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Abstract. The primary objective of this study is to develop a new integral transform by combining
the Laplace and Sawi transforms, and to investigate its key properties, existence, and the inver-
sion theorem. Furthermore, we introduce new results related to partial differential equations in
higher dimensions and extend the double convolution theorem to two dimensions. Using these new
properties and theorems, we solve special type differential equations with some real applications
in physics and related sciences.
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1. Introduction

Integral transforms are powerful mathematical tools that convert functions into new
domains. After transforming the function can be returned to its original space by applying
the inverse of the integral transform. By applying an integral transform, we generate a
new function G(9) through the integration of the product of g (n) and K(7,d) across the
interval [a, b] represented by:

b

/ a(n)K (n, 6)dn

a
They are pivotal in engineering, economics, physics, and chemistry, serving as essential
tools for understanding complex real-world phenomena. Thus, mathematicians relentlessly
innovate and develop new techniques to tackle ever-broader classes of differential equa-
tions, and one of the most celebrated integral transforms is the Laplace transform, first
introduced in 1780. Among the innovative integral transforms emerging in recent years
is the Sawi transform introduced in 2021 by [1]. These transforms offer powerful new
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tools for tackling both ordinary and fractional differential equations, for more information
about the Sawi transform, refer to [2], and for more details on other single transforms,
one may refer to [3-5].

Additionally, some Double transforms exist to handle many-variable differential equa-
tions. In the wide range of double transforms, we notice fresh methods to help solve
differential equations in more than one dimension. The double Laplace transform [6], the
Double Laplace-Shehu transform [8], the Double Laplace ARA Transform [7], the Double
Sawi transform [9] and Double Mellin-ARA Transform [10].

In the present work, we propose a double transform called the Double Laplace-Sawi
Transform (DLSWT) aimed at globalizing differential equation analysis. We go down to
its bedrock properties characterizing what is needed for it to exist and demonstrating
their power in convolution theory and derivative operation. Applying this novel transform
method, we identify new ways of dealing with partial differential equations and integral
equations. The novelty of this work lies in the innovative combinations of the Laplace
and Sawi transforms, creating a new approach that harnesses the strengths of both trans-
forms. This combination enhances the simplicity and applicability in addressing complex
mathematical problems.

2. Laplace and Sawi transforms

In this section, we provide an overview and highlight key properties of the single
transforms, namely the Laplace and Sawi transforms.

2.1. Laplace transform

Definition 1. The Laplace transform of a continuous function p(n) on (0,00) is defined
as follows

P(5) = L(p(n)) = / e~Sp(n)dn. 6 € C.
0

Some basic properties of the Laplace transform are now given.
Let P(5) = L(p(n)), then for nonzero constants v and v, we have

L(up1(n) + vp2(n)) = uL(p1(n)) + vL(p2(n)), (1)

where p1(n) and pa(n) are continuous functions on (0, 00).

Loy = "t 2
L(e™) = 1 ueR, 3)

d—u
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L(p/ (n)) = 6P(6) — p(0), (4)

L(p"(n)) = 6°P(8) — 6p(0) — 1/ (0). ()

2.2. The Sawi transform

Definition 2. The Sawi transform of a continuous function q(6) on (0,00) expressed as
follows

[e.e]

QO = Wa®) = 5 [ ab)ds

0

Let us now explore the core properties that define the Sawi transform.
Suppose that Q1(e) = W(q1(0)) and Q2(€) = W(qa2(0)),with u and v as nonzero real
numbers, the following properties hold

W (uq1(0) + vq2(0)) = uW(q1(0)) + vW (q2(0)), (6)
W(6") = T(u+1)e" !, (7)
vl __ 1
Wi(e™) = € (1 —wve)’ (®)
. 1 1
W (6)) = ~QUe) ~ 5a(0), )
W' (6) = Q) ~ a(0) ~ 5 (0). (10)

3. Double Laplace-Sawi transform

This section announces the Double Laplace-Sawi Transformation (DLSWT). We start
by stating the basic properties of the DLSWT, such as linearity and inversion. Then we
state a new result regarding the partial derivatives and another new result regarding the
convolution theorem. We also state how we use these results to compute the DLSWT of
some basic functions. The definition of the DLSWT is:

G(6,¢) = L,We(g / / ~2 4. 0) dndd, (11)

where g(n,0) is a continuous function on (0,00) x (0, 00).
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Clearly, L,Wy(g(n,6)) is linear transformation. In fact, for nonzero constants u and
v, we have

LyWo(ugi(n, 0)+vg2(n, 0))

1 o0 0
- 2// ugl (n,0) +vg2(n,0)) dndf
00

= // 691 n,0) dndd + v— //e on= egz(nﬁ) dndf

— uLnWQ(gl (1,0)) + vL,Wy(g2(n, 9))-

If g(n,0) can be written as g(n,0) = p(n)q(#) for some continuous functions p and g,
then L,Wy(g(n,0)) = L(p(n))W(q(9)). In fact

LyWo(g(n,0)) = LyWa(p(n)q(9))

(i)

(i)
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I(u+1) _
= s X Tw+1)e’ !

61}—1

5u+1f(u + 1)I'(v+1), Re(d) > 0 and Re(u) > —1.

(iii)

00 0O
1

LnWG(eun—&-v@) — 2//6—677—‘z€u17+v0d77d0
€

y 17 1 1
_ un—on g e %ap | =
/e K 62/6 5—uxe(1—ve)
0 0
1

= cO—wd—uve) Re(d) > Re(u).

3.2. Existence condition for Double Laplace-Sawi transform

5 of 19

Definition 3. A function g(n,0) is said to be of exponential orders w and v on 0 < n < oo
and 0 < 0 < co. If there exist K, X,Y > 0 such that |g(n,0)| < K" for alln > X,

0>Y.

Theorem 1. Let g(n,0) be a continuous function on the region [0,00) x [0,00) of ex-
ponential orders u and v. Then G(d,€) exists for 0,€ and vy whenever Re () > u and

Re ( ) > 0.
Proof. We have

10000
|G(0,¢)] = 62// ~Cg(n,0) dndd| < // —on— 6)| dndb
00

1 o0 o0
< K62//e ee“"+“9dnd9—K// —<5 Wl ( e (- >>dnd9
00
= K /e 12/e<iv>9d9
€
0 0

6(5—u)(1—v6)

where Re (6) > v and Re (1) > v.
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3.3. Derivatives properties

Now, we present some basic properties of the DLSWT

Let G(9,€) = L,Wy(g(n,0)) where g(n, ) is a continuous function on (0, 00) x

Then
0
L,Wy <ag(87z7,9)> = 30G(d,¢) — W (g(0,0)),
(i
2
¥ (P50 ) = 82606.0) - 6 (600,6)) - W0 0.0)),
(i)
oy (2550 ~ 165,00 - SLio(0.0),
(i)
0%g(n,0) 1 1 1
L (P47 ) = 560.0 - Slaln0) - SLia(r.0)
0

9%9(n,0)

LW (Zon ) = 260, - SLla0.0) ~ TW(5(0.0) + 39(0.0)

0%

6 of 19

(0, 00).

(12)

(15)

Proof. (1) LyWy (%512) = % f f o090 g = L [ e ~on29010) g,
0

By integrating by parts, we get
9g( 7719) _ 17 e 677
L, Wy —2f e 00+(5fe g(n,0) dn | do
0

—e%fe’?g(O, 0)do + :szff n=Eg(n,6) dndd
0 00

e ele e} o oo o
(2) LWy (2532) = GAQMG*%*L 209) i = e *%f g0 .

By integrating by parts, we get
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LW, (6 95777 9>) — L fe s (—gn(o, 0) —0g(0,0) + 52f6_5”9(n,9)d77> do
0

Cb

= %Ofo g 0«9d9——2fe eg()9d9+ sze eg(n,@)dndﬁ
0
= §°G(8,¢) — dW (9(0,0)) — W(gy(0,0)).

(3) LoWa (22552 ) = L[ et gy — 1 emon [ o8 000 g g,
00 0 0

By integrating by parts, we get

€

(4) LotWo (Z02) = & [e = 24000 dno = & [ e~ et 400 dpan
0 0
By integrating by parts, we get
o0
Ly,Wy (a Tglf) ) = %f < 90(1,0) = £9(n,0) + & [e~<g(n, 9)d9> dn
0 0
) 000 0
— L fegy(n, 0)dn — & Jeng(n,0)dn + L | =51 g(n, 0)ddn
0 0 00

2
LyWo (25372 ) = 5G(0,€) = FL(g(1,0)) = 5L(gs(1,0)).

2 %0 e
(5) Ly Wy (Z4) = & [ [t 2000 gnip = 3 et [t a0 g
00 0 0
By integrating by parts, we get

[

2 (e.)
L,Wy <agng00) %{ e< 90(0,0) +(5fe Mga(n,6) dn) de

o0
— 17e
0

= —W(ge(0,0)) + L, Wy (go(n,0))

_8
5

9(0,0)d0 + & ffe o= Egg(n,ﬁ)dndG

[2)

Using Equations 9 and 13 we get

= 2G(6,€) — L(g(n,0)) — LW (g(0,6)) + %g(0,0).

7 of 19
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3.4. Convolution Theorem of Double Laplace-Sawi transform

Let H(n,0) represent the Heaviside unit step function, which is defined as follows:

1, n>wuwand 0 >v
0, otherwise

Hl - w0 -v) = {

Then we have the following lemma

Lemma 1. Let g(n,0) be a continuous function on (0, 00) % (0, 00) and H(n,8) be the Heav-
iside unit step function. Then L,Wp(g(n—u,0—v)H(n—u,0—v)) = e < L,Wy(g(n, ).

Proof. We have
LnWH(Q(Tl—Uae—”)H(n—Uﬁ—U)) (16)

)
1
2
0

(n—u,0 —v)H(n— u,0 —v)dndo

1 o0 o0
= 2//667729(’)7 —u, 0 — v)dndo.
€

Now, by making the substitution z = n — u and w = 6 — v, equation 16 becomes:

0\8

1 oo o0 o
LoWo(g(n —u,0 — v)H(np — u,0 —v)) = 62//65(z+u)( 2 w)dzdw

= e ML, Wy(g(n, 9)).

Definition 4. Let g(n,0) and k(n,0) be continuous functions. We define the convolution
in the DLSWT as

n o
(g % xk)(n,0 //g(n —u,0 —v)k(u,v)dudv.
00

In the following theorem, we compute DLSW'T of the convolution of two functions
Theorem 2. Let G(d,¢€) = L,Wy(g(n,0)) and K(0,€) = L,Wy(k(n,0)). Then

LyWo((g * +k)(1,0)) = €G(5, ) K (6, ¢).
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Proof.
LyWy((g#xk)(n,0))

_ 612776577‘2 (g % #k) (1, 0)dyd6
_ 62// ~61- (// — w0 — v)k(u, v)dudv) dnde. (17)

Using the Heaviside unit step function, We can write equation 17 as

LyWo((g#xg)(n,0))

1 [c oo - B o0 o0
= €2//‘3 e (//g(nuaev)ﬂ(nuﬁv)k(u, v))dudv) dnd6
00 00
[eoNe ) 1 [e.oNe )
= //k(uvv) (2//65’729(171;,9 —v)H(n u,@v)dnd@) dudv.
€
00 00

So by Lemma 1, We have

LoWil(g* #k)(1,6) = G(6,¢) / / b, 0)e=00 2 dudy
00

= €G(6,¢)K(5,¢).
In Table 1, we have the DAHT of some basic functions.

Table 1: Table of DAHT

9(n,9) LyWe(g(n,0))
1 £+, Re(d) >0
KUK EZjF(u + 1)I'(v+ 1), Re(d) > 0 and Re(u) > —1
el m, Re(d) > Re(u)
ei(un+v0) W Im(u) + Re(d) > 0
sin (un + v) %, |Im(u)| < Re(d)
cos (un + v) M%, |Im(u)| < Re(d)
sinh (un + v0) W Re(d) > Re(u) and Re(d) + Re(u) > 0
cosh (un + vé) 6(527233%, Re(d) > Re(u) and Re(d) + Re(u) > 0
a(0) L(p(n) 7 ((6))
g(n—u.0 —v)H(n —u,0 —v) e~ L,Wy(g(n,6)
(g * *k)(n, 0) €’ LyWo(g(n,0)) Ly Wo(k(n,0))

JO (C\/@) m, Re <5+%) >0
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4. Applications

In this section, we use the DLSW'T for solving PDEs and Integro PDEs

4.1. Double Laplace-Sawi transform for solving partial differential equa-
tions

Consider the PDE of the form

A1gyy + Aagne + Asgeg + Aagn + Asge + Asg (1,0) =k (n,0), (18)

With ICs

9(n,0) = p1(n), go(n,0) = p2 (n) ,

and BCs

9(0,0) = q1(0), 9,(0,0) = g2 (0)

and assuming ¢ (0,0) = ®.

Given that g (1, ) is the unknown function, k (7, 6) is the source term, and Ay, Aa, ..., Ag
and ® are constants, we aim to apply the DLSWT to Equation 18.

To achieve this, we first apply the single Laplace transform to the ICs and the single
Sawi transform to the BCs.

L(p1(n)) = Pi(n), L (p2(n)) = Pa(n), W (g1 (0)) = Q1(0) and W (g2 (0)) = Q2(6).
By applying the DLSWT to Equation (18), we have

A1 LyWo (gnn) + A2LyWo (gne) + AsLyWo (990) + AsLyWo (g) (19)
+As5Ly Wy (g9) + AsLyWo (g (1,0)) = LyWo (k (n,0)) .

By the properties of the derivatives in Equations (12) — (15), we get

A1 (5°G(8,€) — 5°Q1(0) — 5Qa(9)) (20)

Y (fcw, ) - 6Pi(n) — Qu(0) + 6@)
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A5 (1(;(5’ €) — %pl(n) — PQ(n)) + Ay (0G(d,¢€) —0Q1(0))

1
+As <€G(5, €)G(0,¢€) — P1(77)> + AgG(6,¢) = K(d,¢€).
Simplify Equation 20 as follows

G(d,¢) =

(A152 + AQ% —+ A4(5> Q1+ A16Q2 + (A25 + Ag% + A5) P+ A3Py — A6 + K
A1(52+A2%+A3%+A4(5+A5%+A6 .

(21)

Example 1. Consider the wave equation
9y — 99 = 0, where 0,80 > 0,

With ICs
g(n,0) = 51, go(n,0) = cosn,
and BCs
g(0,0) =sinb, g, (0,0) =5.

Solution 1. By applying the single Laplace transform to the ICs and the single Sawi
transform to the BCs, I get

Pi=3P=1lp Q1= a Q=12

Substitute in Equation (21) Ay =1, Az = —1, Ay = Ay = A5 = Ag = 0 and the values of
P, Py, Q1 and Q2, we get

G(d,e) = I (22)

5(82¢2-1) 5(8%€2-1)
F P M W oy el
0%e2 -1
5 )
e T Ax O (14

So,
5 )

P G y )

g(n,0) = L;lWe_1 < > = 51+ cosnsin .

Its graph is
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0 n

Figure 1: The solution of Example 1

Example 2. Consider the Advection-Diffusion equation

95 + 2gec = 2ge, where n,0 > 0,

With IC

9(7770) =20 —1,9. (570) =0,
and BCs

g(0,0) =€ —e“.

Solution 2. By applying the single Laplace transform to the ICs and the single Sawi
transform to the BCs, we get
_ 1 _ _ 1
P =553, Pp=0, Q1= 1359
Substitute in Equation (21) Az =2, Ay =1, A5 = =2, A} = Az = Ag = 0 and the values

of P, P2, Q1 and Q2, we get

=

G(d,e) =

l- g+ (F-3) < (& -
§—2

2
P

+

By simplifying, we get
2 1 1
Gd,¢) = 62 de(l—e) * 5
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So,

2 1 1
,0 =Lo'wit (= —- —— 4+ ) =2p—€f 40
9(n,9) noe (526 56(1—6)+5> noet

Its graph is

a(, )

Figure 2: The solution of Example 2

Example 3. Consider the telegraph equation
29nn + 960 — gn = 59(n,0), where 1,0 > 0,

With ICs

9(7770) = ena 90(7770) = _26777
and BCs

9(0,0) =e"2% g,(0,0) = e 2.

Solution 3. By applying the single Laplace transform to the ICs and the single Sawi

transform to the BCs, we get
_ 1 _ =2 1 _ 1
P =523, Po= 577, Q1 = qipey @2 = qigee

Substitute in Equation (21) A1 =2, A3 =1, Ay = —1, Ag = =5, Ay = A5 = 0 and the
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values of P1, Po, Q1 and Q2, we get

26—1 2 1 2
e(142¢) + e(142¢) + S(6—-1)  2(6-1)

202 — E% —-0-—5
€2(5—1)(26+1)+(14+2¢)—2¢(1+2¢)
e3(6—1)(1+2¢)
202e2—6e2—5e2+1

€2

G(d,e) =

By simplify,

1
c@—1)(1+26)

G(d,¢€) =

So,

901.0) = LWy <e = 1)1(1 n 2e)> =

Its graph is

Figure 3: The solution of Example 3

14 of 19
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4.2. Double Laplace-Sawi transform for solving Integro partial differential
equations

Example 4. Consider the equation of Volterra Integro PDE.
n 0
_2n 0 o, 2n+0 _
gn+9g0—e e’ — 2e +1= 2//g(u,v))dudv, where 1,0 > 0, (24)
00

With ICs
g(n,0) = e, g(0,0) = v,

Solution 4. By applying the single Laplace transform and the single Sawi transform to
the ICs, we get

1 1
P=55,01= (=5

e(l—e)"

By Definition 4 and Theorem 2, we have
n 6
[ [otwvndudo = (119) (n.6). (25)
00

Apply the DLSWT to Equation 25, we get

50(5,6)—6(116)+1G(5,e)—62(512) —6(512)
‘56(11_6)—6(5—23(1—6)%16 - %G(é’e)'
So,
P52 Gy
de(0—2)4+0(1—€)+de(l—€) +e€(6—2)+20e—€(6—2)(1—¢)
52 (6—2)(1—¢) '
Thus,
Goe = 59 ?fe—tf (giia—w)
N 6<5_2§(1_6>-
Therefore,

ot00) =13 () ="
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Its graph is

8l T

4[]\‘ -"_--------

Figure 4: The solution of Example 4

Example 5. Consider the equation of Integro PDFE.
n 6
Gno + gy — 2e0 + n?el —n? = 2//g(u, v))dudv, where 1,6 > 0, (26)
00

With ICs
g(n,0) =n, g(0,0) =0.

Solution 5. By applying the single Laplace transform and the single Sawi transform to
the ICs, we get

Pl = 5%7 Ql = 0.

Apply the DLSWT to Equation 26, we get

1
5G(5, €) — —5 +0G(d,€) —

€ de? de (1 —e)



M. Al-Momani, A. Jaradat , B. Abughazaleh / Eur. J. Pure Appl. Math, 18 (1) (2025), 5619

2 2 1 2e
+(53e(1 —¢) 0% €e(6-2) 0 G(d.€).
So,
2 2 _ 9.2
0%+ 07 — 27 X G(8,€) =
de
62 (1 —€) +26% — 2e +2¢ (1 —¢)
53¢ (1 —¢)
Thus,
2 2 _ 9.2
Glo,6) = 0%+ 6~ — 2¢
52e (1 —€) (0% + 62 — 2€2)
_ 1
82 (1—e)
Therefore,

1
) =L w1 ——— ) =ne.
9(n.9) noe <526(1—6)> e

Its graph is

17 of 19
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g9(7, 6)

0 0.5

L/,

Figure 5: The solution of Example 5

5. Conclusion

In this paper, we introduce the Double Laplace-Sawi Transform (DLSWT) and we
have delved deeply into the foundational properties of the proposed hybrid double trans-
form, rigorously characterizing the necessary conditions for its existence. Through this
exploration, we have demonstrated the transformative power of these properties in the
realms of convolution theory and derivative operations. By establishing the theoretical
framework and validating its applicability. Our discussion is realistic in that where appro-
priate we specify earlier numerical procedures that benefitted from our previous research
while highlighting the key advantages of the DLSWT in problem solving. We believe that
the future of the DLSWT is profound in the area of fractional and conformable PDEs
and Integro PDEs with coefficients that vary. More related results on fractional and con-
formable PDEs and Integro PDEs can be found in [11-14].
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