EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 1, Article Number 5614 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Graph-Based Approach to the Radio Assignment Problem in Wireless Communication Networks with Applications in Cryptography

Nawal M. NourEldeen^{1,2}, Elsayed Badr^{3,4,5}, Ismail M. Hagag⁶, Hanan Shabana^{7,*}

¹ Department of Mathematics, College of Science, Taibah University, Madinah, Kingdom of Saudi Arabia

² Department of Mathematics, Women's College of Arts, Science and Education, Ain Shams University, Egypt

³ Scientific Computing Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt

⁴ The Egyptian School of Data Science (ESDS), Benha, Egypt

⁵ Department of Computer Science, College of Information Technology,

Misr University for Science and Technology, Giza, Egypt

⁶ Information Systems Department, El Madina Higher Institute of Administration and Technology, Egypt

⁷ Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt

Abstract. The radio labeling problem has numerous applications including military communications, satellite communication, mobile networks, and internet technology. This issue is NP-hard. A rapid algorithm for determining the upper bound of the radio number of a given graph is proposed in this paper. The superior performance of the proposed algorithm is attributed to Saha and Panigrahi (2012). The superior performance of the proposed algorithm in terms of CPU time can be attributed to Badr and Mousa(2019). The mathematical model demonstrates that the proposed algorithm exhibits superior performance in terms of both the maximum number of radios and CPU time. The proposed algorithm is ultimately assessed using a collection of networks that possess a range of characteristics. Besides that, we present the application of such algorithm in cryptography.

2020 Mathematics Subject Classifications: 94A60, 94A62, 05B30, 0570

Key Words and Phrases: Cryptography, Graph labeling, Mathematical models, NP-hard problem, Radio labeling.

DOI: https://doi.org/10.29020/nybg.ejpam.v18i1.5614

Email addresses: neldeen@taibahu.edu.sa (N. M. NourEldeen), alsayed.badr@fci.bu.edu.eg (E. Badr), Drismailhagag@gmail.com (I. M. Hagag), hananshabana22@gmail.com (H. Shabana)

1

https://www.ejpam.com

Copyright: © 2025 The Author(s). (CC BY-NC 4.0)

^{*}Corresponding author.

1. Introduction

Broadcasting of radio and television, satellite communication, mobile networks, internet technology, military communications and many other services are all examples of wireless communication networks applications. The radio frequency (channel) given to transmitting stations from the available frequency spectrum (bandwidth) determines how effectively and efficiently communications take place inside a network. The extensive use of wireless services implies a faster rate of channel saturation, which makes it impossible to keep up with the growing demand for bandwidth. The frequency assignment problem (FAP) is the process of allocating channels (radio frequencies) to transmitters situated at various places while avoiding interference and making the most effective use of the available bandwidth. Graph labeling technique proved as an effective technique for modeling and solving FAP[18]. In graph modeling of FAP, A network of *n* transmitters (or stations) is formulated as a graph G of n nodes; each node for a transmitter. Any two nodes are adjacent if their corresponding transmitters are the geographically close. The task is to assign a channel to each transmitter and avoiding interference. Consequently, Almost, The graph G is referred as an interference graph. Here, the interference is closely related to the geographical position of the transmitting stations. The interference is increasing whenever the stations are geographical close. To avoid such interference, then we have to assign frequencies to stations such that difference between the assigned channels must be large enough. Hence, in solving FAP as a graph labeling the objective is to find a labeling for all the vertices of the interference graph such that the range of the assigned channels is minimized.

Griggs and Yeh [17] presented the first graph labeling technique, also known as L(2, 1)labeling or distance two labeling to address the frequency assignment problem. The graph labeling L(2, 1) of a simple graph G is a non-negative real-valued function $L: V(G) \to [0, \infty)$ where V(G) is the vertex set of the graph G. Whenever u and v are two vertices in G such that the distance between u and v is 1, then $|L(u) - L(v)| \ge 2$, and whenever the vertices u and v are of distance 2 from each other, then $|L(u) - L(v)| \ge 1$.

A novel graph labeling method called radio Labeling was introduced in 2001 by Chartrand et al [11] along with a modified definition of L(2, 1)-labeling. In radio labeling the function $L: V(G) \to N$, where N is the set of integer numbers, is used to give the radio labeling for the vertices of the graph G. The function L is said to be a radio labeling of the graph G if it satisfies the following condition: $|L(u) - L(v)| \ge diam(G) + 1 - d(u, v)$ for each $u, v \in V(G)$, with diam(G) being the diameter of G and d(u, v) being the shortest distance between the vertices u, v. The difference between the highest and lowest labels employed by a radio labeling L is known as the span of the labeling L. The main objective of the radio labeling problem is to determine the minimum span across all over such labeling L on the graph G. Such minimum span is called the radio number of G or as rn(G). Such radio number is important in measuring the efficiency usage of the available bandwidth of radio frequencies. Determining the radio number of an arbitrary graph has been demonstrated to be an NP-complete problem [19]. Authors of [30] introduced an algorithm that determines the lower and upper bounds of the radio number of a graph. Badr and Moussa [6] proposed the development of Sahas' algorithm and introduced a novel mathematical model for the radio labeling application. Radio labeling problem has been studied for different families of graphs [4, 5, 20–25, 27, 28, 31, 32, 39]. On the other hand, for more details about the mathematical models, the reader is referred to [1–3, 7–10, 13–16, 29, 37, 38]. Finally, for more details about the theory of cryptography, the reader may refer to [12, 26, 33–36].

Obtaining the radio number of generic graphs is computationally challenging and it is NP-hard to determine, the radio number of general graphs of diameter 2 and its complexity is unknown in general. In literature, there are some algorithms for finding an upper bound for radio number of a given graph. The main challenge of such algorithms is determining the first vertex of the graph G that will labeled by zero. In [30] Laxman Saha select a random vertex to label by zero. The label zero is fixed at that vertex through all steps of Sahas' algorithm. Badr[6] proposed an algorithm moves the label zero from the vertex to another vertex in order to get the minimum radio number. Therefore, it gets the better upper bound of the radio number for a given graph G. However, if Badr algorithm moves all labels from the vertex to another vertex the algorithm will become an exponential algorithm. Here, we claim to introduce an algorithm that give better upper bound and minimize the time of finding such upper bound.

In this paper, a fast algorithm determining the upper bound of the radio number of a given graph is proposed. The proposed algorithm overcomes the other which is due to Saha and Panigrahi [30]. According to CPU time, the proposed algorithm outperforms the other which is due to Badr and Mousa [6]. The superiority of the proposed algorithm on the mathematical model is introduced for both the upper bound of the radio number and CPU time. Finally, the proposed algorithm is evaluated by a set of networks, which have variety properties.

The rest of the paper is structured as follows Section 2 present the fundamentals of the proposed algorithm for finding the upper bound of the radio labeling for a graph G. Besides that, the mathematical model for determining the upper bound of the radio number of a graph is presented. A computational study for verification of the validity and efficiency of the proposed algorithm is presented in Section 3. A cryptography application is presented in Section 4. The conclusion of the paper and future work are presented in Section 5.

2. Methodology

In this section, we propose an algorithm for finding the upper bound of the radio labeling for a graph G. We explain the mechanism of the proposed algorithm and its time complexity. On the other hand, Theorem 1 is introduced to prove the validation of this algorithm.

The basic idea of radio number upper bound optimization is how to choose the vertex that has the labeling zero. In 2012, Saha and Panigrahi [30] presented an algorithm to find the upper bound and lower bound of a radio number for a graph. They fixed the zero label

for the first vertex while Badr and Moussa [6] proposed an algorithm that give an upper bound better than the results are due to Saha [30]. In [6] the label zero is moved from one vertex to another vertex in order to obtain a better upper bound for the radio number.

Figure 1: The label zero randomly selected and fixed at x_1 according to Laxman Saha [30].

Figure 3: The label zero fixed at x_2 according to the proposed algorithm

Figure 1 shows that Saha and Panigrahi fixed the zero label for the first vertex while Figure 2 shows that Badr and Moussa move the zero label from one vertex to another vertex in order to obtain a better upper bound for the radio number. Finally, Figure 3 shows that label zero will assign to the center vertex of the given graph as we will describe in Section 2.1.

2.1. The description of the proposed algorithm

Let G be a connected, simple, and undirected graph with n vertices. Let V(G) be the vertex set of G.

For a vertex $u \in V(G)$, let the sum of distances from the vertex u to every other vertex in G is $d^{s}(u)$. Thus, $d^{s}(u) = \sum_{v \in V(G)} d(u, v)$.

Let $X = \{d^s(u), \forall u \in V(G)\}$. A vertex u is said to be the center of the graph G if

$$d^s(u) = \min(X)$$

Hereafter, we use the center vertex of the graph G to find the upper bound of the radio number of G. We aim to assign a radio labeling L to these vertices such

 $L(v_0) < L(v_1) < L(v_2) < \ldots < L(v_{n-1})$. If L is a radio labeling of G, then $|L(v_{j+1}) - L(v_j)| \ge diam(G) + 1 - d(v_{j+1}, v_j)$ for all $0 \le j \le n-2$. Consequently,

$$L(v_{j+1}) - L(v_j) = diam(G) + 1 - d(v_{j+1}, v_j) + \sigma_j$$

such that σ_j is a positive integer. Moreover,

$$L(v_{j+1}) = l(v_j) + (diam(G) + 1) - d(v_{j+1}, v_j) + \sigma_j \text{ for all } 0 \le j \le n - 2.$$

Therefore,

 $L(v_{n-1}) = L(v_0) + (n-1)(diam(G)+1) - \sum_{j=0}^{n-2} d(v_{j+1}, v_j) + \sum_{j=0}^{n-2} \sigma_j$ As, $L(v_0) < L(v_1) < L(v_2) < \dots < L(v_{n-1})$ then, $span(L) = L(v_{n-1})$. Consequently, $rn(G) \leq L(v_n)$.

Our claim now is to minimize $\sum_{j=0}^{n-2} d(v_{j+1}, v_j) + \sum_{j=0}^{n-2} \sigma_j$ for all $0 \le j \le n-2$. satisfying that

 $|L(v_{j+1}) - L(v_j)| \ge diam(G) + 1 - d(v_{j+1}, v_j) ; \ 0 \le j \le n - 2.$

The radio labeling of the vertex v_1 will be as follow

$$L(v_1) \ge L(v_0) + (diam(G) + 1) - d(v_1, v_0)$$

As we assume that $L(v_0) = 0$ then the upper bound of the value of $L(v_1)$ will depend only on the value of $d(v_1, v_0)$. The less the value of $d(v_1, v_0)$, the more value of $L(v_1)$. Hence, it is a good choice when we choose v_0 to be the center vertex of G. After that we work to label a vertex from V(G) differ from v_1 , v_0 and consider this vertex as v_2 satisfying that

 $|L(v_2) - L(v_1)| \ge diam(G) + 1 - d(v_2, v_1)$ and

$$|L(v_2) - L(v_0)| \ge diam(G) + 1 - d(v_2, v_0)$$

Then we do the following computation, for each vertex $u \in V(G) - \{v_1, v_0\}$. Find

$$L(u) = \max \{ L(v_0) + diam(G) + 1 - d(v_0, u), L(v_1) + diam(G) + 1 - d(v_1, u) \} \}$$

Consequently, the vertex u will consider as v_2 and $L(v_0) < L(v_1) < L(v_2)$. To find the vertex v_3 , we compute the below computations. For every vertex u belongs to $V(G) - \{v_0, v_1, v_2\}$ compute

$$L(u) = \max \left\{ \begin{array}{l} L(v_0) + diam(G) + 1 - d(v_0, u), \ L(v_1) + diam(G) + 1 - d(v_1, u), \\ L(v_2) + diam(G) + 1 - d(v_2, u) \end{array} \right\}$$
(1)

Then the vertex v_3 will be the vertex u with minimum value of L(u) from the computations proceed in Equation 1. The previous computations is proceed until the vertex v_{n-1} is labeled.

Hereafter, we introduce an algorithm that output an upper bound of a radio labeling of a graph G.

Algorithm 1. The Upper bound of the radio number of a given graph G**Input**: The adjacency matrix of the graph G and the diameter D of G. **Output**: The upper bound of radio number of G. Begin 1: For all $u \in V(G)$ compute, $d^{s}(u) = \sum_{v \in V(G)} d(u, v)$. 2: Let $min1 = \min_{u \in V(G)} \{ d^s(u) \}$ 3: Choose a vertex $u \in V(G)$, such that $d^s(u) = min1$ 4. Assign, L(u) = 0. $5:X = \{u\}.$ 6: For all $v \in V(G) - X$, compute, $temp(v) = \max_{t \in X} \{L(t) + D + 1 - d(v, t)\}$ 7: Let $min2 = \min_{v \in V(G) - X} \{temp(v)\}$ 8: Choose a vertex $v \in V(G) - X$, where temp(v) = min29: Assign, L(v) = min210: $X = X \cup \{v\}$. 11: Repeat Step 6 to Step 10 until all vertices are labeled. Stop. End.

Theorem 1. Algorithm 1 results in a radio labeling and an upper bound of the radio number for a graph G

Proof. Let Algorithm 1 be at intermediate step r, where the vertices of G that belong to the set $X = \{u_1, u_2, \ldots, u_r\}$ are radio labeled such the radio label of a vertex

 $u_i = L(u_i)$ for all $1 \le i \le r$. In the next step, to label a new vertex v, the Algorithm 1 picks a vertex $v \in V - X$ such that $temp(v) = \max_{t \in X} \{L(t) + D + 1 - d(v, t)\}$ is the minimum. According to Algorithm 1, L(v) = temp(v). Let us call the vertex v as u_{r+1} , we find that $L(u_{r+1}) \ge L(t) + D + 1 - d(u_{r+1}, u_i)$ for all $u_i \in X$. Thus, $|L(u_{r+1}) - L(u_i)| \ge D + 1 - d(u_{r+1}, u_i)$ for all $u_i \in X$. Therefore, Algorithm 1 results in a radio labeling for the given graph G and an upper bound for radio number of G.

Complexity of Algorithm 1. step 1 has a loop which has O(n) time complexity. Step 2 has O(n) time complexity and step 3 has O(n) time complexity. Both of steps 4 and 5 has O(1) time complexity. In step 6, there is a nested loop which has $O(n^2)$ time complexity. Each of steps 7 and 8 has O(n) time complexity. For steps 9 and 10 each has one operation which has 2 O(1) time complexity. At the end, step 11 has $O(n^3)$ time complexity. Therefore, the proposed algorithm has the following time complexity,

 $5O(n) + 4O(1) + O(n^2) + O(n^3) = O(n^3)$

2.2. The integer programming mathematical model (ILPM) for the radio labeling problem

A new mathematical formulation for the radio labeling problem is proposed. We next describe the problem of finding the radio labeling problem for a graph in terms of an integer programming problem [19]. Let G be a connected graph of order n with $V(G) = \{u_1, u_2, \dots, u_n\}$ and let $D = [d_{ij}]$ be the distance matrix of G, that is $d_{ij} = d(u_i, u_j)$ for $1 \le i$, $j \le n$. We suppose that v_i are the labels of the vertices u_i such that $1 \le i \le n$. Now, we can introduce the mathematical model for the radio labeling problem as integer programming model. We define the function F by

$$\min F = v_1 + v_2 + \dots + v_n$$

Subject to: $|v_i - v_j| \ge diam + 1 - d(u_i, u_j)$ for $1 \le i \le n - 1$; $2 \le j \le n$ and i < j where $v_1, v_2, \dots, v_n \in \{0, 1, 2, \dots\}$ The radio number of the graph $G = \max_{1 \le i \le n} \{v_i\}$.

3. Results and discussion

We describe our numerical experiments and present computational results, which demonstrate the efficiency of the proposed algorithm on a set of test graphs (path, cycle, friendship graphs ($F_{3,k}$, $F_{4,k}$, $F_{5,k}$), Δ_k -snake and kC_4 -snake and triangular path $P_{3,k}$). Compiled using python 3.11, all runs were carried out under macos, on MacBook Air with Apple M1 chip with 8-core CPU and 7-core GPU, 8GB RAM

In Tables 1-8 the abbreviations UB1, UB2 and UB3 are used to denote upper bounds of radio number due to Saha and Panigrahi [30], Badr and Moussa [6] and the proposed algorithm (algorithm 1) respectively.

Definition 1. Let k be a positive integer. A triangular snake graph denoted as Δ_k -snake is a connected and simple graph of k-blocks and each block is cycle C_3 and the block-cutpoint graph is a path.

Figure 4 illustrates the graph Δ_k -snake.

Definition 2. For given positive integers k, m, a friendship graph denoted as $F_{m,k}$ and represented as k cycles (blocks) each of length m and all have a one vertex common.

For more illustration, Figure 5 shows the graph $F_{4,k}$ as an example of friendship graph.

Definition 3. For a positive integer k, the graph denoted as kC_4 -snake is a connected and simple graph of k-blocks and each block is cycle C_4 and the block-cut-point graph is a path.

The graph kC_4 -snake is shown in Figure 6.

Definition 4. For a positive integer k, a triangular path $P_{3,k}$ is a connected and simple graph with $|V(P_{3,k})| = 3k$ and $|E(P_{3,k})| = 4k - 1$. It consists of a path P_k of k vertices such that every vertex from this path is a vertex in a cycle C_3 .

The illustration of $P_{3,k}$ is shown in Figure 7.

Figure 6: kC_4 -snake

Figure 7: Triangular path $P_{3,k}$.

Tables 1-8 present the comparisons among four different algorithms, UB1, UB2, ILPM, and UB3, for path (P_n) , cycle (C_n) , friendships $(F_{3,k}, F_{4,k}, F_{5,k})$ triangular snakes Δ_k snake and kC_4 -snake and triangular path $(P_{3,k})$. The table provides various metrics, including the upper bound of the radio number rn(G) and the CPU time for each algorithm at different values of n. The first column (in Tables 1, 2 and second column in Tables 3-8) represents the value of n, which indicates the size (number of vertices) of the graph G. The second column (in Tables 1, 2 and third column in Tables 3-8) shows the value of rn(G) obtained using the UB1 algorithm. Similarly, the further consecutive columns represent the values of rn(G) obtained using the UB2 and ILPM algorithms. The last column presents the values of rn(G) obtained using the UB3 algorithm. The subsequent columns provide the CPU time taken by each algorithm to compute the respective rn(G)values for the given graph size.

n	UB1		UB2		ILPM		UB3	
	rn(G)	CPU Time						
1	0	0.000181	0	0.000353	0	0.000111	0	0.000033
2	1	0.000083	1	0.000454	1	0.000015	1	0.000041
3	3	0.000085	3	0.000733	4	0.000033	3	0.000058
4	6	0.000124	5	0.000014	9	0.00004	5	0.000077
5	11	0.000217	10	0.000267	16	0.000461	10	0.000126
6	15	0.000265	14	0.000531	25	0.000543	14	0.000209
7	22	0.000375	20	0.000705	36	0.000098	20	0.000308
8	28	0.000505	26	0.000934	49	0.000197	26	0.000372
9	37	0.000539	35	0.00123	64	0.000261	35	0.000504
10	45	0.000815	42	0.001666	81	0.000305	42	0.000674
11	56	0.000888	53	0.002232	100	0.000393	53	0.000828
12	66	0.001091	62	0.002816	121	0.000563	62	0.001044
13	80	0.001379	75	0.003461	144	0.000678	76	0.001316
14	91	0.001666	86	0.00451	169	0.000717	86	0.001645
50	1225	0.062379	1202	0.186789	2401	0.021464	1202	0.062123

Table 1: A comparison among UB1, UB2, UB3, and ILPM for G = path graph P_n

Table 1 indicates that, for the path, the proposed algorithm is preferable to UB1. On the other hand, we discover that the proposed algorithm is preferable to UB2 in terms of execution time, while it is equivalent to UB2 until n is less than or equal to 12. When n is greater than or equal to 13, the algorithm UB2 oscillates between equality with the proposed algorithm and superiority. The proposed algorithm is preferable to ILPM. As we can observe, for n = 1, all algorithms produce an rn(G) value of 0. Each algorithm takes a different amount of CPU time to compute this result. UB1 takes the least time, followed by UB2, ILPM, and UB3. As n increases, the rn(G) values also increase for all algorithms. This indicates that the complexity of the graph structure increases as the size of the path graph grows. The CPU time also increases as the graph size increases. This is expected since larger graphs require more computational effort to compute the rn(G) values. For larger values of n, such as n = 50, the CPU times become significantly higher for all algorithms. This indicates that the computational complexity of these algorithms increases with the size of the input graph.

n		UB1		UB2	I	LPM		UB3	
	rn(G)	CPU Time							
1	0	0.000198	0	0.0000348	-	0.0000418	0	0.0000329	
2	1	0.0000478	1	0.0000434	-	0.0000251	1	0.0000362	
3	2	0.0000738	2	0.0000862	2	0.0000426	2	0.0000537	
4	4	0.000116	4	0.000157	6	0.0000646	4	0.0000757	
5	4	0.000127	4	0.00027	8	0.0001079	4	0.000121	
6	7	0.000183	7	0.000441	15	0.0001039	7	0.000150	
7	10	0.000265	9	0.000644	18	0.0001659	10	0.000245	
8	13	0.000371	13	0.000977	28	0.0002579	13	0.000369	
9	13	0.000512	12	0.001314	32	0.0004969	13	0.000508	
10	17	0.000686	17	0.001701	45	0.0005569	17	0.000668	
11	21	0.00088	20	0.002198	50	0.0008419	21	0.000853	
12	26	0.001096	26	0.002863	66	0.0010169	26	0.001028	
13	25	0.001412	24	0.003559	72	0.0011609	25	0.001272	
14	31	0.001693	31	0.004457	91	0.0014649	31	0.001576	
50	337	0.062019	337	0 186451	1225	0.0320259	337	0.062002	

Table 2: A comparison among UB1, UB2, UB3 and ILPM for G = cycle

Table 2 indicates that, for the cycle, the proposed algorithm is preferable to UB1. On the other hand, we discover that the proposed algorithm is preferable to UB2 in terms of execution time, while it is equivalent to UB2 until n is less than or equal to 12. When n is greater than or equal to 13, the algorithm UB2 oscillates between equality with the proposed algorithm and superiority. The proposed algorithm is preferable to ILPM.

Tables 3-5 indicate that, for the friendships $F_{3,k}$, $F_{4,k}$, and $F_{5,k}$, the proposed algorithm is preferable to UB1. On the other hand, we discover that the proposed algorithm is preferable to UB2 in terms of execution time, while it is equivalent to UB2 until n is less than or equal to 12. For $F_{3,k}$, Table 3 shows that the algorithms UB2 and the proposed algorithm are equivalent except at k = 3, 5, 7. For $F_{4,k}$, and $F_{5,k}$, Tables 3-4 show that the algorithms UB2 and the proposed algorithm are equivalent except at k = 2. The proposed algorithm is preferable to ILPM.

K	n		UB1		UB2	1	LPM		UB3
		rn(G)	CPU Time						
1	3	2	0.000352	2	0.000117	4	0.000075	2	0.000116
2	5	5	0.000199	5	0.000277	7	0.000037	5	0.000148
3	7	8	0.000347	7	0.000675	10	0.000172	8	0.000283
4	9	9	0.000542	9	0.001369	13	0.000408	9	0.000519
5	11	12	0.000964	11	0.002313	16	0.000847	12	0.000958
6	13	13	0.001391	13	0.00376	19	0.000291	13	0.001402
7	15	16	0.002084	15	0.005837	22	0.000861	16	0.001972
8	17	17	0.002893	17	0.008048	25	0.001774	17	0.002885
9	19	20	0.004048	19	0.011799	28	0.002924	20	0.004035
10	21	21	0.00543	21	0.015302	31	0.004015	21	0.005126
11	23	24	0.007658	23	0.020273	34	0.005977	24	0.007088
12	25	25	0.009249	25	0.025301	37	0.007643	25	0.008754
13	27	28	0.011044	27	0.03207	40	0.000837	28	0.010948
14	29	29	0.014288	29	0.039837	43	0.003468	29	0.013579
50	101	101	0.675397	101	1 773485	151	0.263206	101	0.574317

Table 3: A comparison among UB1, UB2, UB3 and ILPM for G = friendship graph $F_{3,k}$

K	n	UB1		UB2		ILPM		UB3	
		rn(G)	CPU Time						
1	3	4	0.000115	4	0.000115	5	0.000063	4	0.000114
2	5	16	0.00024	15	0.00042	17	0.000128	16	0.000239
3	7	22	0.000676	22	0.001321	23	0.000276	22	0.000636
4	9	29	0.001434	29	0.003049	30	0.000525	29	0.001387
5	11	36	0.002458	36	0.006385	37	0.001315	36	0.002426
6	13	43	0.004054	43	0.011824	44	0.002745	43	0.003856
7	15	50	0.006445	50	0.019918	51	0.005039	50	0.00615
8	17	57	0.008756	57	0.031611	58	0.007677	57	0.008788
9	19	64	0.013099	64	0.047747	65	0.011479	64	0.012702
10	21	71	0.01666	71	0.069004	72	0.011591	71	0.016403
11	23	78	0.022505	78	0.09524	79	0.015292	78	0.02259
12	25	85	0.029908	85	0.130633	86	0.017542	85	0.028653
13	27	92	0.036358	92	0.174968	93	0.025987	92	0.037098
14	29	99	0.04407	99	0.228926	100	0.03328	99	0.044391
50	101	351	2.107236	351	27.88631	352	0.771716	351	1.882827

Table 4: A comparison among UB1, UB2, UB3 and ILPM for G = friendship graph $F_{4,k}$

Table 5: A comparison among UB1, UB2, UB3 and ILPM for G = friendship graph $F_{5,k}$

K	n		UB1		UB2	ILPM		UB3	
		rn(G)	CPU Time						
1	5	4	0.00032	4	0.00031	14	0.000071	4	0.000182
2	9	18	0.000517	17	0.001497	24	0.000457	18	0.000108
3	13	25	0.001336	25	0.003841	35	0.000315	25	0.001426
4	17	33	0.002867	33	0.008418	46	0.001768	33	0.002879
5	21	41	0.005361	41	0.015528	57	0.004308	41	0.005419
6	25	49	0.008805	49	0.025917	68	0.007776	49	0.008887
7	29	57	0.013459	57	0.039922	79	0.002785	57	0.013896
8	33	65	0.01975	65	0.058754	90	0.008407	65	0.019518
9	37	73	0.027393	73	0.082683	101	0.016351	73	0.027462
10	41	81	0.038485	81	0.110506	112	0.025411	81	0.036522
11	45	89	0.048896	89	0.14308	123	0.038162	89	0.049273
12	49	97	0.060881	97	0.180638	134	0.050256	97	0.061367
13	53	105	0.078234	105	0.230682	145	0.067696	105	0.078807
14	57	113	0.097254	113	0.285646	156	0.085658	113	0.096769
50	201	401	4.265029	401	12.58799	552	3.06101	401	4.072021

Tables 6 and 7 indicate that, for the Δ_{k} - snakes and, kC_4 -snakes, the proposed algorithm is preferable to. On the other hand, we discover that the proposed algorithm is preferable to UB2 in terms of execution time, while it is equivalent to UB2 until n is less than or equal to 12. For Δ_{k} - snakes Table 6 shows that the algorithms UB2 and the proposed algorithm are equivalent. For kC_4 -snakes, Table 7 shows that the algorithms UB2 and the proposed algorithm are equivalent except at k = 2, 5, 7, 13. The proposed algorithm is preferable to ILPM.

K	n		UB1		UB2		ILPM		UB3	
		rn(G)	CPU Time							
1	3	2	0.000297	2	0.000184	2	0.000093	2	0.000204	
2	5	5	0.000138	5	0.000293	6	0.000035	5	0.000126	
3	7	12	0.000283	11	0.000756	14	0.000082	11	0.000263	
4	9	18	0.000531	17	0.001378	26	0.000032	17	0.000513	
5	11	30	0.000871	28	0.002301	42	0.000037	28	0.000248	
6	13	39	0.001379	37	0.003772	62	0.000038	37	0.001249	
7	15	56	0.002113	52	0.005715	86	0.000097	52	0.002108	
8	17	68	0.003721	65	0.008235	114	0.000314	65	0.003005	
9	19	90	0.004074	85	0.011566	146	0.000321	85	0.004232	
10	21	105	0.005461	101	0.015212	182	0.000494	101	0.005805	
11	23	132	0.007225	125	0.020041	222	0.000584	125	0.007395	
12	25	150	0.008868	145	0.025406	266	0.000696	145	0.008807	
13	27	182	0.010933	174	0.031775	314	0.000751	174	0.010862	
14	29	203	0.013203	197	0.040166	366	0.000277	197	0.013388	
50	101	2525	0.661005	2501	1.575407	4902	0.000995	2501	0.563346	

Table 6: A comparison among UB1, UB2, UB3 and ILPM for triangular snakes Δ_k

K	n		UB1	UB2		ILPM		UB3	
		rn(G)	CPU Time						
1	4	4	0.000359	4	0.000182	4	0.000027	4	0.000138
2	7	17	0.00029	15	0.00069	17	0.000199	16	0.00021
3	10	33	0.000686	31	0.001912	40	0.000604	31	0.000615
4	13	58	0.001367	55	0.003751	75	0.000267	55	0.001338
5	16	86	0.002531	83	0.006906	122	0.001308	85	0.002419
6	19	122	0.004264	117	0.011311	181	0.002739	117	0.00385
7	22	162	0.006756	157	0.017645	252	0.00501	158	0.006121
8	25	212	0.009442	205	0.025285	335	0.007432	205	0.008543
9	28	266	0.012434	257	0.035349	469	0.001122	257	0.012233
10	31	325	0.016581	316	0.048055	579	0.004575	316	0.015686
11	34	389	0.022227	379	0.063325	656	0.009842	379	0.020953
12	37	462	0.028546	451	0.081115	787	0.016127	451	0.027238
13	40	538	0.034988	527	0.101463	873	0.022944	529	0.034055
14	43	622	0.043549	609	0.12424	981	0.030786	609	0.041897
50	151	7625	1.866284	7576	5.209234	14657	0.654571	7576	1.765682

Table 7: A comparison among UB1, UB2, UB3 and ILPM for $G = kC_4$ -snakes graph

Table 8 indicates that, for the path triangular $P_{3,k}$, the proposed algorithm is preferable to UB1. On the other hand, we discover that the proposed algorithm is preferable to UB2in terms of execution time, while it is equivalent to UB2 until n is less than or equal to 12. For $P_{3,k}$ Table 8 shows *that* the algorithms UB2 and the proposed algorithm are equivalent. The proposed algorithm is preferable to ILPM.

Table 8: A comparison among UB1, UB2, UB3 and ILPM for G = triangular path graph

K	n		UB1		UB2	1	LPM		UB3
		rn(G)	CPU Time	rn(G)	CPU Time	rn(G)	CPU Time	rn(G)	CPU Time
1	3	2	0.000127	2	0.000123	2	0.000027	2	0.0000887
2	6	8	0.000198	8	0.000523	12	0.000234	8	0.000193
3	9	18	0.000543	17	0.001477	26	0.0003968	17	0.000519
4	12	32	0.001123	29	0.003144	46	0.0004982	29	0.001085
5	15	46	0.002093	45	0.005782	72	0.0005294	45	0.002035
6	18	65	0.003492	61	0.009949	104	0.0006289	61	0.003373
7	21	86	0.005367	82	0.016159	142	0.0007928	82	0.005314
8	24	110	0.007732	105	0.023089	186	0.0008923	105	0.007500
9	27	137	0.010508	134	0.032466	236	0.0019276	134	0.010086
10	30	167	0.015182	161	0.043037	292	0.0029187	161	0.014900
11	33	200	0.019532	198	0.059199	354	0.0030983	198	0.019228
12	36	236	0.025369	229	0.075771	422	0.0049876	229	0.025317
13	39	277	0.033481	274	0.094781	496	0.005691	274	0.031756
14	42	317	0.039851	309	0.115118	576	0.006892	309	0.039622
50	150	3827	1.840115	3801	5.127259	7452	0.26579	3801	1.702862

4. Application of radio labeling in cryptography

In this section, we claim to use the upper bound of radio number of a graph obtained from Algorithm 1 for Encryption and decryption. We will consider the Triangular Path graph for the proposed cryptography approach.

4.1. Cryptography approach

Let's the sender and the receiver wish to communicate in secure manner. Assume that the letters A through Z in the English alphabet make up the message M, with spaces separating each word. Let the numerical counterparts of each letter in the English alphabet A, B,..., and Z be 1, 2,..., and 26 in this cryptosystem. Let 0 represent empty space and punctuation is disregarded. We introduce a matrix-based cryptographic technique. Thus

only both of sender and receiver are know the key, which is an invertible matrix. In this section, we suggest a method for creating such a matrix using upper bound of radio number of the triangular path graph $P_{3,k}$.

Suppose the length of plaintext M is k. Then, we consider triangular path $P_{3,k}$. Let Algorithm 1 produce that the upper bound of radio number of $P_{3,k}$ that is $rn(P_{3,k})$. After that, a $2x^2$ matrix A is constructed as follows

$$A = \begin{bmatrix} rn(P_{3,k}) - 2 & rn(P_{3,k}) - 3 \\ rn(P_{3,k}) & rn(P_{3,k}) - 1 \end{bmatrix} mod \ 27$$

As the determinant of A does not equals 0. Then A is an invertible matrix. As a result, the sender may decide to utilize the matrix A for encryption while the receiver may use the matrix A^{-1} for decryption, where

$$A^{-1} = \frac{1}{2} \begin{bmatrix} rn(P_{3,k}) - 1 & 3 - rn(P_{3,k}) \\ -rn(P_{3,k}) & rn(P_{3,k}) - 2 \end{bmatrix} mod \ 27$$

4.2. Cryptography algorithms

Hereafter, the encryption and decryption processes are described in details.

Encryption Algorithm Input: A message M of length k**Output**: A cipher text C of the message M. Begin. **1.**Consider triangular path $P_{3,k}$. 2.Use Algorithm 1 to find the upper bound of radio number of P_{3,k}.
3. If Algorithm 1 results the upper bound of radio number of P_{3,k} as α then construct an 2x2 matrix $A = \begin{bmatrix} \alpha - 2 & \alpha - 3 \\ \alpha & \alpha - 1 \end{bmatrix} \mod 27.$ 4. Convert each letter (including space) in the plaintext M to its equivalent number. 5. Make this string of numbers as a set of ordered pairs. We pair the last number of the string with 0 whenever, the string has odd length. 6. An ordered (x, y) is encrypted to $\begin{bmatrix} x' \\ y' \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix} \mod 27.$ 7. Represent numbers in each encrypted $\begin{bmatrix} x' \\ y' \end{bmatrix}$ by space or its equivalent character in the English alphabet. 8. Form the cipher text C by appending 0 or 1 at the end of the sequence of characters produced in step 7. Appending 0 indicates that the message M is of length, even and 1 indicates that the message M has length is of length, odd. End

Decryption Algorithm.

Input: A cipher text C of length w**Output:** A plaintext (Original message) M of C. **Begin**

> **1.** If 0 is found at the end of C, obtain the upper bound of radio number α of triangular path $P_{3,w}$. Using algorithm 1. If 1 is found at the end of C, use algorithm 1 to obtain the upper bound of radio number, α of triangular path $P_{3,w-1}$.

- **2**. Build the key matrix for decryption that is $B = \frac{1}{2} \begin{bmatrix} \alpha 1 & 3 \alpha \\ -\alpha & \alpha 2 \end{bmatrix} \mod 27.$
- 3. Convert the characters and spaces in C to ordered pairs of their equivalent numerical values
- **4.** Each ordered pair (x', y') is decrypted to $\begin{bmatrix} x \\ y \end{bmatrix} = B \begin{bmatrix} x' \\ y' \end{bmatrix} mod 27.$

5. Represent numbers in each matrix $\begin{bmatrix} x \\ y \end{bmatrix}$ by space or its equivalent character of x and y in the English alphabet to deduce the plaintext M of the received ciphertext C.

 \mathbf{End}

For more illustration of the cryptography approach, we pose the following example.

Example 1. Let the sender wants to send the message "PAR'' to the receiver then encryption process is done as follow

- 1. Since the length of the original message is 3, we use algorithm 1 to get the upper bound of radio number of $P_{3,3}$.
- 2. Following Table -8, k=3, UB3, the upper bound of radio number of $P_{3,3}$ is 17. hence, construct an 2x2 matrix $A = \begin{bmatrix} 15 & 14 \\ 17 & 16 \end{bmatrix}$.
- 3. Represent each character (including space) in the plaintext M by its numerical equivalent. That is 16, 1, 18.
- 4. Convert this string of numbers to a set of ordered pairs as (16,1), (18,0).

5. (16, 1), is encrypted as $\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 15 & 14\\17 & 16 \end{bmatrix} \begin{bmatrix} 16\\1 \end{bmatrix} \mod 27. = \begin{bmatrix} 11\\18 \end{bmatrix}$ and the ordered pair (18,0) will be $\begin{bmatrix} 15 & 14\\17 & 16 \end{bmatrix} \begin{bmatrix} 18\\0 \end{bmatrix} \mod 27. = \begin{bmatrix} 0\\9 \end{bmatrix}$

- 6. Finally, convert these ordered pairs to equivalent English letter that is $11 \equiv K$, $18 \equiv R$, $0 \equiv space$, $9 \equiv I$.
- 7. Finally, the cipher text $C = KR \bigtriangledown I1$. Here, we append 1 at the end of the sequence of characters produced in step 6 to inform the receiver that the original message has an odd length. On the other hand, we use the symbol \bigtriangledown as indication for the space.

At the receiver, the decryption process performed as follows

As the received message is of length w = 4 and has number 1 at the end, then the decryption process use the upper bound of radio number of $P_{3,w-1} = P_{3,3}$ that is 17 following Table-8, k=3, UB3.

Build the key matrix for decryption $B = \frac{1}{2} \begin{bmatrix} 16 & -14 \\ -17 & 15 \end{bmatrix} \mod 27 = \begin{bmatrix} 8 & 20 \\ 5 & 21 \end{bmatrix}$. Converting the characters and spaces in C to their equivalent numerical values and making ordered pairs yields ordered pairs (11, 18) and (0, 9). Doing a decrypting for each ordered pair as follows

(11,18) will be
$$\begin{bmatrix} 8 & 20\\ 5 & 21 \end{bmatrix} \begin{bmatrix} 11\\ 18 \end{bmatrix} = \begin{bmatrix} 16\\ 1 \end{bmatrix}$$
 and

(0,9) will be
$$\begin{bmatrix} 8 & 20 \\ 5 & 21 \end{bmatrix} \begin{bmatrix} 0 \\ 9 \end{bmatrix} = \begin{bmatrix} 18 \\ 0 \end{bmatrix}$$
.

Representing the entries of the matrices $\begin{bmatrix} 16\\1 \end{bmatrix}$ and $\begin{bmatrix} 18\\0 \end{bmatrix}$ to their equivalent character (or space) that is $\begin{bmatrix} 16\\1 \end{bmatrix} \Rightarrow PA$ and $\begin{bmatrix} 18\\0 \end{bmatrix} \Rightarrow R$. Hence, the plaintext is M=PAR.

5. Conclusion

This paper proposed a fast algorithm for determining the upper bound of the radio number of a given graph. The proposed algorithm was superior to that of Saha and Panigrahi (2012). According to CPU time, the proposed algorithm outperformed the other which is due to Badr and Mousa (2019). The superiority of the proposed algorithm on the mathematical model was introduced for both the upper bound of the radio number and CPU time. An application of radio labeling for cryptography is presented. In the future, we will seek a new algorithm based on selecting the vertex that accepts the label zero so that it is efficient and outperforms the existing algorithms. In addition to testing such an algorithm on graphs with varying specifications for number of vertices, diameter, symmetry, etc., the algorithm must also be examined on graphs with varying specifications for symmetry, diameter, etc. On other hand, wireless technologies have been recently used in a variety of services. Hence, it is more economical to try reusing the frequencies. In Future we claim to enhance our algorithm to work on this issue.

Declaration of interests: The authors declare no conflict of interest.

References

- B. D. Acharya and M. K. Gill. On the index of gracefulness of a graph and the gracefulness of two-dimensional square lattice graphs. *Indian Journal of Mathematics*, 23:81–94, 1981.
- [2] A. H. Alkasasbeh, E. Badr, H. Attiya, and H. M. Shabana. Radio number for friendship communication networks. *Mathematics*, 11:4232, 2023.
- [3] E. Badr, M. Abdul Salam, S. Almotairi, and H. Ahmed. From linear programming approach to metaheuristic approach: Scaling techniques. *Complexity*, page Article ID 9384318, 2021.
- [4] E. Badr, S. Almotairi, A. Elrokh, A. Abdel-Hady, and B. Almutairi. An integer linear programming model for solving radio mean labeling problem. *IEEE Access*, 8:162343–162349, 2020.
- [5] E. Badr, S. Nada, M. Al-Shamiri, A. Abdel-Hay, and A. ELrokh. A novel mathematical model for radio mean square labeling problem. *Journal of Mathematics*, page Article ID 3303433, 2022.
- [6] E. M. Badr and M. I. Moussa. An upper bound of radio k-coloring problem and its integer linear programming model. Wireless Networks, 26(7):4955–4964, 2020.
- [7] Elsayed Badr, Mohamed EL-Hakeem, Enas E El-Sharawy, and Thowiba E Ahmed. An efficient algorithm for decomposition of partially ordered sets. *Journal of Mathematics*, 2023(1):9920700, 2023.
- [8] Elsayed Badr, IM Selim, Hoda Mostafa, and Hala Attiya. An integer linear programming model for partially ordered sets. *Journal of Mathematics*, 2022(1):7660174, 2022.
- [9] G. S. Bloom and S. W. Golomb. *Applications of Numbered Undirected Graphs*, volume 65. Proceedings of the Institute of Electrical and Electronics Engineers, 1977.
- [10] J. Bosák. Cyclic Decompositions, Vertex Labellings and Graceful Graphs. Kluwer Academic Publishers, 1990.
- [11] G. Chartrand, D. Erwin, P. Zhang, and F. Harary. Radio labeling of graphs. Bulletin of the Institute of Combinatorics and its Applications, 33:77–85, 2001.
- [12] A. ELrokh, A. E. Badr, M. M. A. Al-Shamiri, and S. Ramadhan. Upper bounds of radio number for triangular snake and double triangular snake graphs. *Journal of Mathematics*, page Article ID 3635499, 2022.
- [13] R. Frucht. Graceful numbering of wheels and other related graphs. Annals New York Academy of Sciences, 319:219–229, 1979.
- [14] R. Frucht and J. A. Gallian. Labeling prisms. Ars Combinatorica, 26:69–82, 1988.
- [15] J. A. Gallian. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, pages 1–95, 2023.
- [16] R. L. Graham and N. J. A. Sloane. On additive bases and harmonious graphs. SIAM Journal on Algebraic and Discrete Methods, 1:382–404, 1980.
- [17] J. Griggs and R. Yeh. Labelling graphs with a condition at distance 2. SIAM Journal on Discrete Mathematics, 5(4):586–595, 1992.
- [18] W. K. Hale. Frequency assignment: Theory and applications. Proc. IEEE,

68(12):1497-1514, 1980.

- [19] M. Kchikech, R. Khennoufa, and O. Togni. Linear and cyclic radio k-labelings of trees. Discussiones Mathematicae Graph Theory, 27(1):105–123, 2007.
- [20] X. Li, V. Mak, and S. Zhou. Optimal radio labelings of complete m-array trees. Discrete Appl. Math., 158:507–515, 2010.
- [21] D. D.-F. Liu. Radio number for trees. Discrete Math., 308:1153–1164, 2008.
- [22] D. D.-F. Liu and M. Xie. Radio number for square of cycles. Congr. Numer., 169:105– 125, 2004.
- [23] D. D.-F. Liu and M. Xie. Radio number for square paths. Ars Combin., 90:307–319, 2009.
- [24] D. D.-F. Liu and X. Zhu. Multi-level distance labelings for paths and cycles. SIAM J. Discrete Math., 19:610–621, 2005.
- [25] M. Morris-Rivera, M. Tomova, C. Wyels, and Y. Yeager. The radio number of $c_n \times c_n$. Ars Combin., 103:81–96, 2012.
- [26] M. I. Moussa and E. M. Badr. A data hiding algorithm based on dna and elliptic curve cryptosystems. Journal of Information Hiding and Multimedia Signal Processing, 10(3), September 2019.
- [27] J. P. Ortiz, P. Martinez, M. Tomova, and C. Wyels. Radio numbers of some generalized prism graphs. *Discuss. Math. Graph Theory*, 31:45–62, 2011.
- [28] V. S. Reddy and V. K. Iyer. Upper bounds on the radio number of some trees. Int. J. Pure and Applied Math., 71(2):207–215, 2011.
- [29] A. Rosa. On certain valuations of the vertices of a graph. In Theory of Graphs, International Symposium, Rome, July 1966, pages 349–355. Gordon and Breach, 1967.
- [30] L. Saha and P. Panigrahi. A graph radio k-coloring algorithm. In Lecture Notes in Computer Science, volume 7643, pages 125–129, 2012.
- [31] L. Saha and P. Panigrahi. On the radio number of toroidal grids. Australian J. Combin., 55:273–288, 2013.
- [32] L. Saha and P. Panigrahi. A lower bound for radio k-chromatic number. Discrete Appl. Math., 192:87–100, 2015.
- [33] Diaa Salama, E. Badr, and Mostafa Farag. Fhe-chaos nhcp: Developing a novel secure framework for cloud computing environment. *Journal of Computing and Communication*, 1(1):12–26, 2022.
- [34] M. Saraswathi and K. N. Meera. Radio mean labeled paths in cryptography. In IEEE 4th PhD Colloquium on Emerging Domain Innovation and Technology for Society (PhD EDITS), 2022.
- [35] H. Shabana, R. El-Shanawany, and S. R. Halawa. Graph design for data authentication over insecure communication channel. *Alexandria Engineering Journal*, 75:649– 662, 2023.
- [36] H. Shabana, R. El-Shanawany, and S. R. Halawa. Orthogonal Decompositions of Regular Graphs and Designing Tree-Hamming Codes. *European Journal of Pure and Applied Mathematics*, 17(4):3492–3516, 2024.
- [37] H. Shabana and M. V. Volkov. Careful synchronization of partial deterministic finite automata. Acta Informatica, 59:479–504, 2022.

- [38] G. S. Singh. A note on graceful prisms. National Academy of Sciences Letters, 15:193–194, 1992.
- [39] P. Zhang. Radio labellings of cycles. Ars Combin., 65:21–32, 2002.