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Abstract. Let 2 be a unital x-algebra containing non-trivial projection. We prove that if a map
A A — A such that A([[L, M]e,N].) = [[A(L), M]e, N« + [[£, A(M)]e, N + [[£, M]e, A(N)]. for
all L,M,N € 2, then A is additive. Moreover, if A(J) is self-adjoint, then A is a x-derivation.
Additionally, as an application, we can also apply our results on factor von Neumann algebras,
standard operator algebras and prime *-algebras.
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1. Introduction

Let 2 be an *-algebra over the complex field C. For £L,M € 2, we call [, M], =
LM — ML* the skew Lie product and [£,M]s = LM* — ML* denotes the bi-skew Lie
product. The skew Lie product, Jordan product, and bi-skew Lie product have become
increasingly relevant in various research fields, and numerous authors have shown a keen
interest in their exploration. This is evident from the numerous studies by authors (see
[1, 2, 4-7, 9, 10, 13]). Recall that an additive map A : A — 2 is called an additive
derivation if A(LM) = A(L)M+ LA(M) for all L, M € 2. If A(L*) = A(L)* for all £L € L,
then A is an additive x-derivation. Let A : 2 — 2 be a map (without the additivity
assumption). We say A is a nonlinear skew Lie derivation or nonlinear skew Lie triple
derivation if

AL, M) = [A(L), M. + [£, AV
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or

A([I£, Ms, NJw) = [[A(L), M, N + [[£, AL, N + [[£, M, AN

for all £, M, N € 2. Similarly, a map A : 2 — 2 is said to be a nonlinear bi-skew Lie
derivation or nonlinear bi-skew Lie triple derivation if

A([£, Me) = [A(L), M + [£, A(M)]s

A([IL; Mo, No) = [[A(L), Mo, N]o + [[£, AVO]o, N]i + [[£, Mo, A(N)]o

for all £, M,N € 2. In 2021, A. Khan [3] established a proof demonstrating that any mul-
tiplicative or nonadditive bi-skew Lie triple derivation acting on a factor Von Neumann
algebra can be characterized as an additive *-derivation.

Numerous authors have recently explored the derivations and isomorphisms correspond-
ing to the novel products created by combining Lie and skew Lie products, skew Lie and
skew Jordan product see [8, 11, 12]. As an illustration, Li and Zhang [8] delved into an
investigation focused on understanding the arrangement and properties of the nonlinear
mixed Jordan triple x-derivation within the domain of x-algebras. In 2023, Rehman et. al.
[12] mixed the concept of Jordan and Jordan x-product and gives the complete character-
ization of nonlinear mixed Jordan x-triple derivation on *-algebras. Inspired by the above
results, in the present paper, we combined skew Lie product and bi-skew Lie product and
defined nonlinear mixed bi-skew Lie triple derivations on x-algebras. A map A: A — 2 is
called nonlinear mixed bi-skew Lie triple derivations if

AL, Mo, NJ) = [[A(L), Mo, Nl + [[€, AVO]e, N] + [[£, Mo, A(N)]s

for all L, M, N € 2(. Our proof establishes that when A represents a nonlinear mixed bi-skew
Lie triple derivation acting on x-algebras, it necessarily possesses additivity. Furthermore,
if the image of A under the transformation of the identity element (A(I)) is self-adjoint,
then A can be identified as an *-derivation. In simpler terms, the study demonstrates that
specific properties, such as additivity and self-adjointness, can be attributed to the nature
of nonlinear mixed bi-skew Lie triple derivations on x-algebras.

2. Main Result

Our First Theorem is as follows:
Theorem 2.1. Let 2 be a unital x-algebra with unity J containing a non-trivial projection
P satisfies
XAP =0 = X =0 (A)

and

XAT—P) =0 = X =0. (v)
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Define a map A : 2 — A such that

A([[€, Mo, NJ) = [[A(L), Mo, N]« + [[£, AM)] o, N + [[£, Mo, AN
Then A is an additive.

Proof. Let P = Py be a non-trivial projection in 2 and P, = J — Py, where J is the
unity of this algebra. Then by Peirce decomposition of 2, we have A = P1AP; @ P1APs &
:]329»[{.])1 @?29{?2 and, denote an = Tlﬂﬂjl, Qllg = CPlQ»[{.PQ, 9[21 = 93291?1 and ngg = 3)29['.])2.
Note that any £ € 2 can be written as £ = £11 + £12 + L21 + L22, where £;; € %;; and
L7 €Uy for i, j =1,2.

Several lemmas are used to prove Theorem 2.1.
Lemma 2.1. A(0) =0.

Proof. 1t is trivial that

A(0) = A([[0, 0a, 0J.) = [[A(0),0]s, 0]x + [0, A(0)]a, O] + [[0, 0]o, A(0)]. = 0.

Lemma 2.2. For any L;; € ;5,1 <14,j < 2, we have

Proof. Let M = A(L11 + Li12 + Lo1 + L22) — A(L11) — A(L12) — A(L21) — A(L22). In
order to prove that A(L11 + L12 + Lo1 + Lo2) = A(L11) + A(L12) + A(L21) + A(Lag), we
show M = 0. Since [[ng,?l]o,‘?ﬂ* = [[Lgl,ﬂjl]t}?l]* = [[,522,:})1]0,9)1]* = 0. It follows
from Lemma 2.1 that

A([[L11 + L12 + Lot + L2, P1]e, P1s)
= A([[L11,P1]e, P1)s) + A([[L12, P1]e, P1ls)
+A([[L21, P1]e, P1ls) + A([[L22, Pi]e, P1s)
= [[A(L11) + A(L12) + A(La1) + A(L22), Pile, P1]s
[[Lll + L9+ Lo + Loog, (fpl)]., 1]*
+[[L11 + L12+ La1 + Loz, Pile, A(P1)]«

and

A([[L11 + L1z + Lo1 + Lo, P1]e, Pil) = [[A(L11+ L2 + La1 + L22), Pi]e, P1«
+[[L11 + L12 + La1 + La2, A(P1)]e, P1]«
+[[L11 4+ L12 + Lo1 + L22, Pi]e, A(P1)]x.

From the above equations, we get [[M, P1]q, P1]« = 0. This implies that M Py — P M*P; —
PiM* + Py1MP; = 0. By multiplying Py from left, we get PoMP; = 0. Similarly, by
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applying Ps instead of P1, we get Pt M Py = 0.
Also, for any X1 € 12, we have
A([[L11 + L2 + La1 + L22, Xi2]e, P2ls) = [[A(L11+ Li2 + Lo1 + L22), Xi2]e, P2«
+[[L11 + L12 + Lot + La2, A(X12)]e, Po)«
+[[L11 + L12 + Lo + L22, X12]e, A(P2)]s.

From Lemma 2.1, we get

A([[C11 + L12 + L1 + L2, X12e, P2]s) = A([[£11, Xi2]e, Po]s) + A([[L12, X12]s, P2]4)
+A([[L21, X12]es Pas) + A([[L22, Xi2]e, Pa2lx)

= [[A(L11), Xa2]e, Poli + [[£11, AX12)]e, Pol-
+[[L11, Xi2)e, A(P2)]x + [[A(L12), X12]e, Pols

It J« + [[A ]
+[[L12, A(X12)]e, P2ls + [L12, Xi2]e, A(P2)]«
+[[A(L21), Xi2]e, Pals + [[L21, A(X12)]e, Po]s
+[[L21, Xi2)e, A(P2) ]« + [[A(L22), Xi2]e, Pa)«
+[[L22, A(X12)]e, Pol« + [[L22, X12]e, A(P2)]x.

From the above two equations, we get [[M,X12]e, P2]. = 0. That means —X1oM*Py +
PoMX7, = 0. By multiplying P from left, we get PoM X7, = 0. Thus, PoMPy = 0
by using (A) and (V). In the similar way, we can show that P1MP; = 0 by choosing
Xs91 and Py instead of Xo; and Py respectively in above. Hence M = 0. It follows that

A(Z?,j:l Lij) = Zij:l A(Lij)~
Lemma 2.3. For each L12, M13 € 19 and Lo, Mo € Aoy, we have
(i) A(L12 +Miz2) = A(L12) + A(Mi2).
(11) A(La1 +Ma1) = A(La1) + A(May).
Proof. (1) Let T' = A(L12 + Miz) — A(L12) — A(My2). It follows from Lemma 2.1 that
A([[L12 + M2, P1]e, Pal)
= A([[£L12,P1]e, Pa]s) + A([Mi2, P1]e, Pa]+)

= [[A(L12), P1]es Pols + [[L12, A(P1)]e, Pols + [[L12, P1]e, A(P2)]«
H[AMi2), P1le, Pols + [Mi2, A(P1)]e, Pols + [M12, P1]e, A(P2)]x.

Alternatively, we have

A([[L12 + Mz, Pife, Pols) = [[A(L12 + Mi2), Pile, Pols + [[L12 + Maz, A(P1)]e, Polx
+[[L12 + Mi2, P1]e, A(P2)]4.

By comparing the above two expressions, we get [[T,P1]e, P2]. = 0. This implies that
PoTP1 = 0. Similarly, P1TPo = 0. For any X12 € 12, we have

A([[X12, L12 + Mizle, P2ls) = [[A(X12), L12 + Mizle, Po)s + [[X12, A(L12 + Mi2)]e, P«
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+[[X12, L12 + Miz]e, A(P2)]s.
Since [[X12,£L12]e, P2]+ = 0 and using Lemma 2.1, we have

A([[X12, L12 + Mizle, Po]s) = A([[X12, L12]e, Pals) + A([[X12, M12]e, P2])
= [[A(X12), L12]e, Pols + [[X12, A(L12)]e, Pol«
+[[X12, L12]e, A(P2)]s + [[A(X12), Mi12]e, P2«
+[[X12, A(Mi2)]e, Po]s + [[X12, Mi2]e, A(P2)]x.
From the last two expressions, we get [[X12,T]e,P2]« = 0. That means X12T*Py —
PoM X7y = 0. Multiplying left side by P2 and then using (A) and (V), we get PoTPy = 0.
Similarly, P17P1; = 0. Hence, T = 0.
(2) By using the similar argument as in (1), we get the required conclusion.

Lemma 2.4. For each L;;, M;; € ; such that 1 < i < 2, we have

A(Lii + M) = A(Lii) + A M)
Proof. Let T = A(Li; + My;) — A(Lii) — AMy;). Tt follows from Lemma 2.1 and i # j
that
A([[Py, Lii + Myile, Pil«)
= AP Liider Pila) + AR5, Milar Pil)
= [[A(P)), Liile, Pils + [[P5, AlLii)]o, Pils + [P, Liclo, A(P3)]
F[A(P;), MiiJo, Pils + [P, AMii) o, Pil + [[P5, Mii]o, A(Ps)]
and
A([[Pj, Liz + Myle, Pils) = [[A(P5), Lis + Miie, Pils + [Py, A(Lis + Mis)]e, Pi«
[P, Lii + Mi]e, A(P:)]x
By comparing the last two expressions, we get [[P;, T]s, P;]« = 0. This gives P;TP; =0
with ¢ # j. Also, for any X;; € 2;;, we have
A([[Xij, Lii + Miile, Pils) = [[A(Xij), Lii + Miile, Pils + [[Xij, A(Lis + Misi)]e, Pils)
+[[Xsj, Lis + Mii]es A(Pi)]x-
Under other conditions, [[X;;, Liile, Pi]« = 0 and using Lemma 2.1, we have
A([[Xiz, Lii + Miile, Pils)
= A([[Xi, Liile, Pils) + A([[Xij, Miile, Pils)
= [[A(Xij), Liile, Pils + [[Xij, ALii)]o, Pile + [[Xij, Liilo, AP
FA5), Miiles Pils + [[Xij, AMi)]o, Pils + [[Xiz, MiiJo, AP3)]
From the last two expressions, we get [[X;;, Te, P;]x = 0. That means X;;T*P; — TX}; —

PiTX;; + X T = 0. Left multiplying by P; both sides and using (A) and (V), we find
P;TP; =0.
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Lemma 2.5. A is an additive map.

Proof. For any £, M € 2, we write £L = L1 + L12 + Lo1 + Lo and M = My1 + Mo +
Mo1 + Myo. By using Lemmas 2.2 - 2.4, we get

AL+ M)
= A(L11 + L2+ Loy + Log + Myp + Myg + Moy + Mao)
= A(L11 +My1) + A(L12 + Mi2) + A(Lar + May) + A(Laz + Maa)
= A(L11) + AMi1) + A(L12) + AMi2) + A(Lar) + A(Mar) + A(La2) + A(Ma2)
= AL+ Lia+ Lo1 + Log) + AMi1 + My + Moy + Mao)
= A(L) +AM).

Hence, A is additive. This completes the proof of Theorem 2.1.

Theorem 2.2. Let 2 be a unital x-algebra with unity I containing a non-trivial projection
P satisfies (A) and (V). Let the map A : 2 — 2 satisfy the condition

A([[L; Mo, NJ.) = [[A(L), Mo, N + [[£, AVO]o, N]i + [[£, Mo, AN)
for LM, N € A. If A(D) is self-adjoint, then A is an x-derivation.
Proof of Theorem 2.2 We present the proof of the above theorem with several lemmas.
Lemma 2.6. We show that if A(J) is self-adjoint then A(iJ) = A(J) = 0.
Proof. we know that

A([[i3,73)e,3)«) = [[Ai3),T)e, T)x + [[iT, A(D)]e, T]s + [[iT, Te, A(T)]«
- 2A(3

Also, from the other side, we have

By using above two equations, we get
2A(iT) — 2A(13)" + 20A(3)* + 2¢A(T) + 4iA(T) — 4A(:T) = 0. (2.1)
Alternatively, we have
A([[i3,T]s,13]x) = —4A(T).
Also, we have

A([[i3, 3o, 3]4) = 20A(63) — 26A(3)* — 2A(3)* — 2A(3) + 4iA (7).
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From the last two expressions, we have
AN (T) 4 2iA(iT) — 26A(iT)" — 2A(T)" — 2A(T) + 4iA(i7) =0 (2.2)
Multiplying (2.2) by 4, we get
4iA(T) — 2A(iT) + 2A(3T)* — 2A(T)" — 2¢A(T) — 4A(T) =0 (2.3)
Adding (2.1) and (2.3), we get
A(iT) = iA(T). (2.4)
Using (2.4) in (2.3), we get
A(T)" = —A(T). (2.5)

Since A(J) is self-adjoint, then

Lemma 2.7. A preserves star, i.e., A(L*) = A(L)* for all L € 2.

Proof. From Lemma 2.6, we have

A([[£,iT]e,33]s) = [[A(L), e, i) = [[—IA(L) — iA(L)*,iT)],
= 2A(L) +2A(L)".

On the other hand, we have
A([[£,iT]e,iT]x) = 2A(L) + 2A(L7).

From the last two equations, we get A(L*) = A(L)*.

Lemma 2.8. We prove that A(iL) = iA(L) for all L € 2.

Proof. It follows from Lemma 2.6 that
A([[iL,T]e, T]s) = [A(3L), T]e, T]x = 2A(iL) — 2A(iL)™.
Hence
A(2iL + 2iL*) = 2A(iL) — 2A(iL)*. (2.6)
From the other side, we have
A([[£,1T]e, T]s) = [A(L),T]e, T« = —2iA(L) — 2iA(L)"
It follows that

A(=2iL — 2iL*) = —2iA(L) — 2iA(L)*. (2.7)
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Adding (2.6) and (2.7), we get
A(i(L + L7)) =iA(L + L7).
Since (2.8) is true for any self-adjoint then for any member of £, we have

AGL) = iA(L).

Lemma 2.9. We show that A is a deriwvation, i.e, A(LM) = A(L)M + LA(M).

Proof. 1t is easy to check that
A([[£,M]e, T]) = 2A(LM") — 2A(MLT).
Also, it follows from Lemma 2.6 that

A6, Ms,3]s) = [[A(L), Mle, T]s + [[£, A(M)], T
= 2A(L)M* — 2MA(L)* + 28A(M)* — 2A(M)L*.

By comparing the last two expressions, we have
ALMT) = AMLY) = A(L)M* — MA(L)" + LAM)* — A(OV) L™
On the other hand, we have
A([[iL, Mo, T]s) = —A(LM") — A(ML™).
By using Lemma 2.6 and Lemma 2.8, we have

A([[i6, Mo, i3]x) = [[A(iL), M, iT]s + [[1£, AM)]e, iT].
= AGL)MT — iMA(IL)* — LAM)* — A(M)L*
= —A(L)M* — MA(L)* — LAM)* — AM)L*.

By comparing the last two expressions, we have
A(LMF) + AML") = A(L)M* + MA(L)* + LAM)* + A(M)L*
Adding (2.9) and (2.10), we get
A(LMT) = A(L)M* + LA(MT).
Replacing M* by M, we get
A(LM) = A(L)M + LA(M).

Hence, A is a derivation. This completes the proof of Theorem 2.2.

8 of 10

(2.8)

(2.10)

(2.11)

Now, we provide an example to demonstrate the necessity of the conditions (A) and

(V) in Theorem 2.1.
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a 0

Example 2.1. Consider A = {< . d

)} , the algebra of all lower triangular matriz of

order 2 over the field of complexr numbers C and I = < L0 ) be unity of A. The map

0 1
%A — A given by x(L) = L, where L0 denotes the conjugate transpose of matriz A, is
an involution. Hence, A is a unital x-algebra with unity I. Now, define a map 11 : A — A

such that H< Z 2 ) = ( —Oz'c 8 > Note that 11 is a derivation on A. So, it also
satisfies

A([I£, Mo, NJ) = [[A(L), Mo, N + [[£, AVO)]o, N] + [[£, Mo, AN

for all L, M, N € . Let P = ( 00 > is a non-trivial projection, so P> = P and P* = P.

01

For W = < (1) 8 > # 0 € A and hence WAP = (0) but 0 # W € A. Howewver, II is not

an additive x-derivation because TI(L*) # (II(L))* for some L € 2.

3. Corollaries

As a direct consequence of Theorem 2.1, we have the following corollaries:

Corollary 3.1. Let A be a standard operator algebra on an infinite dimensional complex
Hilbert space H containing identity operator J. Suppose that A is closed under adjoint
operation. Define A : A — A such that

A([[€, Mo, NJ) = [[A(L), Mo, N] + [[£, A(M)]o, N + [[£, M]s, A(N)].
for all L, M, N € 2, then A is an additive. If A(J) is self-adjoint, then A is an *-derivation.

Corollary 3.2. Let M ba a factor von Neumann algebra with dimM > 2. Define A :
M — M such that

A([[L, Mo, NJ) = [[A(L), Mo, N + [[£, AV)]o, N]s + [[£, Mo, A(N) ]
for all L, M, N € 2, then A is an additive. If A(J) is self-adjoint, then A is an *-derivation.

Corollary 3.3. Let A be a prime x-algebra with unit J containing non-trivial projection
P. A map A : A — A satisfies

A([[€, Mo, NJ) = [[A(L), Mo, NJ + [[£, A(M)]o, N + [[£, Mo, A(N)].
for all L, M, N € ,then A is an additive. If A(J) is self-adjoint, then A is an x-derivation.

Conflicts of Interest: The authors declare no conflict of interest.



M. A. Raza et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5626 10 of 10

1]
[2]

References

M. Ashraf, Md. Shamim Akhter, and M. Ansari. Nonlinear bi-skew jordan-type
derivations on factor von neumann algebras. Filomat, 37(17):5591-5599, 2023.

D. Huo, B. Zheng, J. Xu, and H. Liu. Nonlinear mappings preserving jordan mul-
tiple * —product on factor von neumann algebras. Linear and Multilinear Algebra,
63(5):1026-1036, 2015.

A. Khan. Multiplicative biskew lie triple derivations on factor von neumann algebras.
Rocky Mountain Journal of Mathematics, 51(6):2103-2114, 2021.

L. Kong and J. Zhang. Nonlinear skew lie derivations on prime *-rings. Indian Journal
of Pure and Applied Mathematics, 54(2):475-484, 2023.

C. Li, Q. Chen, and T. Wang. Nonlinear maps preserving the jordan triple *-product
on factor von neumann algebras. Chin. Ann. Math. Ser. B, 39(4):633-642, 2018.

C. Li, Q. Chen, and T. Wang. Nonlinear maps preserving the jordan triplex-
product on factor von neumann algebras. Chinese Annals of Mathematics, Series
B, 39(4):633-642, 2018.

C. Li and F. Lu. Nonlinear maps preserving the jordan triple 1- #-product on von
neumann algebras. Complex Analysis and Operator Theory, 11:109-117, 2017.

C. Li and D. Zhang. Nonlinear mixed jordan triple-derivations on-algebras. Siberian
Mathematical Journal, 63(4):735-742, 2022.

C. Li, F. Zhao, and Q. Chen. Nonlinear skew lie triple derivations between factors.
Acta Mathematica Sinica, English Series, 32(7):821-830, 2016.

C. Li, Y. Zhao, and F. Zhao. Nonlinear*-jordan-type derivations on x-algebras. Rocky
Mountain Journal of Mathematics, 51(2):601-612, 2021.

Y. Liang and J. Zhang. Nonlinear mixed lie triple derivations on factor von neumann
algebras. Acta Math Sci Chinese Series, 62:1-13, 2019.

N. Rehman, J. Nisar, and M. Nazim. A note on nonlinear mixed jordan triple deriva-
tion onx-algebras. Communications in Algebra, 51(4):1334-1343, 2023.

F. Zhang. Nonlinear n-jordan triple x-derivation on prime x-algebras. Rocky Mountain
J. Math, 52:323-333, 2022.



