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Abstract. This paper investigates the conditions for the equivalence between statistical conver-
gence, ideal convergence, and standard convergence in G-metric spaces. Although statistical and
ideal convergence studies have been extensively developed in various settings, no prior research
has explicitly explored the relationship between statistical convergence and standard convergence
within G-metric spaces. By addressing this gap, we establish necessary and sufficient conditions
for the equivalence of these types of convergence in G-metric spaces. Our results contribute to a
deeper understanding of the interplay between these convergence notions and extend the theory of
convergence in generalized metric spaces.
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1. Introduction

The concept of convergence plays a central role in analysis and its applications, with
various types of convergence being developed to generalize the classical notion of pointwise
convergence. Among these generalizations, statistical convergence and ideal convergence
have attracted considerable attention. The notion of statistical convergence, introduced
by Fast [3] and further studied by Šalát [32], provides a probabilistic framework that
generalizes classical convergence by considering the density of indices at which a sequence
fails to converge to a limit. This approach has proven useful in various applications, from
number theory to functional analysis [3, 32].

Ideal convergence, introduced by Kostyrko et al. in [20], extends statistical convergence
by incorporating ideals of sets, which are collections of subsets of natural numbers closed
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under certain set operations. Ideal convergence provides a flexible framework that unifies
several known types of convergence, including statistical convergence and convergence with
respect to filters [20]. Ideal convergence has been studied in various contexts, including
Banach spaces and normed spaces, offering insights into the structure of function spaces
and the behaviour of sequences [2].

Despite substantial progress in these areas, research on the relationship between statis-
tical convergence and standard convergence, particularly in the setting of G-metric spaces,
remains limited. G-metric spaces, introduced by Mustafa and Sims [27], generalize the
notion of a metric space by defining a distance function on triplets of points rather than
pairs. This structure has led to the development of various fixed-point theorems and ap-
plications in nonlinear analysis [27]. Many mathematicians have conducted research on
G-metric spaces. Recent results on G-metric spaces include, among others, [13], [14], [17],
[18], [16], [15], [25], [26], [30], [4], [7] and [33]. However, the interaction between differ-
ent types of convergence, such as statistical and standard convergence ([10], [11],[23], and
[29]), in G-metric spaces has not been fully explored.

The concept of convergence, particularly in G-metric spaces, has wide-ranging appli-
cations across various fields. In machine learning and data analysis, these results can
be applied to understand the stability of algorithms or models operating within complex
metric structures, such as G-metric spaces, which better represent non-linear data relation-
ships [35]. Furthermore, in optimization theory, G-metric spaces provide a framework for
analyzing iterative algorithms for non-linear problems commonly encountered in dynamic
programming [9]. In theoretical physics, G-metric spaces aid in modelling systems with
multiple parameter interactions, making them relevant for studying dynamical systems
and physical geometries [28]. Finally, in mathematical finance, this approach enhances
the modelling of complex market data through statistical and ideal convergence, enabling
more robust analysis of economic behaviour [16]. Thus, this study not only deepens the
theoretical understanding of convergence in G-metric spaces, but also opens avenues for
its application across diverse scientific disciplines.

Existing research has focused mainly on the individual properties of statistical and
ideal convergence in G-metric spaces [12, 31]. These studies have established important
results concerning the behaviour of sequences and functions in such spaces. However, no
prior study has investigated the precise relationship between statistical convergence and
standard convergence in G-metric spaces, leaving a significant gap in the literature.

In this paper, we aim to bridge this gap by studying the conditions under which statis-
tical convergence, ideal convergence, and standard convergence are equivalent in G-metric
spaces. Our main contribution is the establishment of necessary and sufficient conditions
for this equivalence, which provide a comprehensive framework for understanding how
these different convergence notions relate to one another. The results presented in this
paper extend the theory of convergence in G-metric spaces and offer new insights into the
behaviour of sequences in generalized metric structures.

This paper is organized as follows. In Section 2, we provide preliminary definitions
and review key results concerning the statistical and ideal convergence in G-metric spaces.
Section 3 presents the main theorems, including the necessary and sufficient conditions for
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the equivalence of statistical, ideal, and standard convergence in G-metric spaces. Finally,
in Section 4, we conclude with a discussion of the implications of our results and possible
directions for future research.

2. Preliminary Definition

Before proceeding with the main discussion, we need to establish several definitions of
the key concepts that will be explored throughout this research. In the following section,
we will provide the definitions of G-metric spaces and the various types of convergence
within G-metric spaces.

Definition 1. [27] Let X be a non-empty set. A Function G : X ×X ×X → R+ is called
a G-metric if, for all x, y, z ∈ X the following conditions are satisfied:

(i) G(x, y, z) = 0 if and only if x = y = z

(ii) G(x, x, y) > 0 for x ̸= y

(iii) G(x, x, y) ≤ G(x, y, z), for z ̸= y

(iv) G(x, y, z) = G(x, z, y) = G(y, z, x) = G(y, x, z) = G(z, x, y) = G(z, y, x)

(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for any a ∈ X

A Set X equipped with the function G is called a G-metric space and is denoted by
(X,G).

Definition 2. [6] Let (X,G) be a G-metric space and (xn) be a sequence in X. The
sequence (xn) is said to converge to x ∈ X if lim

n,m→+∞
G(x, xn, xm) = 0 means that for

every ε > 0 there exists n0 ∈ N such that G(x, xn, xm) < ε for all n,m ≥ n0. x In this
case, x is called the limit of the sequence (xn) denoted by xn → x or lim

n→+∞
xn = x.

Definition 3. [6] Let (X,G) be a G-metric space and (xn) be a sequence in X. The
sequence (xn) is said to be a Cauchy sequence in the G-metric space if for every ε > 0,
there exists n0 ∈ N such that for all k, n,m ≥ n0, G (xk, xn, xm) < ε.

Theorem 1. [6] Let (xn) be a sequence in the G-metric space (X,G). If the sequence
(xn) converges to x ∈ R, then (xn) is a Cauchy sequence.

Definition 4. [1] Let (xn) be a sequence in the G-metric space (X,G). The sequence (xn)
is said to converge statistically to x in the G-metric space if, for every real number ε > 0,
we have

lim
n→+∞

(
2

n2
|{(n1, n2) ∈ N2 : n1, n2 ≤ n,G(x, xn1 , xn2) ≥ ε}|

)
= 0

and this is denoted as
Gs− lim(xn) = x



Manuharawati, M.Jakfar, A. Taufik Hamzah / Eur. J. Pure Appl. Math, 18 (1) (2025), 5608 4 of 13

Definition 5. [22] Let (X,G) be a G-metric space and (xn) a sequence in X. The sequence
(xn) is said to be a statistical Cauchy sequence in the G-metric space if, for every ε > 0,
there exists i ∈ N such that

lim
n→+∞

(
2

n2
|{(n1, n2) ∈ N2 : n1, n2 ≤ n,G(xi, xn1 , xn2) ≥ ε}|

)
= 0

Let I2 ⊂ 2N
2
be a nontrivial ideal on N2, where A ∈ I2 and A = {(n1, n2) : n1, n2 ∈

N)}.

Definition 6. [22] Let I2 be an ideal. Let (xn) be a sequence in the G-metric space
(X,G). The sequence (xn) is said to be ideally convergent to x if, for every real number
ε > 0, the set {(n1, n2) ∈ N2 : G (x, xn1 , xn2) ≥ ε} ∈ I2. and this is denoted as

GI − lim(xn) = x

Definition 7. [22] Let (X,G) be a G-metric space and I2 an ideal. Let (xn) be a sequence
in X. The sequence (xn) is said to be an ideal Cauchy sequence in the G-metric space if,
for every ε > 0, there exists i ∈ N such that {(n1, n2) ∈ N2 : G(xi, xn1 , xn2) ≥ ε} ∈ I2.

3. Main Results

In this section, we discuss the relationship between standard convergence, statistical
convergence, and ideal convergence in the G-metric space (R, G).

Theorem 2. [1] If a sequence converges to x in a G-metric space, then the sequence also
statistically converges to x in the G-metric space.

Proof. Let (xn) be a sequence that converges to x in a G-metric space. This means
that for every real number ε > 0, there exists an index j ∈ N such that for every n,m ≥ j,
we have G(x, xn, xm) < ε. If we form a set, it will take the following form:

A(j) = {(n,m) ∈ N2 : n,m ≥ j,G(x, xn, xm) < ε}

It is clear that because there exists j ∈ N such that for all n,m ≥ j then G(x, xn, xm) < ε.
Thus, |{n : (n,m) ∈ N2, G(x, xn, xm) ≥ ε}|or|{m : (n,m) ∈ N2, G (x, xn, xm) ≥ ε}| is at
most j − 1, so:

lim
n→+∞

(
2

n2
|{(n,m) ∈ N2 : n,m ≥ j,G(x, xn, xm) < ε}|

)
= lim

n→+∞
(
2(j − 1)n

n2
)

= lim
n→+∞

2(j − 1)

n
) = 0

Thus, it is proven that the sequence (xn) statistically converges to x in the G-metric
space.
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Example 1. Consider the G-metric space (R, G), where for all x, y, z ∈ R, the G-metric
is defined as:

G(x, y, z) = max{|x− y|+ |x− z|+ |y − z|}.

The sequence
(

1
n+1

)
is statistically convergent to 0 in the G-metric space.

We can investigate whether the sequence
(

1
n+1

)
also converges to 0 in the G-metric

space. According to Theorem 2, the sequence
(

1
n+1

)
is statistically convergent to 0 in the

G-metric space. The proof is given as follows:

G(x, xn, xm) = max{|x− xn|, |x− xm|, |xn − xm|}

= max

{∣∣∣∣0− 1

n+ 1

∣∣∣∣ , ∣∣∣∣0− 1

m+ 1

∣∣∣∣ , ∣∣∣∣ 1

n+ 1
− 1

m+ 1

∣∣∣∣}
≥ max

{
1

n+ 1
,

1

m+ 1
,

1

n+ 1
− 1

m+ 1

}
≥ max

{
1

n+ 1
,

1

m+ 1

}
Let k be the largest integer less than or equal to 1

ε−1 , for any ε > 0, ε ∈ R. Then:

lim
n→+∞

(
2

n2
|{(n1, n2) ∈ N2 : n1, n2 ≤ n,G(xi, xn1 , xn2) ≥ ε}|

)
= lim

n→+∞
(
2

n2
|{(1, 1), (1, 2), (1,

3), . . . , (k, 1), (k, 2), . . . }|)

≤ lim
n→+∞

(
2nk

n2
)

≤ 2k lim
n→+∞

(
1

n
)

= 2k.0 = 0

Next, we investigate whether a statistically convergent sequence is also a standard con-
vergent sequence. A statistically convergent sequence in the G-metric space is not always
a standard convergent sequence in the G-metric space. The following theorem provides
the necessary condition for a sequence that is statistically convergent in a G-metric space
to also be a standard convergent sequence in the same space.

Theorem 3. Given a sequence (xn) that is statistically convergent to x in a G-metric
space, if |A| = |{n : (n,m) ∈ N2, G(x, xn, xm) ≥ ε}| < +∞ or |B| = |{m : (n,m) ∈
N2, G(x, xn, xm) ≥ ε}| < +∞ then the sequence is standard convergent to x in the G-
metric space.

Proof. The sequence (xn) is statistically convergent to x, meaning that for every real
number ε > 0, the following holds:

lim
n→+∞

(
2

n2
|{(n1, n2) ∈ N2 : n1, n2 ≤ n : G(x, xn1 , xn2) ≥ ε}|) = 0
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If |A| = |{n : (n,m) ∈ N2, G(x, xn, xm) ≥ ε}| < +∞, then there exists a sup(A) +
1 ∈ N such that for every n,m ≥ sup(A) + 1, G(x, xn, xm) < ε. In other words, the
sequence (xn) is convergent to x in the G-metric space. Similary, if |B| = |{m : (n,m) ∈
N2, G(x, xn, xm) ≥ ε}| < +∞, then there exists a sup(B) + 1 ∈ N such that for every
n,m ≥ sup(B) + 1, G(x, xn, xm) < ε, and hence the sequence (xn) is standard convergent
to x in the G-metric space.

Example 2. Consider the G-metric space (R, G), where for all x, y, z ∈ R, the G-metric
is defined as:

G(x, y, z) = |x− y|+ |x− z|+ |y − z|.

The sequence (xn) =
(
(−1)n

n

)
converges to 0 in the G-metric space.

It will be proven that the sequence (xn) =
(
(−1)n

n

)
statistically converges to 0 in a

G-metric space. Let j be the largest natural number less than or equal to 2
ε for every

ε > 0, ε ∈ R, then

lim
n→+∞

(
2

n2
|{(n1, n2) ∈ N2 : n1, n2 ≤ n,G(xi, xn1 , xn2) ≥ ε}|

)
= lim

n→+∞
(
2

n2
|{(1, 1), (1, 2), (1,

3), . . . , (j, 1), (j, 2), . . . }|)

≤ lim
n→+∞

(
2nj

n2
)

≤ 2j lim
n→+∞

(
1

n
)

= 2j.0 = 0

Theorem 4. Given a sequence (xn) that converges statistically to x in a G-metric space,
if the sequence (xn) is monotonic, then (xn) converges ordinarily to x in the G-metric
space.

Proof. The sequence (xn) converging statistically to xmeans that for every real number
ε > 0, the following holds:

lim
n→+∞

(
2

n2
|{(n1, n2) ∈ N2 : n1, n2 ≤ n,G(x, xn1 , xn2) ≥ ε}|

)
= 0

A Sequence (xn) is monotonic increasing if x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ . . . , and mono-
tonic decreasing if x1 ≥ x2 ≥ . . . xn ≥ xn+1 ≥ . . . . If for some (m,n) ∈ N2, G(x, xm, xn) ≥
ε, then for every i < n and k < m , G(x, xi, xk) ≥ ε because (xn) converges statis-
tically. Additionally, since (xn) converges statistically, we have |A| = |{n : (n,m) ∈
N2, G(x, xn, xm) ≥ ε}| < +∞, let |A| = z or |B| = |{m : (n,m) ∈ N2, G(x, xn, xm) ≥
ε}| < +∞, let |B| = y. If |A| = |{n : (n,m) ∈ N2, G(x, xn, xm) ≥ ε}| < +∞,
then there exists z + 1 ∈ N such that for all n,m ≥ z + 1, G(x, xn, xm) < ε, or in
other words, the sequence (xn) converges ordinarily to x in the G-metric space. If
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|B| = |{m : (n,m) ∈ N2, G(x, xn, xm) ≥ ε}| < +∞, then there exists y + 1 ∈ N such
that for all n,m ≥ y+1, G(x, xn, xm) < ε, or in other words, the sequence (xn) converges
ordinarily to x in the G-metric space.

Example 3. Given a G-metric space, (R, G), and for every x, y, z ∈ R, the following
condition holds:

G (x, y, z) = max{|x− y|+ |x− z|+ |y − z|}

The sequence (xn) =
(

n
n+1

)
converges to 1 in the G-metric space.

Clearly, (xn) is an increasing sequence since n
n+1 ≤ n+1

n+2 . Next, it will be proven that
the sequence (xn) statistically converges to 1 in the G-metric space. Let i be the greatest
integer less than or equal to 1

ε − 1 for every ε > 0, ε ∈ R, then

lim
n→+∞

(
2

n2
|{(n1, n2) ∈ N2 : n1, n2 ≤ n,G(xi, xn1 , xn2) ≥ ε}|

)
= lim

n→+∞
(
2

n2
|{(1, 1), (1, 2), (1,

3), . . . , (i, 1), (i, 2), . . . }|)

≤ lim
n→+∞

(
2ni

n2
)

≤ 2i lim
n→+∞

(
1

n
)

= 2i.0 = 0

The statement (xn) =
(

n
n+1

)
is statistically convergent to 1 in the G-metric space” has

been proven. Since (xn) =
(

n
n+1

)
is statistically convergent to 1 in the G-metric space

and is a monotonic sequence, by Theorem 4, (xn) =
(

n
n+1

)
converges to 1 in the G-metric

space.

Theorem 5. [19] Given an admissible ideal I2. If a sequence converges to x in a G-metric
space, then the sequence converges ideally to x in the G-metric space with the ideal I2.

Proof. Let (xn) be a sequence that converges to x in the G-metric space (R, G). This
means that for every real number ε > 0, there exists n0 ∈ N such that for every natural
number n,m ≥ n0, we have G (x, xn, xm) < ε. If we define a set, it will form the following
set:

A (n0) =
{
(n,m) ∈ N2 : n,m ≥ n0, G (x, xn, xm) < ε

}
It is clear that

|A (n0)| = +∞

Since there exists n0 ∈ N such that for every n,m ≥ n0, G (x, xn, xm) < ε, the number
of n,m ∈ N that satisfy G (x, xn, xm) ≥ ε is at most j2, or in other words, it is finite.
Thus, A (ε) ∈ I2 Therefore, the sequence (xn) is ideally convergent to x.
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We know that the sequence (xn) =
(
1
n

)
is ideally convergent to 0 in the G-metric space

with one of the admissible ideals, and it also converges ordinarily to 0 in the G-metric
space.

Theorem 6. Let (xn) be a sequence that ideally converges to L in a G-metric space with
the ideal I2. If for every A ∈ I2, |A| < lim

n→+∞

(
n2

)
, then the sequence (xn) statistically

converges to L in the G-metric space.

Proof. It is known that the sequence (xn) is ideally convergent to L, which means
that for every ε > 0, we have Aε = (n,m) ∈ N2 : G (L, xn, xm) ≥ ε ∈ I2. Since |A| <
lim

n→+∞

(
n2

)
for every A ∈ I2 it follows that |Aε| < +∞. Let |Aε| = lim

n→+∞
(nj) , with j ∈

N, so that for every ε > 0, the following holds:

lim
n→+∞

(
2

n2
|{(n,m) ∈ N2 : n,m ≥ n,G(0, xn, xm) < ε}|

)
< lim

n→+∞
(
nj

n2
)

< lim
n→+∞

(
j

n
)

= 0

So, the sequence (xn) statistically converges to L.

Example 4. It will be proven that the sequence
(
1
n

)
statistically converges to 0 in the

G-metric space.

It has been known that the sequence
(
1
n

)
converges ideally to 0 in the G-metric space

with the ideal I = A ⊂ N2 : |A| < lim
n→+∞

(
n2

)
. It will also be shown that the sequence

(
1
n

)
statistically converges to 0 in the G-metric space.

Preliminary Analysis

G (x, xn1 , xn2) =

∣∣∣∣0− 1

n1

∣∣∣∣+ ∣∣∣∣ 1n1
− 1

n2

∣∣∣∣+ ∣∣∣∣ 1n2
− 0

∣∣∣∣
=

1

n1
+

1

n2
+

∣∣∣∣ 1n1
− 1

n2

∣∣∣∣
≥ 1

n1
+

1

n2
+

(∣∣∣∣ 1n1

∣∣∣∣− ∣∣∣∣ 1n2

∣∣∣∣)
≥ 2

n1

To ensure 2
n1

≥ ε, then n1 must be a natural number k such that k ≤ 2
ε . Therefore, for
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every real number ε > 0, the following holds:

lim
n→+∞

(
2

n2
|{(n1, n2) ∈ N2 : n1, n2 ≤ n,G(xi, xn1 , xn2) ≥ ε}|

)
= lim

n→+∞
(
2

n2
|{(1, 1), (1, 2), (1,

3), . . . , (k, 1), (k, 2), . . . }|)

≤ lim
n→+∞

(
2nk

n2
)

≤ 2k lim
n→+∞

(
1

n
)

= 2k.0 = 0

Thus, the sequence
(
1
n

)
is also statistically proven to converge to 0 in the G-metric space.

Theorem 7. [19] Given a sequence (xn) that statistically converges to x in the G-metric
space and the ideal I2, where I2 = A : δ(A) = 0, the sequence (xn) ideally converges to x
in the G-metric space.

Proof. A sequence (xn) is said to statistically converge to x in a G-metric space if

lim
n→+∞

(
2

n2

∣∣(n1, n2) ∈ N2 : n1, n2 ≤ n,G (x, xn1 , xn2) ≥ ε
∣∣) = 0

Thus, the set {(n1, n2) ∈ N2 : G (x, xn1 , xn2) ≥ ε} has asymptotic density 0. This means
(xn) ∈ I2, or equivalently, (xn) converges ideally to x in the G-metric space.

Theorem 8. [1] If (xn) statistically converges in a G-metric space, then (xn) is a statis-
tically Cauchy sequence in the G-metric space.

Proof. Let ε > 0 be any real number. Suppose Gs − lim(xn) = x. Since ε is a real
number and ε > 0, then ε

6 is also a real number and greater than 0. Therefore, the set
{(n1, n2) ∈ N2 : G (x, xn1 , xn2) ≥ ε

6} has asymptotic density 0. Let m ∈ N be chosen such
that G (x, xn1 , xm) ≥ ε

6 . Then

G (xm, xn1 , xn2) ≤ G (xm, x, x) +G (x, xn1 , x) +G (x, x, xn2)

≤ 2(G (x, xn1 , xn2) +G (x, xn1 , xn2) +G (x, xn1 , xm))

< 2(
ε

6
+

ε

6
+

ε

6
) = ε

Thus, the set {(n1, n2) ∈ N2 : G (xm, xn1 , xn2) ≥ ε} has asymptotic density 0, meaning
that (xn) is an is a statistically Cauchy sequence.

Theorem 9. [19] If (xn) ideally converges in a G-metric space, then (xn) is an ideal
Cauchy sequence in the G-metric space.
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Proof. Let ε > 0 be any real number. Suppose GI − lim(xn) = x. Since ε is a
real number and ε > 0, then ε

6 is also a real number and greater than 0. Therefore,
the set {(n1, n2) ∈ N2 : G (x, xn1 , xn2) ≥ ε

6} ∈ I. Let m ∈ N be chosen such that
G (x, xn1 , xm) ≥ ε

6 . Then

G (xm, xn1 , xn2) ≤ G (xm, x, x) +G (x, xn1 , x) +G (x, x, xn2)

≤ 2(G (x, xn1 , xn2) +G (x, xn1 , xn2) +G (x, xn1 , xm))

< 2(
ε

6
+

ε

6
+

ε

6
) = ε

Thus, the set {(n1, n2) ∈ N2 : G (xm, xn1 , xn2) ≥ ε} ∈ I, which means (xn) is an ideal
Cauchy sequence.

Theorems 1, 2, 5, 8, and 9 yield the following corollaries:

Corollary 1. If the sequence (xn) is a Cauchy sequence in a G-metric space, then the
sequence (xn) is statistically Cauchy in the G-metric space.

Proof. Based on Theorem 1, it can be observed that a normally convergent sequence
in a G-metric space is a Cauchy sequence in the G-metric space. According to Theorem 2,
if a sequence is normally convergent in a G-metric space, then it is statistically convergent
in the G-metric space. Theorem 8 states that a statistically convergent sequence in a
G-metric space is a statistically Cauchy sequence in the G-metric space. From these three
theorems, it can be concluded that a Cauchy sequence in a G-metric space is a statistically
Cauchy sequence in the G-metric space.

Corollary 2. Given an admissible ideal I, if the sequence (xn) is a Cauchy sequence,
then the sequence (xn) is an Ideal Cauchy sequence.

Proof. According to Theorem 1, a normally convergent sequence in a G-metric space is
a Cauchy sequence in the G-metric space. Based on Theorem 5, if a sequence is normally
convergent in a G-metric space, then it is Ideal convergent in the G-metric space with
respect to the admissible ideal. Theorem 9 states that an Ideal convergent sequence in
a G-metric space is an Ideal Cauchy sequence in the G-metric space. From these three
theorems, it can be concluded that a Cauchy sequence in a G-metric space.

Theorem 10. Given (xn) is a sequence of real numbers with an admissible ideal I2. If
(xn) is Ideal convergent to L in the G-metric space, then there exists a sequence (yn)
that is statistically convergent to L in the G-metric space, such that (|xn− yn|) is Ideal
convergent to 0 in the G-metric space.

Proof. Let ε > 0 be a given real number. The sequence (xn) is Ideal convergent
to x, which means that for each such ε, the set (n1, n2) ∈ N2 : G (x, xn1 , xn2) ≥ ε ∈ I2.
The sequence (yn) is statistically convergent to x, which means that for each such ε, the
following holds:

lim
n→+∞

(
2

n2

∣∣(n1, n2) ∈ N2 : n1, n2 ≤ n : G (x, yn1 , yn2) ≥ ε
∣∣) = 0
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Let {(n1, n2) ∈ N2 : n1, n2 ≤ n : G(x, yn1, yn2) ≥ ε} = Aε. If the sequence (yn) satisfies
Aε ∈ I for each given ε, then

G (x, xn1 , xn2)−G (x, yn1 , yn2) = G (0, xn1 − yn1 , xn2 − yn2)

Thus, the set {(n1, n2) ∈ N2 : n1, n2 ≤ n : G
(
0, xn1 − yn1

, xn2 − yn2

)
≥ ε} ∈ I.

Therefore, the sequence (|xn − yn|) is Ideal convergent to 0.

Theorem 11. Let I be a non-trivial ideal on N2. If the sequence of real numbers (xn)
ideal converges to L in the metric-G space, then there exists a subsequence (xnk

) of (xn)
that converges to x in the usual sense in the metric-G space, and there exists a subsequence
(xmk

) that converges statistically to L in the metric-G space.

Proof. Let ε > 0 be an arbitrary real number. The fact that (xn) ideal converges
to L means that for any ε, the set (n,m) ∈ N2 : G (L, xn, xm) ≥ ε ∈ I. If we select a
subsequence (xnk

) of (xn) such that its members satisfy G (L, xn, xm) < ε, then clearly
(xnk

) converges to L. Similarly, we can choose a subsequence (xmk
) of (xn) such that

lim
n→+∞

(
2

n2
|{(n1, n2) ∈ N2 : n1, n2 ≤ n,G(xi, xn1 , xn2) ≥ ε}|

)
which implies that the sequence converges statistically to L.

4. Conclusion

In this study, several significant theorems regarding the convergence properties of se-
quences in G-metric spaces have been established. The results demonstrate a strong con-
nection between different types of convergence—statistical, ideal, and standard—within
the framework of G-metric spaces. Overall, this research enhances our understanding of
the behaviour of sequences in G-metric spaces and the interplay between different con-
vergence concepts, paving the way for further exploration in this area of metric space
theory.

Future research directions could include extending these results to more generalized
metric spaces, such as cone G-metric spaces or fuzzy G-metric spaces, to explore whether
similar equivalences and relationships hold. Another promising avenue would be to inves-
tigate the applications of these convergence properties in solving fixed point problems or
optimization problems, where G-metric spaces often provide a natural framework. Ad-
ditionally, studying the implications of these results in functional analysis or dynamical
systems may yield new insights into stability and convergence behaviours in broader math-
ematical contexts. Finally, integrating these findings with probabilistic and stochastic set-
tings could open new paths for exploring the role of convergence in real-world applications,
such as data science or machine learning.
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