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1. Introduction

The transportation theory is a name given to study of optimal transportation and the
allocation of resources. In optimization, the transportation problem was earlier formalized
by a French mathematician Gaspard Monge, and then A.N. Talstoi first studied transport
problem mathematically in 1920 and published an article with titled: Methods of finding
minimal kilometrage in the Cargo-Transportation in space.

The transportation problem for m numbers of sources x1, x2, · · ·, xm for a given com-
modity having a(xi) number of units of supply at xi points and n number of sinks
y1, y2, · · ·, yn for commodity. The demand at yj is considered as b(yj). Let xi and yi,
a(xi, yi) represents the unit cost of shipment. Then, the question of finding flow satisfying
the demand from supplies, and to minimize the cost was studied in [15, 16, 18].

Transportation problems can be considered as an optimization problems, particularly
the linear optimization. In linear optimization the aim could be in finding effective tech-
niques in order to distribute goods from many suppliers to many final destinations. The
mathematical concepts dealing with transportation problems involves the analysis of struc-
tured and, unstructured matrices representing supply, demand, and transportation costs.
The notable methods likewise Northwest Corner Rule, Least Cost technique, and Vogel’s
Approximation Method are developed to find initial feasible solutions corresponding to
the optimization problems. On the other hand, the optimization methods for instance
Modified Distribution (MODI) Method or stepping-stone method are used to analyze and
refine obtained solutions for the purpose of achieving optimality conditions.

The transportation problems have an extensive amount of applications in many diverse
range of research directions [2, 10]. In [4], the service network design problems were
studied in order to measure the minimum cost with given constraints. To study the
evolution of coalition over a given time with trust-related issues, an agent-based model
was developed in [45]. The traditional transportation models deals with the problems
like transportation costs, delivery routes, production places, and the reduction of carbon
emissions [42, 43, 48, 54]. The transportation algorithms [17, 34, 51] were developed to
solve practical nature of the problems.

A new method was developed in [31] to solve the transport problems on northwest
corner method in order to reduce the number of steps to determine the number of iteration
given in [29]. A new technique for solving balanced transport problem based on geometric
average for transport costs was developed in [8].

A number of transportation problems can be solved by using numeric techniques im-
plemented in Matlab software. The northwest corner method was used to analyze the
transport of chemical substance of a pharmaceutical company [37]. The Vogel’s approxi-
mation and modified distribution method were used to deal with large scale cost matrices
[27].

The Vogel’s Approximation Method primarily determine the number of penalties ap-
pearing in each row and column of the matrix by computing the difference among minimum
and second minimum cost. Further, this method also allocate to the cell having minimum
cost across each of the row or column with maximum penalty. Once compared with
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Northwest Corner Rule, this technique generates an initial solution which is very much
near to optimality condition. On the other hand, the Modified Distribution Method is
being mainly used for the analysis of the optimization to an initial feasible solution which
is first obtained by Vogel’s approximation, and Northwest Corner techniques. The main
advantage of Modified Distribution Method compared to Northwest Corner Method is the
insurance that an optimal solution has reached up to a desired level.

The Vogel’s Approximation Method (VAM), Modified Distribution Method (MODI),
and Northwest Corner Method (NWC) are mainly used to deal with analysis and the so-
lution of transportation problems appearing in the operations research, specifically for the
optimization of the logistics. The NWC method is being used as an initial approach for
the location of resources when the consideration of cost function are much smaller than
critical values. VAM mainly does focus on penalties. It helps to finds applications once
the minimization of transportation cost function is in a crucial stage. MODI is being used
to ensure the efficiency of cost solution. It does makes its vital role to optimize the trans-
portation networks at very large scale, to balance both supply and demands. Furthermore,
it ensure the cost efficiencies across the industries, for instance, the manufacturing, retail
industry.

A new mathematical technique [11] based on simplex algorithm was developed to solve
transport problem. A bi-criterion transportation problem was solved by Aneya and Nair
[1]. In [28, 52], the optimization of passenger transport problems and passenger control
flow problems were studied and analyzed. An extensive amount of literature has been
written to deal with time-minimization transport problems, we refer interested readers to
see [5, 24, 40, 46, 47] and the references therein.

The structured singular values are non-negative numbers obtained by computing the
singular values of perturbation matrix ∆̂ from the set of block-diagonal matrices ∆. The
structured singular values were first introduced by Doyle [12] to study and investigate both
stability and instability of feedback systems. The computation of structured singular
is a NP-hard problem [7]. The global search numerical and analytical techniques were
developed [19, 32] to deal with lower dimensional mathematical problems.

The concept of D-stability for the very first time was introduced by Arrow and Mc-
Manus [3], and then Enthoven and Arrow [14] in their classical papers. The main aim
in these classical papers was to study and investigate the dynamic models from the eco-
nomics. The theory of D-stability plays an important role in a vast amount of application
areas in economic analysis [20, 22, 25, 26, 33, 38, 53].

The main objective of this paper is two-fold: First to study and analyze the spectral
properties of structured matrices appearing across the Hitchcock-Koopmans transporta-
tion models. The computation of various tools like eigenvalues, singular values, right and
left singular vectors, structured singular values, and pseudo-inverse describes various spec-
tral properties of structured matrices under consideration. On the other hand, we present
new results on the interconnection between structured singular values, and D-stability of
structured matrices across Hitchcock-Koopmans transportation problem.
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1.1. Overview of the article.

In section 2, we provide new results on singular values of a matrix corresponding
to Hitchcock-Koopmans transportation problem. We have employed some tools from
linear algebra and matrix analysis to develop these results. Furthermore, we also provide
numerical experimentation on the computation of singular values and pseudo-inverse of
transportation matrices. In section 3 of this article, we provide some new results on the
interconnection between structured singular values of (M∗M)−1M∗ and M∗(MM∗)−1.
The numerical experimentation on comparison of bounds of structured singular values are
presented in section 4, and finally we have presented conclusion in section 5.

2. Singular values for Hitchcock-Koopmans transportation problem

The Hitchcock-Koopmans transportation problem was first developed by Hitchcock
in 1941, and then investigated and analyzed by Koopmans in 1947. This problem was
applied to simplex algorithm by Dantzig in 1951. For m numbers of origins and n numebrs
of destinations, the Hitchcock-Koopmans transportation is to study and solve following
optimization problem:

min{cTx : Mx = g, 1ma = 1nb, x ≥ 0},

where min is taken over x, also

aT = [a1, a2, · · ·, am], bT = [b1, b2, · · ·, bm], xT = [x11, x12, · · ·, xmn], cT = [c11, c12, · · ·, cmn],

and gT = [aT : bT ]. The coefficient matrix M is given as

M =

(
1n ⊗ Im
In ⊗ 1n

)
,

where Im is m-dimensional identity matrix , 1m is 1 ×m vector of all 1′s, and ⊗ denotes
kronecker product.

In [6], a relation between eigenvectors of M+M and MMT was developed. The Moore-
Penrose inverse M+ for M was obtained in [9] as

M+ =
1

mn

(
m1Tn ⊗ ((m + n)Im − Jm)n((m + n)In) − Jn ⊗ 1Tm

)
,

with Jm as an m×m matrix of all 1′s, means that, Jm = 1Tm1m. Furthermore,

M+M = I − 1

mn
(nIn − Jn) ⊗ (mIm − Jm) ,

with I −M+M, a symmetric and idempotent matrix. The relation between eigenvectors
of Jn, Jm, and I −M+M was developed in the Theorem 2 [6].

The following theorem gives Moore-Penrose inverse of a matrix M .
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Theorem 1. Let M ∈ Rn,n. Then, then M+ is the Moore-Penrose inverse satisfying the
matrix equation

M = MM+M.

Theorem 2. Let vj be all eigenvectors of Jm, and uk, the eigenvectors corresponding to
Jn. Then eigenvectors corresponding to simple eigenvalues 1 of I −M+M are

v̂i = uj ⊗ xk,

where j = 1 : n− 1; k = 1 : m− 1; i = m + n, · · ·, (m− 1)(n− 1).

Definition 1. The singular value of a square or rectangular matrix M are the positive
square root of eigenvalue of MTM, where T denotes the transpose of M .

Theorem 3. Let M ∈ Rn,n. Then there exists unitary matrices U, V , and a diagonal
matrix Σ such that M can be decomposed as

M = UΣV T .

Further, the non-zero singular values of M are contained along the main diagonal of Σ.

Corollary 1 [6]. Let {a1, a2, · · ·, am+n−1} and {b1, b2, · · ·, bm+n−1} are the sets of
eigenvectors corresponding to eigenvalues of MMT and MTM , and consider that σ1, σ2, · ·
·, σm+n−1 are singular values of M . Then,

MMTai = σ2
i ai, i = 1 : m + n− 1,

MTMbi = σ2
i bi, i = 1 : m + n− 1.

Corollary 2 [6]. The eigenvectors ai corresponding to the eigenvalue 0 and m + n are

Jmxi = mxi, Jnyi = nyi.

The eigenvectors corresponding to eigenvalues m and n are given by

Jmxi = 0⃗, Jnyi = 0⃗

with xi are m× 1 vectors and yi are n× 1 vectors.

Let M+ = (M∗M)−1M∗ be the Moore-Penrose inverse matrix of the matrix M , ∗
denotes the complex conjugate transpose. Let M∗(MM∗)−1 be the right inverse of M .
The following Theorem 4 gives the orthogonal nature of the leading singular values.
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Theorem 4. Let (M∗M)−1M∗ and M∗(MM∗)−1 be n-dimensional matrices. Let {σi}, ∀i =
1 : n be sequence of singular values with {vi}, and {v̂i}, ∀i = 1 : n as the left hand
side and right hand side singular vectors such that ||vi||2 = 1 = ||v̂i||2, and {ui}, and
{ûi}, ∀i = 1 : n as the left hand side and right hand side singular vectors for {σ̂i}
such that ||ui||2 = 1 = ||ûi||2. The leading singular vectors v1 and u1 are orthogonal
to σ1 and σ̂1. Then any non-zero vector ṽ = {ṽ1, ṽ2, · · ·, ṽn} is an orthogonal to vector
en = 1√

n
(1, 1, · · ·, 1)T and is not a singular vector σ1 and σ̂1.

Proof. For the prove, we consider singular value problem of form

Mṽ = σṽ,

where σ is singular value of M corresponding to singular vector ṽ. The vector ṽ doesn’t act
as singular vector corresponding to singular values σ1 and σ̂1. The matrix-vector product
Mṽ, can be rewritten as

Mṽ =


m11ṽ1 + m12ṽ2 + · · ·m1nṽn

· · ·
· · ·
· · ·

mn1ṽ1 + mn2ṽ2 + · · ·mnnṽn

 .

Take
∑

on the components of Mṽ, we have

∑
(Mṽ) =

∑

m11ṽ1 + m12ṽ2 + · · ·m1nṽn

· · ·
· · ·
· · ·

mn1ṽ1 + mn2ṽ2 + · · ·mnnṽn

 = v1
∑

(mi1)+···+vn
∑

(min) = v1(σ1)+···+vn(σ1).

Thus, ∑
(Mv) = σ1

∑
(v).

Taking
∑

of right hand side of Mv = σv, we get∑
(σv) = σ

∑
(v).

We conclude from last two equations that

(σ − σ1) =
∑

(v) = 0.

This implies that σ ̸= σ1, and
∑

(v) = 0. This proves that v = (v1, v2, · · ·, vn) is orthogonal
to vector en = 1√

n
(1, 1, · · ·, 1)T . The vector en is not a singular vector corresponding to

singular values σ1 and σ̂1.
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Theorem 5. Let (M∗M)−1M∗ and M∗(MM∗)−1 be n-dimensional matrices. Let σi and
σ̂i are leading singular values corresponding to singular vectors vi and v̂i, respectively. Let

M̂ =

(
(M∗M)−1M∗ + αIn 2αv̂2v

T
1

2αv1v̂
T
2 M∗(MM∗)−1 + αIn

)
,

with In is an identity matrix, α is any scalar. The singular values of M̂ does not have
leading singular values of matrices (M∗M)−1M∗ and M∗(MM∗)−1. The leading singular
values σ1 and σ̂1 are along the main diagonal of M̂1 with

M̂1 =

(
3α + σ1 0

0 α− σ̂1

)
.

Proof. Consider the singular value problem of the form

M̂vi = (σ1 + α)vi, ∀i = 1 : n.

Let β1, σ2+α, σ3+α, ···, σn+α, and β̂2, σ̂2+α, σ̂3+α, ···, σ̂n+α with β, β̂ ∈ {3α+σ1, α−σ̂1}
are the singular values of matrix (

3α + σ1 0
0 α− σ̂1

)
.

For the singular values σi, ∀i = 2 : n, the singular vectors can be written as [vi 0]T , ∀i =
2 : m. For the singular values σ̂i, ∀i = 2 : n, the singular vectors can be written as
[0 v̂i]

T , ∀i = 2 : n. This ensures that singular vectors corresponding to M̂ can be ex-
pressed as [βivi β̂iv̂i]

T . Thus, [βi β̂i], ∀i = 2 : n are the singular vectors corresponding
to singular values σ1 + 3α and α− σ̂.

The following Theorem shows that singular values of a matrix does not depend con-
tinuously on the entries of that matrix.

Theorem 6. Let M1 = (M∗M)−1M∗ and M2 = M∗(MM∗)−1 be n-dimensional matrices.
Let limk→∞(Mk) = M, and let q = minm, n. Consider that σ1(M) ≥ σ2(M) ≥ · · · ≥
σq(M), and σ1(Mk) ≥ · · · ≥ σq(Mk) be non-increasing ordered singular values of M and
Mk, respectively for k = 1, 2, · · ·. Then the limk→∞ σi(Mk) = σi(M) for all i = 1 : q.

Proof. Let k1 < k2 < · · ·, be the sequence of positive integers, and let ϵ > 0, we have
that

max|σi(Mkj) − σi(M)| > ϵ,

where max is taken over all i = 1 : q.
Consider the singular value decomposition of Mkj as

Mkj = UkjΣkjV
∗
kj ,

where Ukj and Vkj are the unitary matrices and Σkj is a diagonal matrix with structure

Σkj = [σ1(Mkj) · · · σq(Mkj)]
T .
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(a) Singular values and pseudo singular
values

(b) Surface plot of pseudo-spectrum

Figure 1: The graphs of singular values and pseudo-inverse of M in Example-1

Then,

lim
r→∞

Σkjr = lim
r→∞

U∗
kjrMkjrVkjr =

(
lim
r→∞

U∗
kjr

)(
lim
r→∞

Mkjr

)(
lim
r→∞

Vkjr

)
= U∗MV.

The matrix U∗MV is a non-negative diagonal matrix. The uniqueness of the singular
values of M implies that Diag Σ = [σ1(M), σ2(M), · · ·, σq(M)]T , a contradiction with
inequality

max|σi(Mkj) − σi(M)| > ϵ.

This proves required result.

Next, we give numerical examples on the computation of singular values and pseudo
inverse of transportation matrices.

Example 1. Consider 7× 5 transportation matrix (staircase matrix) taken from [16].

M =


1 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 0 1 1 1

 .

The computation of singular values and the graphs of the pseudo-inverse are shown in
Figure 1.

Example 2. Consider 7 × 5 transportation matrix (distribution matrix) taken from
[16].

M =


4 0 0 0 0 0 0
0 2 4 0 0 0 0
0 0 1 2 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1.4 0.6

 .
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(a) Singular values and pseudo singular
values

(b) Surface plot of pseudo-spectrum

Figure 2: The graphs of singular values and pseudo-inverse of M in Example-2

(a) Singular values and pseudo singular
values

(b) Surface plot of pseudo-spectrum

Figure 3: The graphs of singular values and pseudo-inverse of M in Example-3

The computation of singular values and the graphs of the pseudo-inverse are shown in
Figure 2.

Example 3. Consider 7 × 5 transportation matrix (distribution matrix) taken from
[16].

M =


1.6 0.8 1.6 0 0 0 0
2.4 1.2 2.4 0 0 0 0
0 0 0.6 1.8 0.6 0 0
0 0 0.4 1.2 0.2 0.2 0
0 0 0 0 1.2 1.2 0.6

 .

The computation of singular values and the graphs of the pseudo-inverse are shown in
Figure 3.
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3. Structured singular values for Hitchcock-Koopmans transportation
problem

In this section, we present new results on the computation of structured singular values
for matrices appearing in Hitchcock-Koopmans transportation problems. We make use of
mathematical tools from linear algebra, system theory and matrix theory to provide and
analyzed the results on structured singular values.

Definition 2. The n-dimensional matrix M is stable if all the real parts of the eigenvalues
are strictly positive, that is, Re(λi(M)) > 0.

Definition 3. The n-dimensional matrix M is D-stable if all the real parts of the eigen-
values of MD are strictly positive, that is, Re(λi(MD)) > 0, where D = diag(dii) > 0,
for all i = 1 : n.

The structured singular value of a given matrix M with respect to set of block-diagonal
matrices ∆, where

∆ := {diag (δ1Ir1 , δ2Ir2 , · · ·, δSIrS ; ∆1,∆2, · · ·,∆F ) : δi ∈ R(C), ∆j ∈ Kmj ,mj , i = 1 : S; J = 1 : F},

with K = R(C), is the computation of largest singular value of ∆̂ ∈ ∆. The structured
singular value is denoted by µ, and for a given matrix M and ∆, it is defined as (see [12]):

µ∆(M) :=
(
min{||∆̂||2 : det(In −M∆̂) = 0, ∀ ∆̂ ∈ ∆}

)−1
,

where min is taken over ∆̂ ∈ ∆, and µ∆(M) = 0 if det(In −M∆̂) ̸= 0, ∀ ∆̂ ∈ ∆.
Remark 1. The block-diagonal structure ∆ can be associated with multi-index of the

positive integers.
Remark 2. The full blocks in ∆ can be taken as either pure real blocks, pure complex

blocks or a mixture of both. These blocks can be chosen as rank-1 matrices.
Remark 3. For any α ∈ C, µ∆(αM) = |α|µ∆(M).

Corollary 1. [12] The structured singular value µ∆(M) is equal to the computation of
spectral radius ρ of V TMW, that is,

µ∆(M) = ρ(V TMV ),

with V,W having the block-diagonal structure.

The µ∆(M) can be considered as the computation of spectral radius ρ of M∆̂, ∆̂ ∈ ∆.

Lemma 1. [35] For M, and a block-diagonal structure ∆,

µ∆(M) = maxρ(M∆̂),

where max is taken over ∆̂ ∈ ∆.
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Theorem 7 is a well-known result on D-stability of a given matrix while computing the
strictly positive real part of the spectrum of the product of given matrix with a positive
diagonal matrix.

Theorem 7. [14] If M has all negative diagonal elements, and no negative off diagonal
elements, for D = diag(dii), the matrices M , and DM are stable, then D = diag(dii) >
0, ∀i.

The following theorem 8 is the characterization of D-stability and bridge a link between
µ-values and D-stable matrices.

Theorem 8. Consider M be a n-dimensional matrix. Then M is D-stable matrix if and
only if M is stable and

0 ≤ µ∆(iIn + M)−1(iIn −M) < 1.

Theorem 9. Let (MM∗)−1M∗ be n−dimensional complex valued matrix. Then

0 ≤ µ∆((In + (MM∗)−1M∗)−1(In − (MM∗)−1M∗)) < 1.

Proof. To prove this result, we use the concept of D−stability of a matrix. That is,
the given (MM∗)−1M is D−stable, means that, λk(In + (MM∗)−1Mp) ̸= 0,∀k = 1 : n,
with P = diag(p11, p22, . . . , pnn) > 0. Let P = (In + R)−1(In −R),∀R ∈ ∆, then

λk(In + (M∗M)−1M∗(In + R)−1(In −R)) ̸= 0, ∀k = 1 : n,∀R ∈ ∆.

This further implies that

λk((In + (M∗M)−1M∗) + (In − (M∗M)−1M∗R)) ̸= 0, ∀k = 1 : n,∀R ∈ ∆.

Since,

λk(In+(M∗M)−1M∗) ̸= 0 ∼ λk((In+(M∗M)−1M∗)+(In−(M∗M)−1M∗R)) ̸= 0,∀k = 1 : n, ∀R ∈ ∆

Finally, this yields that

0 ≤ µ∆((In + (MM∗)−1M∗)−1(In − (MM∗)−1M∗)) < 1,

which is the required prove.

Theorem 10. Let (M∗M)−1M∗ be n−dimensional complex valued matrix. Then 0 ≤
µ∆(A) < 1 if (M∗M)−1M∗ is D−stable, with

A = (iIn + P (M∗M)−1M∗ + M((M∗M)−1)∗)(iIn − P (M∗M)−1M∗ −M((M∗M)−1)∗P )

with P = diag(p11, p22, . . . , pnn), pii > 0, ∀i = 1 : n, i =
√
−1.
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Proof. The given matrix (M∗M)−1M∗ is D−stable if Re(λk(P (M∗M)−1M∗+M(M∗M−1)∗)) >
0,∀k = 1 : n, see [13]. To prove that 0 ≤ µ∆(A) < 1, we consider a block-diagonal struc-
ture ∆̂ = (iIn − P )(iIn + P )−1 with ∆̂ ∈ ∆. For all P , the diagonal positive definite
matrices, we have

λk(P (M∗M)−1M∗ + M((M∗M)−1)∗P + i(iIn + ∆̂)−1(iIn − ∆̂)) ̸= 0∀k = 1 : n.

In turn, the expression for λk,∀k = 1 : n takes the form

λk((iIn+P (M∗M)−1M∗+M((M∗M)−1)∗P )−(iIn−P (M∗M)−1M∗−M((M∗M)−1)∗P )∆̂) ̸= 0,∀∆̂ ∈ ∆.

Thus,

λk(In−(iIn+P (M∗M)−1M∗+M((M∗M)−1)∗P ))(iIn−P (M∗M)−1M∗−M((M∗M)−1)∗P )∆̂) ̸= 0, ∀∆̂ ∈ ∆.

The last expression for λk, ∀k = 1 : n implies that 0 ≤ µ∆(A) < 1

Theorem 11. Let (M∗M)−1M∗ be n−dimensional complex valued matrix. Then, 0 ≤
µ∆(A) < 1 if

x∗(M((M∗M)−1)∗P 2 + P 2(M∗M)−1M∗)x > 0

for x ∈ Cn,1, and for all P = diag(p11, p22, . . . , pnn) > 0, with

A = (iIn + (M∗M)−1M∗)−1(iIn − (M∗M)−1M∗).

Proof. The structured singular value is the computation of αmax ≥ 0 such that for
each P , the matrix inequality

∥P (M∗M)−1M∗x∥)

∥Px∥
≥ αmax.

For given A, 0 ≤ µ∆(A) < 1 if ∥PAx∥ < ∥Px∥ for every x ∈ Cn,1 and positive diagonal
matrix P . The above inequality holds true for iIn + (M∗M)−1M∗, means that,

∥PA(iIn + (M∗M)−1M∗)x∥ < ∥P (iIn + (M∗M)−1M∗)x∥.

Also,
∥PA(iIn + (M∗M)−1M∗)x∥2 < ∥P (iIn + (M∗M)−1M∗)x∥2.

This further implies that

x∗((iIn + (M∗M)−1M∗)∗A∗P ∗PA(iIn + (M∗M)−1M∗))x

<

x∗((iIn + (M∗M)−1M∗)∗P ∗P (iIn + (M∗M)−1M∗))x.

This inequality further reduces to

x∗((iIn+(M∗M)−1M∗)∗A∗P 2A(iIn+(M∗M)−1M∗))x < x∗(iIn+(M∗M)−1M∗P 2(iIn+(M∗M)−1M∗))x.
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Since,
A = (iIn + (M∗M)−1M∗)−1(iIn − (M∗M)−1M∗).

Thus, above inequality rewritten as

x∗((iIn+(M∗M)−1M∗)∗(iIn−(M∗M)−1M∗)∗(iIn+(M∗M)−1M∗)−1P 2(iIn+(M∗M)−1M∗)−1

(iIn−(M∗M)−1M∗)(iIn+(M∗M)−1M∗)x−x∗((iIn+(M∗M)−1M∗)∗P 2(iIn+(M∗M)−1M∗))x < 0.

or

x∗(iIn−(M∗M)−1M∗)∗P 2(iIn−(M∗M)−1M∗)x−x∗(iIn+(M∗M)−1M∗)∗P 2(iIn+(M∗M)−1M∗)x < 0.

In turn, we have that

x∗((iIn−(M∗M)−1M∗)∗P 2(iIn−(M∗M)−1M∗)−(iIn+(M∗M)−1M∗)∗P 2(iIn+(M∗M)−1M∗))κ < 0.

Thus,

x∗((iIn−(M∗M)−1M∗)∗(iP 2−P 2(M∗M)−1M∗)−(iIn+(M∗M)−1M∗)∗(iP 2+P 2(M∗M)−1M∗))x < 0.

Also,
x∗(−2iP 2(M∗M)−1M∗ − 2iM(M∗M)−1P 2)x < 0

or
x∗(−2i(M(M∗M)−1)∗P 2 + P 2(M∗M)−1M∗)x < 0.

Finally,
x∗(M(M∗M)−1)∗P 2 + P 2(M∗M)−1M∗)x > 0,

which completes required proof.

Pseudo-spectrum: The pseudo-spectrum of a matrix M is the set of which contains
the spectrum, that is, all the eigenvalues of M . The important question one can raise is
about the singularity of M which does not appear as a robust in the sense that a small
perturbation ϵ may vary the answer from yes to no in a dramatic way. This helps to think
that either ||M−1|| is large enough or not?

For λ, an eigenvalue of M , a much better question is to ask: Does ||(λIn − M)−1||
is large or not? such a pattern allows following definitions and results [49] of pseudo-
spectrum.

Definition 4. Let M be a given n-dimensional matrix, ϵ > 0, a small perturbation. The
ϵ-pseudospectrum σϵ(M) is the set of eigenvalues λ ∈ C such that

||(λIn −M)−1|| > 1

ϵ
.

Remark 4. For λ ∈ σ(M), σ(M) being as the set of eigenvalues of M , ||(λIn −
M)−1|| = ∞. The second definition of pseudo-spectrum is given as follows.
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Definition 5. Let M be a given n-dimensional matrix, ϵ > 0, a small perturbation. The
ϵ-pseudospectrum σϵ(M) is the set of eigenvalues λ ∈ C such that

λ ∈ σ(M + E),

for some E with ||E|| < ϵ.

The third characterization of pseudo-spectrum is given as bellow.

Definition 6. Let M be a given n-dimensional matrix, ϵ > 0, a small perturbation. The
ϵ-pseudo spectrum σϵ(M) is the set of eigenvalues λ ∈ C such that

||(λIn −M)v|| < ϵ

for some v ∈ Cn,1, ||v|| = 1.

The following Theorem gives an equivalence of all above definitions of pseudo-spectrum.

Theorem 12. [13] Let || · || denotes a matrix norm for a matrix M which is induced by
a vector norm. Then following are equivalent:

(i) Λϵ(M) = {z ∈ C : ||(zIn −M)−1|| ≥ 1

ϵ
}.

(ii) Λϵ(M) = {z ∈ C : z ∈ Λ(M + E), ||E|| ≤ ϵ}.

(iii) Λϵ(M) = {z ∈ C : ∃ v ∈ Cn,1 s.t ||(M − zIn)v|| ≤ ϵ}.

Remark 1. In above Theorem 12, the second statement is true for some matrix E. Also,
in the last statement the column vector v is such that ||v||2 = 1.

4. Numerical Experimentation

We present a comparison on the numerical approximation of structured singular values.
The numerical algorithms are: The Matlab function mussv, the power algorithm (PA)
[36], Gain Based Algorithm (GBA) [44], Poles migration Algorithm (PMA) [30], Non-linear
optimization Algorithm (NLA) [23], and the Low-rank ODE’s based Algorithm (LRA)
given by first author [21]. We consider structured matrices appearing across transportation
models. The Matlab EigTool [13] is being used for graphical interpretation of the pseudo-
spectrum.

In each example, we have shown different graphics. The graphical representations in a
2-dimensional space presents the spectrum and pseudo-spectrum of structured matrices.
The black dots around the spectrum and pseudo-spectrum denotes the field of values
enclosing spectrum and pseudo-spectrum. The visualization of the pseudo-spectrum in the
complex plane are level sets of the resolvent norm ||(M − zIn)−1|| which indicates various
ϵ-values. These visualizations of the level sets helps to analyze the stability analysis and
robustness in various applications like control systems and fluid dynamics.
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(a) Field of values enclosing spectrum and
pseudo-spectrum

(b) Resolvent norm

Figure 4: pseudo-spectrum of A in Example-1

Example 1. Consider 4-dimensional matrix for Traveling Salesman Problem [39].

A =


−1 1 0 0
1 1 0 0
0 1 1 1
3 0 2 1

 .

We present the comparison on numerical approximation of the lower bounds of structured
singular values in following Table-1.

The numerical approximation of lower bounds of structured singular values

mussv PA GBA PMA NLA LRA

3.9984 3.9992 3.9987 3.9990 3.9988 3.9985
Example 2. Consider 6-dimensional symmetric circulant matrix for Travelling Sales-

man Problem [50].

A =



0 4 1 6 1 4
4 0 4 1 6 1
1 4 0 4 1 6
6 1 4 0 4 1
1 6 1 4 0 4
4 1 6 1 4 0

 .

We present the comparison on numerical approximation of the lower bounds of structured
singular values in following Table-2.

The numerical approximation of lower bounds of structured singular values

mussv PA GBA PMA NLA LRA

3.9984 3.9992 3.9987 3.9990 3.9988 3.9985
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(a) Field of values enclosing spectrum and
pseudo-spectrum

(b) Resolvent norm

Figure 5: pseudo-spectrum of A in Example-2

Example 3. Consider 4-dimensional matrix taken from [41].

A =


3 5 1 −2
0 −1 5 10
3 5 1 9
−2 1 6 6

 .

We present the comparison on numerical approximation of the lower bounds of structured
singular values in following Table-3.

The numerical approximation of lower bounds of structured singular values

mussv PA GBA PMA NLA LRA

16.4123 16.4176 16.4198 16.4183 16.4142 16.4130

5. Conclusion

In this article we have presented new results on the spectral properties (singular val-
ues) of structured matrices appearing across Hitchcock-Koopmans transportation mod-
els. The interconnection between D-stable matrices and structured singular values of
pseudo-inverse are analyzed. The numerical experimentation carried with Matlab shows
the dynamics of singular values, structured singular values, and pseudo-spectrum. The
advantages of the proposed methodology are listed as:
1. The proposed methodology helps to study the spectral properties via the computation
of eigenvalues, eigenvectors, singular values, right and left handed singular vectors, and
structured singular values.
2. The proposed methodology has an advantage in the sense that it allow us to establish
new interconnections between structured singular values and D-stability analysis of struc-
tured matrices appearing across the Hitchcock-Koopmans transportation model.
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(a) Field of values enclosing spectrum and
pseudo-spectrum

(b) Resolvent norm

Figure 6: pseudo-spectrum of A in Example-3

3. The computation and graphical representation of spectrum and pseudo-spectrum gives
an advantage to exploit the hidden structures and properties of structured matrices.
4. The proposed methodology is well-established in the sense that it has strong theoretical
foundations and also numerical experimentation to support the theoretical construction.
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