
on H then γtdI(G+H) = min{γtdI(G), γtdI(H)}.

Proof : By Corollary 1, γtdI(G + H) ≤ min{γtdI(G), γtdI(H)}. Assume, WLOG,
f |G = (V0 ∩ V (G), V1 ∩ V (G), V2 ∩ V (G), V3 ∩ V (G)) is a TDIDF on G. Then
γtdI(G) ≤ ωG(f |G) ≤ ωG+H(f). This implies that γtdI(G +H) ≥ min{γtdI(G), γtdI(H)}.
Therefore, γtdI(G+H) = min{γtdI(G), γtdI(H)}. ■

Proposition 6. Let G and H be nontrivial connected graphs of orders n and m, respec-
tively. Then γtdI(G+H) = 3 if and only if one of the following holds:

(i) γtdI(G) = 3;

(ii) γtdI(H) = 3;

(iii) G and H each contains at least one vertex of degree n− 1 and m− 1, respectively.

Proof : Suppose that γtdI(G+H) = 3. By Proposition 1, G+H has at least two vertices
of degree n + m − 1. Take u, v ∈ V (G + H) for which dG+H(u) = n + m − 1 and
dG+H(v) = n + m − 1. If u, v ∈ V (G), then both u and v have degree n − 1. By
Proposition 1, (i) holds. Similarly, if u, v ∈ V (H), then (ii) holds. If u ∈ V (G) and
v ∈ V (H), then (iii) holds.

Conversely, if (i) or (ii) holds, then Equation (1) in Corollary 1 yields γtdI(G+H) = 3.
Suppose (iii) holds. Then G + H contains at least two vertices of maximum degree
∆(G+H) = (m+ n)− 1. By Proposition 1, γtdI(G+H) = 3. ■

Proposition 7. Let G and H be nontrivial connected graphs of orders n and m, respec-
tively. Then γtdI(G+H) = 4 if and only if one of the following holds:

(i) ∆(H) ≤ m− 2 and G has exactly one vertex of degree n− 1;

(ii) ∆(G) ≤ n− 2 and H has exactly one vertex of degree m− 1;

(iii) γ(G) = 2 and γ(H) = 2.

(iv) γ(G) ≥ 2 and γ(H) ≥ 2 and one of the following holds:

(a) G or H has a 3-dominating set D with |D| = 4 and δ(⟨D⟩) ≥ 2;

(b) G or H has a 2-dominating set D such that |D| = 3 and ⟨D⟩ is connected;

Proof : Assume that γtdI(G + H) = 4. If G + H has exactly one vertex v for which
degG+H(v) = m + n − 1, then (i) or (ii) holds. Otherwise, by Proposition 3, γ(G) ≥ 2,
γ(H) ≥ 2 and G + H has a 3-dominating set D with |D| = 4 and δ(⟨D⟩) ≥ 2. Let
DG = D ∩ V (G) and DH = D ∩ V (H). Suppose first that |DG| = 2 = |DH |. For each
x ∈ V (G) \ DG, since D is a 3-dominating set of G + H, there exists u ∈ DG for which
ux ∈ E(G). Thus, DG is a dominating set of G. Since γ(G) ≥ 2, γ(G) = |DG| = 2
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Similarly, γ(H) = 2. Thus, (iii) holds. Next, if D ⊆ V (G) or D ⊆ V (H), then (iv)(a)
holds. Finally, WLOG suppose that |DG| = 3 and |DH | = 1. Clearly, DG is a 2-dominating
set of G. Since δ(⟨D⟩) ≥ 2, ⟨DG⟩ is connected and (iv)(b) holds.

Conversely, note that each of the conditions implies that one of the conditions in
Proposition 3 is satisfied for G+H. Thus, γtdI(G+H) = 4. ■

In view of Proposition 4, if G and H are nontrivial graphs of orders n and m, respec-
tively with n+m = 5, then γtdI(G+H) = 5 if and only if G+H ∈ {K2,3,K2+(K1 ∪K2)}.

Proposition 8. Let G and H be nontrivial graphs of orders n and m, respectively, such
that m+ n > 5. Then γtdI(G+H) = 5 if and only if each of the following holds:

(i) γ(G) ≥ 2 and γ(H) ≥ 2, but γ(G) and γ(H) cannot be both equal to 2;

(ii) Neither G nor H contains a 2-dominating set D for which |D| = 3 and ⟨D⟩ is
connected;

(iii) Neither G nor H has a 3-dominating set D with |D| = 4 and δ(⟨D⟩) ≥ 2;

(iv) One of the following holds:

(a) min{γtdI(G), γtdI(H)} = 5;

(b) G or H has a 2-dominating set D for which |D| = 4 and ⟨D⟩ is connected;

(c) G or H has a dominating set D with |D| = 3;

(d) γ(G) = 2 and γ(H) ≥ 3;

(e) γ(H) = 2 and γ(G) ≥ 3.

Proof : Suppose that γtdI(G + H) = 5. By Proposition 6, γ(G) ≥ 2 and γ(H) ≥ 2.
Moreover, by Proposition 7, γ(G) and γ(H) cannot be both equal to 2; neither G nor
H contains a 2-dominating set D for which |D| = 3 and ⟨D⟩ is connected; and neither
G nor H has a 3-dominating set D with |D| = 4 and δ(⟨D⟩) ≥ 2. Now we claim that
α = min{γtdI(G), γtdI(H)} ≥ 5. Suppose not. Then α = 4. WLOG, assume
γtdI(G) = 4. By Proposition 3, G has a 3-dominating set D with |D| = 4 and δ(⟨D⟩) ≥ 2,
a contradiction. This establishes our claim. If α = 5, then (iv)(a) holds.

Suppose that α > 5. In view of Proposition 4, one of the following cases holds:

Case 1: G + H contains a 3-dominating set D with |D| = 5 and δ(⟨D⟩) ≥ 2. Let
DG = D ∩ V (G) and DH = D ∩ V (H). Since α > 5, 1 ≤ |DG| ≤ 4 and 1 ≤ |DH | ≤ 4.
If either |DG| = 4 or |DH | = 4, then (iv)(b) holds. If either |DG| = 3 or |DH | = 3, then
(iv)(c) holds.

Case 2: G + H contains a 2-dominating set D with |D| = 3 and ⟨D⟩ is connected. If
DG = D ∩ V (G) and DH = D ∩ V (H), then 1 ≤ |DG| ≤ 2 and 1 ≤ |DH | ≤ 2. If |DG| = 2
and |DH | = 1, then DG is a dominating set of G and γ(G) = 2. By (i), γ(H) ≥ 3, and
(iv)(d) holds. Similarly, if |DG| = 1 and |DH | = 2, then (iv)(e) holds.
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Case 3: G+H contains a 2-dominating set D with |D| = 4 such that there exists v ∈ D
for which uv ∈ E(G+H) for all u ∈ V (G+H) \D with |NG+H(u) ∩D| = 2. Moreover,
⟨D⟩ is connected and xv ∈ E(G + H) for every x ∈ D \ {v} with |NG+H(x) ∩ D| = 1.
If DG = D ∩ V (G) and DH = D ∩ V (H), then 1 ≤ |DG| ≤ 3 and 1 ≤ |DH | ≤ 3. If
|DG| = 3 and |DH | = 1, then whether v ∈ V (G) or v ∈ V (H), DG is a dominating set of
G. Similarly, if |DH | = 3 and |DG| = 1, then DH is a dominating set of H. This implies
(ii)(c). Suppose that |DG| = 2 = |DH |. Then either γ(G) = 2 and γ(H) ≥ 3 or γ(H) = 2
and γ(G) ≥ 3.

Conversely, assume that statements (i)-(iii) hold. Suppose that (iv)(a) holds. WLOG,
assume γtdI(G) = 5. In view of Proposition 5, γtdI(G+H) ≤ γtdI(G) = 5. Since statements
(i)-(iii) hold, Proposition 6 and Proposition 7 imply that γtdI(G+H) ≥ 5. Suppose that
(iv)(b) holds, say G has a 2-dominating set D for which |D| = 4 and ⟨D⟩ is connected.
Pick v ∈ V (H). Then D ∪ {v} is a 3-dominating set of G+H with δ(⟨D ∪ {v}⟩) ≥ 2. By
Proposition 4, γtdI(G +H) = 5. Suppose that (iv)(c) holds, say G has a dominating set
D with |D| = 3. Choose v ∈ V (H). Then D ∪ {v} satisfies Proposition 4(ii)(c). Thus,
γtdI(G + H) = 5. Suppose that (iv)(d) holds. Then D ∪ {v} is a 2-dominating set of
cardinality 3 and ⟨D ∪ {v}⟩ is connected. Thus, γtdI(G + H) = 5. Similarly, if (iv)(e)
holds, then γtdI(G+H) = 5. ■

In view of the above results, in particular, if γ(G) ≥ 5 and γ(H) ≥ 5, then γtdI(G +
H) = 6.

4. On the corona of graphs

Let G and H be connected graphs. We adapt the notation Hv used in [16] to denote
the copy of H whose vertices is joined to v ∈ V (G).

Proposition 9. Let G be a nontrivial connected graph and H be any graph without isolated
vertices, and let f = (V0, V1, V2, V3) be a function on V (G◦H). Then f ∈ TDIDF (G◦H)
if and only if each of the following holds:

(i) For each v ∈ V0 ∩ V (G), f |Hv ∈ TDIDF (Hv) ;

(ii) For each v ∈ V1 ∩ V (G), f(NHv [u]) ≥ 2 for all u ∈ (V0 ∪ V1) ∩ V (Hv);

(iii) For each v ∈ V2 ∩ V (G), f(NHv(u)) ≥ 1 for all u ∈ V0 ∩ V (Hv);

(iv) For each v ∈ V3 ∩ V (G) for which NG(v) ⊆ V0, f(V (Hv)) ≥ 1.

Proof : Note first that Hv admits a TDIDF for every v ∈ V (G). Assume f ∈ TDIDF (G◦
H). For each v ∈ V (G),

NG◦H [u] = {v} ∪NHv [u] (2)

so that
f(NG◦H [u]) = f(v) + f(NHv [u]) (3)
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for all u ∈ V (Hv). It follows from Equation (2) and Equation (3) that if v ∈ V0,
then f |Hv(NHv [u]) = f(NG◦H [u]) ≥ 3 for all u ∈ (V0 ∪ V1) ∩ V (Hv) and NG◦H(u) ∩
[V1 ∪ V2 ∪ V3] = NHv(u) ∩ [(V1 ∪ V2 ∪ V3) ∩ V (Hv)] for all u ∈ (V1 ∪ V2 ∪ V3) ∩ V (Hv).
Thus, f |Hv ∈ TDIDF (Hv) and (i) holds. Similarly, (ii) and (iii) follow immediately
from Equation (3). Statement (iv) follows from the fact that ⟨V1∪V2∪V3⟩ has no isolated
vertex.

Conversely, suppose conditions (i) - (iv) hold for f . First, let u ∈ V0, and let
v ∈ V (G) for which u ∈ V (Hv + v). Suppose that v ∈ V0. If u ̸= v, then by (i),
f(NG◦H [u]) = f |Hv(NHv [u]) ≥ 3. Suppose that u = v. Statement (i) implies that
f(NG◦H [u]) ≥ f |Hv(V (Hv)) ≥ 3. Suppose that v ∈ V (G) \ V0. Then u ∈ V0 ∩ V (Hv) and
v ∈ NG◦H [u]. If v ∈ V3, then f(NG◦H [u]) ≥ f(v) = 3. If v ∈ V1 ∪ V2, then by (ii) and
(iii), f(NG◦H [u]) = f(v) + f(NHv [u]) ≥ 3. Similar arguments show that if u ∈ V1, then
f(NG◦H [u]) ≥ 3.

Now, let v ∈ V1 ∪ V2 ∪ V3. Consider the following cases:

Case 1: Suppose v ∈ V (G). If V0∩V (Hv) = ∅, then for each u ∈ V (Hv), u ∈ V1∪V2∪V3

and uv ∈ E(G ◦H). Suppose that V0 ∩ V (Hv) ̸= ∅, say w ∈ V0 ∩ V (Hv). If v ∈ V1 ∪ V2,
then by Conditions (ii) and (iii), there exists u ∈ [(V1 ∪ V2 ∪ V3) ∩ V (Hv)] for which
uw ∈ E(Hv). Incidentally, uv ∈ E(G ◦ H). Suppose that v ∈ V3. Then either there
exists u ∈ [(V1 ∪V2 ∪V3)∩NG(v)] or, by Condition (iv), there exists u ∈ V (Hv) for which
f(u) ≥ 1. In this case, uv ∈ E(G ◦H).

Case 2: Suppose v ∈ V (Hx) for some x ∈ V (G). If x ∈ V1 ∪V2 ∪V3, then we are done. If
x ∈ V0, then since f |Hx ∈ TDIDF (Hx) (Condition (i)), there exists u ∈ [(V1 ∪ V2 ∪ V3) ∩
V (Hv)] for which uv ∈ E(Hx), which means uv ∈ E(G ◦H). ■

Corollary 3. Let G be a nontrivial connected graph of order n, and let H be any graph.
Then γtdI(G ◦H) = 3n.

Proof : Since
f = (∪x∈V (G)V (Hx),∅,∅, V (G)) ∈ TDIDF (G ◦H),

γtdI(G◦H) ≤ 3n. To get the other inequality, first, suppose that H has an isolated vertex,
say x. For each v ∈ V (G), let xv denote the isolated vertex of Hv being identified with x.
Let f = (V0, V1, V2, V3) be a γtdI -function of G ◦H. Since xv is an endvertex in Hv + v,
f(V (Hv + v)) ≥ f(v) + f(xv) ≥ 3 for all v ∈ V (G). This yields

γtdI(G ◦H) ≥
∑

v∈V (G)

f(V (Hv + v) ≥ 3n.

Next, suppose that H has no isolated vertices, and let f = (V0, V1, V2, V3) be a γtdI -
function of G ◦H. Let v ∈ V (G). Clearly, if v ∈ V3, then f(V (Hv + v)) ≥ 3. If v ∈ V0,
then f |Hv ∈ TDIDF (Hv) by Proposition 9 (i). Thus, f(V (Hv + v)) = f |Hv(V (Hv)) ≥ 3.
Suppose that v ∈ V1 ∪ V2. If V0 ∩ V (Hv) = ∅, then since |V (Hv)| ≥ 2, f(V (Hv)) ≥ 2 so
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that f(V (Hv + v)) = f(v) + f(V (Hv)) ≥ 3. On the other hand, if V0 ∩ V (Hv) ̸= ∅, say
u ∈ V0 ∩ V (Hv), then Proposition 9(ii) and Proposition 9(iii) yield

f(V (Hv + v)) ≥ f(v) + f(NHv [u]) ≥ 3.

Therefore,

γtdI(G ◦H) = ωG◦H(f) =
∑

v∈V (G)

f(V (Hv + v)) ≥ 3n. ■

5. On the edge corona of graphs

We adapt the following notations from [21]. Given graphs G and H, we write Huv to
denote the copy of H that is being joined with the end vertices of the edge uv ∈ E(G)
in the edge corona G ⋄ H. Moreover, we denote by Huv + uv the subgraph of G ⋄ H
corresponding to the join Huv + ⟨u, v⟩, u, v ∈ V (G). For f = (V0, V1, V2, V3) on V (G ⋄H),
we write for each i, j ∈ {0, 1, 2, 3},

Eij = {uv ∈ E(G) : either u ∈ Vi and v ∈ Vj or u ∈ Vj and v ∈ Vi}.

Proposition 10. Let G be nontrivial connected graph and H be any graph without isolated
vertices. Let f = (V0, V1, V2, V3) be a function on V (G). Then f ∈ TDIDF (G ⋄H) if and
only if each of the following holds:

(i) For each uv ∈ E00, f |Huv ∈ TDIDF (Huv);

(ii) For each uv ∈ E01, f(NHuv [w]) ≥ 2 for all w ∈ (V0 ∪ V1) ∩ V (Huv);

(iii) For each uv ∈ E11 ∪ E02, f(NHuv [w]) ≥ 1 for all w ∈ V0 ∩ V (Huv);

(iv) For each uv ∈ E03 with v ∈ V3 and NG(v) ⊆ V0, we have V (Huv) \ V0 ̸= ∅.

Proof : Since H has no isolated vertices, Huv admits a TDIDF for each uv ∈ E(G). If
f ∈ TDIDF (G ⋄ H), then properties (i)-(iii) follow immediately from the fact that for
each uv ∈ E(G), f(NG⋄H [w]) = f(u) + f(v) + f(NHuv [w]) for all w ∈ V (Huv). While
property (iv) is clear from the definition of f .

Conversely, suppose that conditions (i)-(iv) hold for f . Let w ∈ V0 and uv ∈ E(G)
for which w ∈ V (Huv + uv). Clearly, if uv ∈ [E03 ∪ E12 ∪ E13 ∪ E22 ∪ E23 ∪ E33], then
f(NG⋄H [w]) ≥ 3. We proceed with the following cases:

Case 1: Suppose that uv ∈ E00. Then f |Huv ∈ DIDF (Huv) by (i). If w = u or w = v,
then

f(NG⋄H [w]) ≥ f |Huv(V (Huv)) ≥ 3.

If u ̸= w ̸= v, then
f(NG⋄H [w]) = f |Huv(NHuv [w]) ≥ 3.
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Case 2: Suppose that uv ∈ E01 ∪ E02, and assume u ∈ V0. If V0 ∩ V (Huv) = ∅, then
w = u and since Huv has no isolated vertices, f(V (Huv) ≥ 2. Thus,

f(NG⋄H [w]) ≥ f(v) + f(V (Huv)) ≥ 3.

Suppose that V0 ∩ V (Huv) ̸= ∅, say z ∈ V0 ∩ V (Huv). If w = u, then by (ii) and (iii),

f(NG⋄H [w]) ≥ f(v) + f(NHuv [z]) ≥ 3.

If w ∈ V (Huv), then
f(NG⋄H [w]) ≥ f(v) + f(NHuv [w]) ≥ 3.

Case 3: Suppose that uv ∈ E11. Then w ∈ V (Huv) and by (iii),

f(NG⋄H [w]) ≥ f(u) + f(v) + f(NHuv)[w]) ≥ 3.

Following similar arguments, f(NG⋄H [w]) ≥ 3 for all w ∈ V1.

Finally, let v ∈ V1 ∪ V2 ∪ V3. First, suppose that v ∈ V (G). If NG(v) ⊈ V0, then there
exists x ∈ V1 ∪ V2 ∪ V3 such that xv ∈ E(G ⋄ H). Suppose that NG(v) ⊆ V0, and let
u ∈ NG(v). Then uv ∈ E01 ∪ E02 ∪ E03. In view of conditions (ii)-(iv), f(V (Huv) ≥ 1.
Thus, there exists u ∈ [(V1 ∪ V2 ∪ V3) ∩ V (Huv)] for which uv ∈ E(G ⋄H).

Next, suppose that v ∈ V (Hxy) for some xy ∈ E(G). If x /∈ V0, then x ∈ V1 ∪ V2 ∪ V3

with xv ∈ E(G ⋄ H). Similarly, if y /∈ V0, then y ∈ V1 ∪ V2 ∪ V3 with yv ∈ E(G ⋄ H).
Suppose that xy ∈ E00. By (i), f |Hxy ∈ TDIDF (Huv) so that there exists u ∈ V (Hxy)
for which f(u) = f |Hxy(u) > 0 and uv ∈ E(G ⋄H).

The argument above implies that f ∈ TDIDF (G ⋄H). ■

For the purpose of the next result, we define for any D ⊆ V (G),

E(G,D) = {uv ∈ E(G) : both u, v /∈ D}.

Let G = P5 = [v1, v2, v3, v4, v5]. If S1 = {v1, v4} and S2 = {v1, v2}, then E(G,S1) = ∅
and E(G,S2) = {v3v4, v4v5}.

Corollary 4. Let G be a nontrivial connected graph of order n. Then for any graph H,

3 ≤ γtdI(G ⋄H) ≤ n+ β(G).

Moreover, if H has no isolated vertices, then

3 ≤ γtdI(G ⋄H) ≤ min{n+ β(G), θ(G ⋄H)}

where
θ(G ⋄H) = 3γt(G) + γtdI(H)min{|E(G,S)| : S is a γt-set of G},

and these bounds are sharp.
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Proof : The lower bound follows immediately from Proposition 1. Let S ⊆ V (G) be a
β-set of G. Then f = (V0, V1, V2, V3) ∈ TDIDF (G ⋄ H), where V0 = ∪uv∈E(G)V (Huv),
V1 = V (G) \ S, V2 = S and V3 = ∅. Thus,

γtdI(G ⋄H) ≤ 2|S|+ n− |S| = n+ β(G).

Assume thatH has no isolated vertices. ThenHuv admits a TDIDF . Let S be a γt-set
of G. Suppose fuv = (V uv

0 , V uv
1 , V uv

2 , V uv
3 ) is a γtdI -function of Huv for each uv ∈ E(G,S).

Define f = (V0, V1, V2, V3) on G ⋄H, where

V0 = (V (G) \ S) ∪
(
∪uv∈E(G,S)V

uv
0

)
∪
(
∪uv∈E(G)\E(G,S)V (Huv)

)
,

V1 = ∪uv∈E(G,S)V
uv
1 ,

V2 = ∪uv∈E(G,S)V
uv
2 , and

V3 = S ∪
(
∪uv∈E(G,S)V

uv
3

)
.

Note that E01 = E02 = E11 = ∅ and (V1 ∪ V2) ∩ V (G) = ∅. Moreover, V3 ∩ V (G) = S
is a γt-set of G so that NG(x) ⊈ V0 for each x ∈ V3 ∩ V (G). Hence, we only need to
satisfy condition (i) in Proposition 10. Let uv ∈ E00. Then f |Huv = fuv ∈ TDIDF (Huv).
THus, f ∈ TDIDF (G ⋄ H) with ωG⋄H(g) = 3γ(G) + γtdI(H)|E(G,S)|. It follows that,
γtdI(G ⋄H) ≤ θ(G ⋄H).

For the sharpness, note first that for the left-hand side, γtdI(P2 ⋄ H) = 3 for any H.
For the right-hand side, consider the following graphs. If G = C4 of order n = 4, then for
any H, γtdI(G ⋄ H) = 6 = n + β(G). On the other hand, if G is the graph in Figure 2,
then for any H with γtdI(H) = 3, γtdI(G ⋄H) = 15 = θ(G ⋄H). ■

Figure 2: Example of a graph G for which γtdI(G ⋄H) = θ(G ⋄H)

Strict inequality in Corollary 4 may also be attained. Consider, for example, the star
graph G = K1,7. For any graph H without isolated vertices,

γtdI(G ⋄H) = 4 < 6 = min{n+ β(G), θ(G ⋄H)}.

6. On the complementary prism of graphs

Proposition 11. Let G be any graph. Then
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(i) γtdI(GG) = 3 if and only if G = K1;

(ii) γtdI(GG) ≥ 6 whenever G is nontrivial, and this lower bound is sharp.

Proof : Statement (i) follows immediately from Proposition 1. Assume G is nontrivial.
Suppose that γtdI(GG) = 4. Then γ(GG) ̸= 1. By Proposition 3, γ(GG) ≥ 2 and GG has
a 3-dominating set D with |D| = 4 and δ(⟨D⟩) ≥ 2. If |D ∩ V (G)| ≥ 3, then there exists
u ∈ D ∩ V (G) for which u /∈ D. For this u, |D ∩NGG(u)| ≤ 2, a contradiction. A similar
contradiction is attained if |D ∩ V (G)| ≥ 3. Suppose that |D ∩ V (G)| = 2 = |D ∩ V (G)|.
Since δ(⟨D⟩) ≥ 2, ⟨D⟩ = C4, which is impossible. Thus, γtdI(GG) ̸= 4. Suppose that
γtdI(GG) = 5. In view of Proposition 4, it suffices to consider the following cases:

Case 1: GG has a 3-dominating set D with |D| = 5 and δ(⟨D⟩) ≥ 2. If D ⊆ V (G) and
u ∈ D, then |D ∩ NGG(u)| ≤ 1, a contradiction. Similarly, a contradiction is attained if

D ⊆ V (G). Since δ(⟨D⟩) ≥ 2, |D ∩V (G)| ≠ 4 and |D ∩V (G)| ≠ 4. Assume, WLOG, that
|D ∩ V (G)| = 3 and |D ∩ V (G)| = 2. Since δ(⟨D⟩) ≥ 2, there exist u, v ∈ D ∩ V (G) such
that D ∩ V (G) = {u, v} and u v ∈ E(G). If w ∈ (D ∩ V (G)) \ {u, v}, then w /∈ D and
|D ∩NGG(w)| = 1, a contradiction.

Case 2: GG has a 2-dominating set D with |D| = 3 and ⟨D⟩ is connected. Following
a similar argument, D ∩ V (G) ̸= ∅ and D ∩ V (G) ̸= ∅. Assume |D ∩ V (G)| = 2 and
|D ∩ V (G)| = 1, say D ∩ V (G) = {u, v} and D ∩ V (G) = {w}. Since ⟨D⟩ is connected,
either u = w and D∩NGG(v) = {v} or v = w and D∩NGG(u) = {u}, which is impossible.

Case 3: GG contains a 2-dominating set D with |D| = 4 such that there exists v ∈ D
for which uv ∈ E(GG) for all u ∈ V (GG) \ D with |NGG(u) ∩ D| = 2. Moreover,
⟨D⟩ is connected and xv ∈ E(GG) for every x ∈ D \ {v} with |NGG(x) ∩ D| = 1. If
|D ∩ V (G)| ≥ 3, then since ⟨D⟩ is connected, there exists u ∈ D ∩ V (G) such that u /∈ D
and |NGG(u) ∩ D| = 1, a contradiction. Thus, |D ∩ V (G)| = 2 and |D ∩ V (G)| = 2.

Assume, v ∈ D ∩ V (G). Let D ∩ V (G) = {x, v}. Since ⟨D⟩ is connected, D = {x, v, x, v},
xv /∈ E(GG), and NGG(x) ∩D = {x}. This is a contradiction.

The above contradictions imply that γtdI(GG) ̸= 5.

Finally, observe that if G = P2, then γtdI(GG) = γtdI(P4) = 6, showing that the bound
provided in (ii) is sharp. ■

The following proposition is clear.

Proposition 12. Let G be a nontrivial connected graph. Then f = (V0, V1, V2, V3) is a
TDIDF on GG if and only if each of the following holds:

(i) For each v ∈ (V0 ∪ V1) ∩ V (G), either f |G(NG[v]) ≥ 3 or f |G(NG[v]) < 3 and
3− f |G(NG[v]) ≤ f(v);

(ii) For each v ∈ (V0 ∪ V1) ∩ V (G), either f |G(NG[v]) ≥ 3 or f |G(NG[v]) < 3 and
3− f |G(NG[v]) ≤ f(v);

(iii) For each v ∈ V (G) ∩ (V1 ∪ V2 ∪ V3), v /∈ V0 whenever NG(v) ⊆ V0;
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(iv) For each v ∈ V (G) ∩ (V1 ∪ V2 ∪ V3), v /∈ V0 whenever NG(v) ⊆ V0.
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Figure 3: The complementary prisms P4P 4 and C4C4

Proposition 13. Let G be a nontrivial connected graph of order n. Then

6 ≤ γtdI(GG) ≤ 3n. (4)

Moreover, if γ(G) ̸= 1 and γ(G) ̸= 1, then

1 + max{γtdI(G), γtdI(G)} ≤ γtdI(GG) ≤ 2n. (5)

These bounds are sharp.

Proof : The left-hand inequality in Inequality 4 is a reiteration of Proposition 11. By Propo-
sition 12, the function f = (V (G),∅,∅, V (G)) ∈ TDIDF (GG). Thus,
γtdI(GG) ≤ 3|V3| = 3n and the Inequality 4 holds.

Now, suppose that γ(G) ̸= 1 and γ(G) ̸= 1. Let V0 = ∅ = V2 = V3 and
V1 = V (G) ∪ V (G), and let f = (V0, V1, V2, V3). For each v ∈ V (G), since v is not
an isolated vertex, there exists u ∈ V (G) for which uv ∈ E(G). Thus, {v, u} ⊆ NG[v]
so that f(NG[v]) ≥ 2. If f(NG[v]) = 2, then 3 − f(NG[v]) = 1 ≤ f(v). Thus, Condi-
tion (i) in Proposition 12 holds. Similarly, since G has no isolated vertex, Proposition
12(ii) holds. Since V0 = ∅, Conditions (iii) and (iv) of Proposition 12 also hold. Thus,
f ∈ TDIDF (GG). Therefore,

γtdI(GG) ≤ 2n.

WLOG assume that γtdI(G) ≥ γtdI(G). Let f be a γtdI -function of GG. If V (G) ⊆ V0,
then V (G) ⊆ V3 and ωGG(f) = 3|V (G)|. However, by Theorem 1, γtdI(GG) ≤ |V (GG)|+
2− δ(GG). Since G and G have no isolated vertices, the least possible value of δ(GG) is
2. Hence,

γtdI(GG) ≤ 2|V (G)| < 3|V (G)|,

a contradiction. Suppose f |G is a TDIDF onG. Since V (G) ⊈ V0, (V1 ∪ V2 ∪ V3) ∩ V (G) ̸= ∅
and ω(f |G) ≥ 1. Thus,

ω(f |G) + 1 ≤ ω(f |G) + ω(f |G) = ωGG(f)
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Suppose f |G is not a TDIDF on G. Let A = {v ∈ V0 ∩ V (G) : 0 ≤ f(NG(v)) ≤ 1},
B = {v ∈ V (G) ∩ V0 : f(NG(v)) = 2}, C = {v ∈ V (G) ∩ V1 : 0 ≤ f(NG(v)) ≤ 1},
D = {v ∈ V (G) ∩ (V2 ∪ V3) : NG(v) ⊆ V0 \B}. Now, let X ⊆ NG(D) ∩ V0 be the smallest
set that dominates D. Then |X| ≤ |D|. Define a function g on V (G) as follows:

g(x) =


0, if x ∈ (V (G) ∩ V0) \ (A ∪B ∪X);

1, if x ∈ [(V (G) ∩ V1) \ C] ∪B ∪X;

2, if x ∈ (V (G) ∩ V2) ∪A ∪ C;

3, if x ∈ (V (G) ∩ V3),

Then g is a TDIDF on G with

ωG(g) = |V (G) ∩ V1| − |C|+ |B ∪X|+ 2|V (G) ∩ V2|+ 2|A|+ 2|C|
+ 3|V (G) ∩ V3|

= |V (G) ∩ V1|+ 2|V (G) ∩ V2|+ 3|V (G) ∩ V3|+ 2|A|+ |C|+ |B ∪X|
= ωG(f |G) + 2|A|+ |C|+ |B ∪X|.

We claim that ωG(f |G) − 1 ≤ ωGG(f). Put A1 = {v ∈ V0 ∩ V (G) : f(NG(v)) = 0},
A2 = {v ∈ V0 ∩ V (G) : f(NG(v)) = 1}, C1 = {v ∈ V (G) ∩ V1 : f(NG(v)) = 0}, and
C2 = {v ∈ V (G) ∩ V1 : f(NG(v)) = 1}. Then A1 ∪ A2 = A and C1 ∪ C2 = C. Now, we
denote by S = {v ∈ V (G) : v ∈ S} for each S ⊆ V (G). Note that, A1 ⊆ V (G) ∩ V3, A2 ⊆
V (G)∩(V2∪V3), B ⊆ V (G)∩(V1∪V2∪V3), C1 ⊆ V (G)∩(V2∪V3), C2 ⊆ V (G)∩(V1∪V2∪V3),
and D ⊆ V (G) ∩ (V1 ∪ V2 ∪ V3). WLOG, assume that A2 ⊆ V (G) ∩ V2, B ⊆ V (G) ∩ V1,
C1 ⊆ V (G) ∩ V2, C2 ⊆ V (G) ∩ V1, and D ⊆ V (G) ∩ V1. Then C2 ∩D = ∅, C2 ∩ B = ∅
and A2 ∩ C1 = ∅. Thus,

ωG(f |G) = |V (G) ∩ V1|+ 2|V (G) ∩ V2|+ 3|V (G) ∩ V3|
≥ 3|A1|+ 2|A2|++2|C1|+ |C2|+ |B ∪D|
= 2|A|+ |C|+ |A1|+ |C1|+ |B ∪D|.

Since |X| ≤ |D|, ωG(f |G) ≥ 2|A|+ |C|+ |B ∪X|+ 1. Hence,

γtdI(GG) = ωGG(f)

= ωG(f |G) + ωG(f |G)
≥ ωG(f |G) + 2|A|+ |C|+ |B ∪X|+ 1

= ωG(g) + 1.

Therefore, γtdI(GG) ≥ γtdI(G) + 1.

If G = Kn, then γtdI(GG) = 3n. If G = P4, then G = P4 and γtdI(GG) = 1 +
max{γtdI(G), γtdI(G)}. And if G = Cn on n = 4 vertices, then γtdI(GG) = 2n. Therefore,
the inequalities in Inequality 4 and Inequality 5 are sharp. ■
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