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Abstract. Let A be a unital ∗-algebra containing non-trivial projection. We prove that if a map
Λ : A → A such that Λ([[L,M]•,N]∗) = [[Λ(L),M]•,N]∗ + [[L,Λ(M)]•,N]∗ + [[L,M]•,Λ(N)]∗ for
all L,M,N ∈ A, then Λ is additive. Moreover, if Λ(I) is self-adjoint, then Λ is a ∗-derivation.
Additionally, as an application, we can also apply our results on factor von Neumann algebras,
standard operator algebras and prime ∗-algebras.
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1. Introduction

Let A be an ∗-algebra over the complex field C. For L,M ∈ A, we call [L,M]∗ =
LM − ML∗ the skew Lie product and [L,M]• = LM∗ − ML∗ denotes the bi-skew Lie
product. The skew Lie product, Jordan product, and bi-skew Lie product have become
increasingly relevant in various research fields, and numerous authors have shown a keen
interest in their exploration. This is evident from the numerous studies by authors (see
[1, 2, 4–7, 9, 10, 13]). Recall that an additive map Λ : A → A is called an additive
derivation if Λ(LM) = Λ(L)M+LΛ(M) for all L,M ∈ A. If Λ(L∗) = Λ(L)∗ for all L ∈ A,
then Λ is an additive ∗-derivation. Let Λ : A → A be a map (without the additivity
assumption). We say Λ is a nonlinear skew Lie derivation or nonlinear skew Lie triple
derivation if

Λ([L,M]∗) = [Λ(L),M]∗ + [L,Λ(M)]∗
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or
Λ([[L,M]∗,N]∗) = [[Λ(L),M]∗,N]∗ + [[L,Λ(M)]∗,N]∗ + [[L,M]∗,Λ(N)]∗

for all L,M,N ∈ A. Similarly, a map Λ : A → A is said to be a nonlinear bi-skew Lie
derivation or nonlinear bi-skew Lie triple derivation if

Λ([L,M]•) = [Λ(L),M]• + [L,Λ(M)]•

or
Λ([[L,M]•,N]•) = [[Λ(L),M]•,N]• + [[L,Λ(M)]•,N]∗ + [[L,M]•,Λ(N)]•

for all L,M,N ∈ A. In 2021, A. Khan [3] established a proof demonstrating that any mul-
tiplicative or nonadditive bi-skew Lie triple derivation acting on a factor Von Neumann
algebra can be characterized as an additive ∗-derivation.
Numerous authors have recently explored the derivations and isomorphisms correspond-
ing to the novel products created by combining Lie and skew Lie products, skew Lie and
skew Jordan product see [8, 11, 12]. As an illustration, Li and Zhang [8] delved into an
investigation focused on understanding the arrangement and properties of the nonlinear
mixed Jordan triple ∗-derivation within the domain of ∗-algebras. In 2023, Rehman et. al.
[12] mixed the concept of Jordan and Jordan ∗-product and gives the complete character-
ization of nonlinear mixed Jordan ∗-triple derivation on ∗-algebras. Inspired by the above
results, in the present paper, we combined skew Lie product and bi-skew Lie product and
defined nonlinear mixed bi-skew Lie triple derivations on ∗-algebras. A map Λ: A → A is
called nonlinear mixed bi-skew Lie triple derivations if

Λ([[L,M]•,N]∗) = [[Λ(L),M]•,N]∗ + [[L,Λ(M)]•,N]∗ + [[L,M]•,Λ(N)]∗

for all L,M,N ∈ A.Our proof establishes that when Λ represents a nonlinear mixed bi-skew
Lie triple derivation acting on ∗-algebras, it necessarily possesses additivity. Furthermore,
if the image of Λ under the transformation of the identity element (Λ(I)) is self-adjoint,
then Λ can be identified as an ∗-derivation. In simpler terms, the study demonstrates that
specific properties, such as additivity and self-adjointness, can be attributed to the nature
of nonlinear mixed bi-skew Lie triple derivations on ∗-algebras.

2. Main Result

Our First Theorem is as follows:

Theorem 2.1. Let A be a unital ∗-algebra with unity I containing a non-trivial projection
P satisfies

XAP = 0 =⇒ X = 0 (▲)

and
XA(I− P) = 0 =⇒ X = 0. (▼)
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Define a map Λ : A → A such that

Λ([[L,M]•,N]∗) = [[Λ(L),M]•,N]∗ + [[L,Λ(M)]•,N]∗ + [[L,M]•,Λ(N)]∗

Then Λ is an additive.

Proof. Let P = P1 be a non-trivial projection in A and P2 = I − P1, where I is the
unity of this algebra. Then by Peirce decomposition of A, we have A = P1AP1⊕P1AP2⊕
P2AP1⊕P2AP2 and, denote A11 = P1AP1,A12 = P1AP2,A21 = P2AP1 and A22 = P2AP2.
Note that any L ∈ A can be written as L = L11 + L12 + L21 + L22, where Lij ∈ Aij and
L∗
ij ∈ Aji for i, j = 1, 2.

Several lemmas are used to prove Theorem 2.1.

Lemma 2.1. Λ(0) = 0.

Proof. It is trivial that

Λ(0) = Λ([[0, 0]•, 0]∗) = [[Λ(0), 0]•, 0]∗ + [[0,Λ(0)]•, 0]∗ + [[0, 0]•,Λ(0)]∗ = 0.

Lemma 2.2. For any Lij ∈ Aij , 1 ≤ i, j ≤ 2, we have

Λ(

2∑
i,j=1

Lij) =

2∑
i,j=1

Λ(Lij).

Proof. Let M = Λ(L11 + L12 + L21 + L22) − Λ(L11) − Λ(L12) − Λ(L21) − Λ(L22). In
order to prove that Λ(L11 + L12 + L21 + L22) = Λ(L11) + Λ(L12) + Λ(L21) + Λ(L22), we
show M = 0. Since [[L12,P1]•,P1]∗ = [[L21,P1]•,P1]∗ = [[L22,P1]•,P1]∗ = 0. It follows
from Lemma 2.1 that

Λ([[L11 + L12 + L21 + L22,P1]•,P1]∗)

= Λ([[L11,P1]•,P1]∗) + Λ([[L12,P1]•,P1]∗)

+Λ([[L21,P1]•,P1]∗) + Λ([[L22,P1]•,P1]∗)

= [[Λ(L11) + Λ(L12) + Λ(L21) + Λ(L22),P1]•,P1]∗

+[[L11 + L12 + L21 + L22,Λ(P1)]•,P1]∗

+[[L11 + L12 + L21 + L22,P1]•,Λ(P1)]∗

and

Λ([[L11 + L12 + L21 + L22,P1]•,P1]∗) = [[Λ(L11 + L12 + L21 + L22),P1]•,P1]∗

+[[L11 + L12 + L21 + L22,Λ(P1)]•,P1]∗

+[[L11 + L12 + L21 + L22,P1]•,Λ(P1)]∗.

From the above equations, we get [[M,P1]•,P1]∗ = 0. This implies that MP1−P1M
∗P1−

P1M
∗ + P1MP1 = 0. By multiplying P2 from left, we get P2MP1 = 0. Similarly, by
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applying P2 instead of P1, we get P1MP2 = 0.
Also, for any X12 ∈ A12, we have

Λ([[L11 + L12 + L21 + L22,X12]•,P2]∗) = [[Λ(L11 + L12 + L21 + L22),X12]•,P2]∗

+[[L11 + L12 + L21 + L22,Λ(X12)]•,P2]∗

+[[L11 + L12 + L21 + L22,X12]•,Λ(P2)]∗.

From Lemma 2.1, we get

Λ([[L11 + L12 + L21 + L22,X12]•,P2]∗) = Λ([[L11,X12]•,P2]∗) + Λ([[L12,X12]•,P2]∗)

+Λ([[L21,X12]•,P2]∗) + Λ([[L22,X12]•,P2]∗)

= [[Λ(L11),X12]•,P2]∗ + [[L11,Λ(X12)]•,P2]∗

+[[L11,X12]•,Λ(P2)]∗ + [[Λ(L12),X12]•,P2]∗

+[[L12,Λ(X12)]•,P2]∗ + [[L12,X12]•,Λ(P2)]∗

+[[Λ(L21),X12]•,P2]∗ + [[L21,Λ(X12)]•,P2]∗

+[[L21,X12]•,Λ(P2)]∗ + [[Λ(L22),X12]•,P2]∗

+[[L22,Λ(X12)]•,P2]∗ + [[L22,X12]•,Λ(P2)]∗.

From the above two equations, we get [[M,X12]•,P2]∗ = 0. That means −X12M
∗P2 +

P2MX∗
12 = 0. By multiplying P1 from left, we get P2MX∗

12 = 0. Thus, P2MP2 = 0
by using (▲) and (▼). In the similar way, we can show that P1MP1 = 0 by choosing
X21 and P1 instead of X21 and P1 respectively in above. Hence M = 0. It follows that
Λ(

∑2
i,j=1Lij) =

∑2
i,j=1 Λ(Lij).

Lemma 2.3. For each L12,M12 ∈ A12 and L21,M21 ∈ A21, we have

(i) Λ(L12 +M12) = Λ(L12) + Λ(M12).

(ii) Λ(L21 +M21) = Λ(L21) + Λ(M21).

Proof. (1) Let T = Λ(L12 +M12)−Λ(L12)−Λ(M12). It follows from Lemma 2.1 that

Λ([[L12 +M12,P1]•,P2]∗)

= Λ([[L12,P1]•,P2]∗) + Λ([[M12,P1]•,P2]∗)

= [[Λ(L12),P1]•,P2]∗ + [[L12,Λ(P1)]•,P2]∗ + [[L12,P1]•,Λ(P2)]∗

+[[Λ(M12),P1]•,P2]∗ + [[M12,Λ(P1)]•,P2]∗ + [[M12,P1]•,Λ(P2)]∗.

Alternatively, we have

Λ([[L12 +M12,P1]•,P2]∗) = [[Λ(L12 +M12),P1]•,P2]∗ + [[L12 +M12,Λ(P1)]•,P2]∗

+[[L12 +M12,P1]•,Λ(P2)]∗.

By comparing the above two expressions, we get [[T,P1]•,P2]∗ = 0. This implies that
P2TP1 = 0. Similarly, P1TP2 = 0. For any X12 ∈ A12, we have

Λ([[X12,L12 +M12]•,P2]∗) = [[Λ(X12),L12 +M12]•,P2]∗ + [[X12,Λ(L12 +M12)]•,P2]∗
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+[[X12,L12 +M12]•,Λ(P2)]∗.

Since [[X12,L12]•,P2]∗ = 0 and using Lemma 2.1, we have

Λ([[X12,L12 +M12]•,P2]∗) = Λ([[X12,L12]•,P2]∗) + Λ([[X12,M12]•,P2]∗)

= [[Λ(X12),L12]•,P2]∗ + [[X12,Λ(L12)]•,P2]∗

+[[X12,L12]•,Λ(P2)]∗ + [[Λ(X12),M12]•,P2]∗

+[[X12,Λ(M12)]•,P2]∗ + [[X12,M12]•,Λ(P2)]∗.

From the last two expressions, we get [[X12, T ]•,P2]∗ = 0. That means X12T
∗P2 −

P2MX∗
12 = 0. Multiplying left side by P2 and then using (▲) and (▼), we get P2TP2 = 0.

Similarly, P1TP1 = 0. Hence, T = 0.
(2) By using the similar argument as in (1), we get the required conclusion.

Lemma 2.4. For each Lii,Mii ∈ Aii such that 1 ≤ i ≤ 2, we have

Λ(Lii +Mii) = Λ(Lii) + Λ(Mii).

Proof. Let T = Λ(Lii +Mii)− Λ(Lii)− Λ(Mii). It follows from Lemma 2.1 and i ̸= j
that

Λ([[Pj ,Lii +Mii]•,Pi]∗)

= Λ([[Pj ,Lii]•,Pi]∗) + Λ([[Pj ,Mii]•,Pi]∗)

= [[Λ(Pj),Lii]•,Pi]∗ + [[Pj ,Λ(Lii)]•,Pi]∗ + [[Pj ,Lii]•,Λ(Pi)]∗

+[[Λ(Pj),Mii]•,Pi]∗ + [[Pj ,Λ(Mii)]•,Pi]∗ + [[Pj ,Mii]•,Λ(Pi)]∗

and

Λ([[Pj ,Lii +Mii]•,Pi]∗) = [[Λ(Pj),Lii +Mii]•,Pi]∗ + [[Pj ,Λ(Lii +Mii)]•,Pi]∗

+[[Pj ,Lii +Mii]•,Λ(Pi)]∗.

By comparing the last two expressions, we get [[Pj , T ]•,Pi]∗ = 0. This gives PiTPj = 0
with i ̸= j. Also, for any Xij ∈ Aij , we have

Λ([[Xij ,Lii +Mii]•,Pi]∗) = [[Λ(Xij),Lii +Mii]•,Pi]∗ + [[Xij ,Λ(Lii +Mii)]•,Pi]∗)

+[[Xij ,Lii +Mii]•,Λ(Pi)]∗.

Under other conditions, [[Xij ,Lii]•,Pi]∗ = 0 and using Lemma 2.1, we have

Λ([[Xij ,Lii +Mii]•,Pi]∗)

= Λ([[Xij ,Lii]•,Pi]∗) + Λ([[Xij ,Mii]•,Pi]∗)

= [[Λ(Xij),Lii]•,Pi]∗ + [[Xij ,Λ(Lii)]•,Pi]∗ + [[Xij ,Lii]•,Λ(Pi)]∗

+[[Λ(Xij),Mii]•,Pi]∗ + [[Xij ,Λ(Mii)]•,Pi]∗ + [[Xij ,Mii]•,Λ(Pi)]∗.

From the last two expressions, we get [[Xij , T ]•,Pi]∗ = 0. That means XijT
∗Pi − TX∗

ij −
PiTX

∗
ij + XijT

∗ = 0. Left multiplying by Pj both sides and using (▲) and (▼), we find
PjTPj = 0.
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Lemma 2.5. Λ is an additive map.

Proof. For any L,M ∈ A, we write L = L11 +L12 +L21 +L22 and M = M11 +M12 +
M21 +M22. By using Lemmas 2.2 - 2.4, we get

Λ(L+M)

= Λ(L11 + L12 + L21 + L22 +M11 +M12 +M21 +M22)

= Λ(L11 +M11) + Λ(L12 +M12) + Λ(L21 +M21) + Λ(L22 +M22)

= Λ(L11) + Λ(M11) + Λ(L12) + Λ(M12) + Λ(L21) + Λ(M21) + Λ(L22) + Λ(M22)

= Λ(L11 + L12 + L21 + L22) + Λ(M11 +M12 +M21 +M22)

= Λ(L) + Λ(M).

Hence, Λ is additive. This completes the proof of Theorem 2.1.

Theorem 2.2. Let A be a unital ∗-algebra with unity I containing a non-trivial projection
P satisfies (▲) and (▼). Let the map Λ : A → A satisfy the condition

Λ([[L,M]•,N]∗) = [[Λ(L),M]•,N]∗ + [[L,Λ(M)]•,N]∗ + [[L,M]•,Λ(N)]∗

for L,M,N ∈ A. If Λ(I) is self-adjoint, then Λ is an ∗-derivation.

Proof of Theorem 2.2 We present the proof of the above theorem with several lemmas.

Lemma 2.6. We show that if Λ(I) is self-adjoint then Λ(iI) = Λ(I) = 0.

Proof. we know that

Λ([[iI, I]•, I]∗) = [[Λ(iI), I]•, I]∗ + [[iI,Λ(I)]•, I]∗ + [[iI, I]•,Λ(I)]∗

= 2Λ(iI)− 2Λ(iI)∗ + 2iΛ(I)∗ + 2iΛ(I) + 4iΛ(I).

Also, from the other side, we have

Λ([[iI, I]•, I]∗) = 4Λ(iI).

By using above two equations, we get

2Λ(iI)− 2Λ(iI)∗ + 2iΛ(I)∗ + 2iΛ(I) + 4iΛ(I)− 4Λ(iI) = 0. (2.1)

Alternatively, we have

Λ([[iI, I]•, iI]∗) = −4Λ(I).

Also, we have

Λ([[iI, I]•, iI]∗) = 2iΛ(iI)− 2iΛ(iI)∗ − 2Λ(I)∗ − 2Λ(I) + 4iΛ(iI).
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From the last two expressions, we have

4Λ(I) + 2iΛ(iI)− 2iΛ(iI)∗ − 2Λ(I)∗ − 2Λ(I) + 4iΛ(iI) = 0 (2.2)

Multiplying (2.2) by i, we get

4iΛ(I)− 2Λ(iI) + 2Λ(iI)∗ − 2iΛ(I)∗ − 2iΛ(I)− 4Λ(iI) = 0 (2.3)

Adding (2.1) and (2.3), we get

Λ(iI) = iΛ(I). (2.4)

Using (2.4) in (2.3), we get

Λ(I)∗ = −Λ(I). (2.5)

Since Λ(I) is self-adjoint, then
Λ(I) = Λ(iI) = 0.

Lemma 2.7. Λ preserves star, i.e., Λ(L∗) = Λ(L)∗ for all L ∈ A.

Proof. From Lemma 2.6, we have

Λ([[L, iI]•, iI]∗) = [[Λ(L), iI]•, iI]∗ = [[−iΛ(L)− iΛ(L)∗, iI]∗

= 2Λ(L) + 2Λ(L)∗.

On the other hand, we have

Λ([[L, iI]•, iI]∗) = 2Λ(L) + 2Λ(L∗).

From the last two equations, we get Λ(L∗) = Λ(L)∗.

Lemma 2.8. We prove that Λ(iL) = iΛ(L) for all L ∈ A.

Proof. It follows from Lemma 2.6 that

Λ([[iL, I]•, I]∗) = [Λ(iL), I]•, I]∗ = 2Λ(iL)− 2Λ(iL)∗.

Hence

Λ(2iL+ 2iL∗) = 2Λ(iL)− 2Λ(iL)∗. (2.6)

From the other side, we have

Λ([[L, iI]•, I]∗) = [Λ(L), iI]•, I]∗ = −2iΛ(L)− 2iΛ(L)∗

It follows that

Λ(−2iL− 2iL∗) = −2iΛ(L)− 2iΛ(L)∗. (2.7)
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Adding (2.6) and (2.7), we get

Λ(i(L+ L∗)) = iΛ(L+ L∗). (2.8)

Since (2.8) is true for any self-adjoint then for any member of L, we have

Λ(iL) = iΛ(L).

Lemma 2.9. We show that Λ is a derivation, i.e, Λ(LM) = Λ(L)M+ LΛ(M).

Proof. It is easy to check that

Λ([[L,M]•, I]∗) = 2Λ(LM∗)− 2Λ(ML∗).

Also, it follows from Lemma 2.6 that

Λ([[L,M]•, I]∗) = [[Λ(L),M]•, I]∗ + [[L,Λ(M)]•, I]∗

= 2Λ(L)M∗ − 2MΛ(L)∗ + 2LΛ(M)∗ − 2Λ(M)L∗.

By comparing the last two expressions, we have

Λ(LM∗)− Λ(ML∗) = Λ(L)M∗ −MΛ(L)∗ + LΛ(M)∗ − Λ(M)L∗ (2.9)

On the other hand, we have

Λ([[iL,M]•, iI]∗) = −Λ(LM∗)− Λ(ML∗).

By using Lemma 2.6 and Lemma 2.8, we have

Λ([[iL,M]•, iI]∗) = [[Λ(iL),M]•, iI]∗ + [[iL,Λ(M)]•, iI]∗

= iΛ(iL)M∗ − iMΛ(iL)∗ − LΛ(M)∗ − Λ(M)L∗

= −Λ(L)M∗ −MΛ(L)∗ − LΛ(M)∗ − Λ(M)L∗.

By comparing the last two expressions, we have

Λ(LM∗) + Λ(ML∗) = Λ(L)M∗ +MΛ(L)∗ + LΛ(M)∗ + Λ(M)L∗ (2.10)

Adding (2.9) and (2.10), we get

Λ(LM∗) = Λ(L)M∗ + LΛ(M∗). (2.11)

Replacing M∗ by M, we get

Λ(LM) = Λ(L)M+ LΛ(M).

Hence, Λ is a derivation. This completes the proof of Theorem 2.2.

Now, we provide an example to demonstrate the necessity of the conditions (▲) and
(▼) in Theorem 2.1.
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Example 2.1. Consider A = {
(

a 0
c d

)
} , the algebra of all lower triangular matrix of

order 2 over the field of complex numbers C and I =

(
1 0
0 1

)
be unity of A. The map

∗ : A → A given by ∗(L) = Lθ, where Lθ denotes the conjugate transpose of matrix A, is
an involution. Hence, A is a unital ∗-algebra with unity I. Now, define a map Π : A → A

such that Π

(
a 0
c d

)
=

(
0 0

−ic 0

)
. Note that Π is a derivation on A. So, it also

satisfies

Λ([[L,M]•,N]∗) = [[Λ(L),M]•,N]∗ + [[L,Λ(M)]•,N]∗ + [[L,M]•,Λ(N)]∗

for all L,M,N ∈ A. Let P =

(
0 0
0 1

)
is a non-trivial projection, so P 2 = P and P ∗ = P .

For W =

(
0 0
1 0

)
̸= 0 ∈ A and hence WAP = (0) but 0 ̸= W ∈ A. However, Π is not

an additive ∗-derivation because Π(L∗) ̸= (Π(L))∗ for some L ∈ A.

3. Corollaries

As a direct consequence of Theorem 2.1, we have the following corollaries:

Corollary 3.1. Let A be a standard operator algebra on an infinite dimensional complex
Hilbert space H containing identity operator I. Suppose that A is closed under adjoint
operation. Define Λ : A → A such that

Λ([[L,M]•,N]∗) = [[Λ(L),M]•,N]∗ + [[L,Λ(M)]•,N]∗ + [[L,M]•,Λ(N)]∗

for all L,M,N ∈ A, then Λ is an additive. If Λ(I) is self-adjoint, then Λ is an ∗-derivation.

Corollary 3.2. Let M ba a factor von Neumann algebra with dimM ≥ 2. Define Λ :
M → M such that

Λ([[L,M]•,N]∗) = [[Λ(L),M]•,N]∗ + [[L,Λ(M)]•,N]∗ + [[L,M]•,Λ(N)]∗

for all L,M,N ∈ A, then Λ is an additive. If Λ(I) is self-adjoint, then Λ is an ∗-derivation.

Corollary 3.3. Let A be a prime ∗-algebra with unit I containing non-trivial projection
P . A map Λ : A → A satisfies

Λ([[L,M]•,N]∗) = [[Λ(L),M]•,N]∗ + [[L,Λ(M)]•,N]∗ + [[L,M]•,Λ(N)]∗

for all L,M,N ∈ A,then Λ is an additive. If Λ(I) is self-adjoint, then Λ is an ∗-derivation.
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