## EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 1, Article Number 5639 ISSN 1307-5543 – ejpam.com Published by New York Business Global



## A Modified Conjugate Gradient Method with Taylor Approximation: Applications in Electric Circuits and Image Restoration

Ahmad Alhawarat<sup>1,\*</sup>, Sultanah Masmali<sup>2</sup>, Ibtisam Masmali<sup>2</sup>, Mehiddin Al-Baali<sup>3</sup>, Shahrina Ismail<sup>4,5</sup>

<sup>1</sup> Department of Mathematics, Faculty of Arts and Science, Amman Arab University, Amman 11953, Jordan

<sup>2</sup> Department of Mathematics, College of Science, Jazan University, Jazan, Saudi Arabia

<sup>3</sup> Department of Mathematics, College of Science, Sultan Qaboos University, Oman

<sup>4</sup> Financial Mathematics Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia

<sup>5</sup> Risk and Analytics Research Group, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia

Abstract. In this century, the application of optimization methods is frequently utilized in numerous fields like image restoration, electrical engineering, medical science, machine learning (ML), signal processing as well as many others. In this paper, we choose to improve and maintain one of the most popular, low-memory, and simple algorithms of optimization methods. This method is known as the conjugate gradient method (CGM). Here, we develop a new 3-term CGM with several search directions in the third term suitable for any CGM related to the Fletcher-Reeves method. Apart from that, we propose a new 3-term CGM with mild conditions for any method in relation to the Polak-Ribière-Polyak method. The proposed methods satisfy the descent and convergence properties. Moreover, in the numerical findings section, we perform a comparison of the new method with several renowned methods that have emerged in this century, such as CG-Descent 6.8 and nonnegative Dai-Liao methods utilizing more than 180CUTEst library functions. The numerical findings indicate that the novel approach surpasses recent methodologies. These numerical findings encompass the count of gradient assessments, function assessments, CPU duration as well as iteration count. Additionally, we discussed the implementation of the CG method in image restoration and pi-electric circuits.

2020 Mathematics Subject Classifications: 65K05, 90C30

Key Words and Phrases: Global convergence, Conjugate gradient method, Unconstrained optimization, Pi-electric circuit

 $^{*} {\rm Corresponding \ author}.$ 

DOI: https://doi.org/10.29020/nybg.ejpam.v18i1.5639

Email addresses: a.alhawarat@aau.edu.jo (A. Alhawarat), smasmali@jazanu.edu.sa (S. Masmali), ibtisam234@hotmail.com (I. Masmali), albaali@squ.edu.om (M. Al-Baali), shahrinaismail@usim.edu.my (S. Ismail)

1

https://www.ejpam.com

Copyright: (c) 2025 The Author(s). (CC BY-NC 4.0)

#### 1. Introduction

The conjugate gradient (CG) method is broadly employed to solve unconstrained optimization problems since we can employ the CG method in several fields like image restoration, electrical engineering, machine learning (ML) [24, 25], medical science, signal processing, as well as many others. The general form of optimization problems that we want to solve employing the CG method is expressed as given below:

$$\min f(x), \quad x \in \mathbb{R}^n, \tag{1}$$

in which the objective function, denoted by f, is smooth. The primary iterative formula with regard to the CG method is expressed below:

$$x_{k+1} = x_k + \alpha_k d_k, k = 1, 2, \dots$$
(2)

Here,  $\alpha_k$  may be gain from inexact or exact line search.

Subsequently, the Strong Wolfe-Powell (SWP) line [22, 23] is an inexact line search commonly used and may be expressed as below:

$$f(x_k + \alpha_k d_k) \le f(x_k) + \delta \alpha_k \nabla f_k^T d_k, \tag{3}$$

and

$$|\nabla f(x_k + \alpha_k d_k)^T d_k| \le \sigma |\nabla f_k^T d_k|, \tag{4}$$

On the other hand, the weak Wolfe-Powell (WWP) line search is represented in Eqn. (3) and Eqn. (5) as follows:

$$\nabla f(x_k + \alpha_k d_k)^T d_k \ge \sigma \nabla f_k^T d_k, \tag{5}$$

with  $0 < \delta < \frac{1}{2}, \delta < \sigma < 1$ .

Here,  $d_k$  refers to a search direction often expressed by:

$$d_k = \begin{cases} -\nabla f_k, & \text{if } k = 1, \\ -\nabla f_k + \beta_k d_{k-1}, & \text{if } k \ge 2. \end{cases}$$
(6)

in which  $\beta_k$  refers to the CG parameter. Here, the CG parameters are categorized into2 groups. The first group is an effective one. This comprises the methods proposed by Hestenes-Stiefel (HS) [13], Polak-Ribière-Polyak (PRP) [20] as well asLiu and Storey (LS) [17].

$$\beta_k^{HS} = \frac{\nabla f_k^T y_{k-1}}{d_{k-1}^T y_{k-1}}, \quad \beta_k^{PRP} = \frac{\nabla f_k^T y_{k-1}}{\|y_{k-1}\|^2}, \quad \beta_k^{LS} = -\frac{\nabla f_k^T y_{k-1}}{d_{k-1}^T \nabla f_k},$$

in which  $y_{k-1} = \nabla f_k - \nabla f_{k-1}$ . Nonetheless, this group encounters issues related to convergence, provided that their values become negative [21]. On the other hand, the second group, while less efficient, demonstrates strong global convergence. It is important to note that this category encompasses the Fletcher-Reeves (FR) [10], Fletcher (CD) [9]

as well as Dai-Yuan (DY) [7] methods. The equations defining these methods are provided below:

$$\beta_k^{FR} = \frac{\|\nabla f_k\|^2}{\|\nabla f_{k-1}\|^2}, \quad \beta_k^{CD} = -\frac{\|\nabla f_k\|^2}{d_{k-1}^T \nabla f_k}, \quad \beta_k^{DY} = \frac{\|\nabla f_k\|^2}{d_{k-1}^T y_{k-1}}.$$

Dai and Liao [6] recommended the formula of CG and re-expressed it below:

$$\beta_k^{DL} = \frac{\nabla f_k^T y_{k-1}}{d_{k-1}^T y_{k-1}} - \frac{\nabla f_k^T s_{k-1}}{d_{k-1}^T y_{k-1}} = \beta_k^{HS} - \frac{\nabla f_k^T s_{k-1}}{d_{k-1}^T y_{k-1}},$$

where  $s_{k-1} = x_k - x_{k-1}$ . To avoid the convergence problem mentioned by [21], the authors in [6] use the following restriction:

$$\beta_k^{DL+} = \max\{\beta_k^{HS}, 0\} - t \frac{\nabla f_k^T s_{k-1}}{d_{k-1}^T y_{k-1}},$$

Meanwhile, Li et al. [16] suggested the CG formula as expressed below:

$$\beta_k^{0^*} = \frac{\nabla f_k^T y_{k-1}^*}{d_{k-1}^T y_{k-1}^*} - t \frac{\nabla f_k^T s_{k-1}}{d_{k-1}^T y_{k-1}^*},$$

where

$$y_{k-1}^* = y_{k-1} + \frac{\sigma_{k-1}}{\|s_{k-1}\|^2} s_{k-1},$$
  
$$\theta_{k-1} = 2(f_{k-1} - f_k) + (\nabla f_{k-1} + \nabla f_k)^T s_{k-1}.$$

n

Hager and Zhang [12] stated the CG formula expressed by:

$$\beta_k^{HZ} = \max\{\beta_k^N, \eta_k\},\$$

in which  $\beta_k^N = \frac{1}{d_k^T y_k} (y_k - 2d_k \frac{\|y_k\|^2}{d_k^T y_k})^T g_k, \ \eta_k = -\frac{1}{\|d_k\| \min\{\eta, \|\nabla f_k\|\}}, \ \text{while} \ \eta > 0 \ \text{denotes}$ a constant.

Alhawarat et al. [3] introduced an effective hybrid CG method that incorporates the SWP line search, as described below:

$$d_k^{PRP^*} = \begin{cases} -\nabla f_k, & k = 1, \\ -\nabla f_k + \left(\frac{\nabla f_k^T \nabla f_k - \nabla f_k^T \nabla f_{k-1}}{\|\nabla f_{k-1}\|^2}\right) d_{k-1}, & \text{if } \|\nabla f_k\|^2 > \nabla f_k^T \nabla f_{k-1}, \ k \ge 2, \\ \beta_k^{NPRP}, & \text{elsewhere.} \end{cases}$$

where  $\beta_k^{NPRP} = \frac{g_k^T g_k - \frac{\|g_k\|}{\|g_{k-1}\|} |g_k^T g_{k-1}|}{\|g_{k-1}\|^2}$ . To introduce a positive CG method, Alhawarat et al. [4] expressed the positive CG formula having a novel restart property given below:

$$\beta_k^{AZPRP} = \begin{cases} \frac{\|\nabla f_k\|^2 - \mu_k \nabla f_k^T \nabla f_{k-1}}{\|\nabla f_{k-1}\|^2}, & \text{if } \|\nabla f_k\|^2 > \mu_k |\nabla f_k^T \nabla f_{k-1}|, \\ 0, & \text{otherwise.} \end{cases}$$

in which  $\|\cdot\|$  resembles the Euclidean norm, while  $\mu_k$  is expressed as:

$$\mu_k = \frac{\|x_k - x_{k-1}\|}{\|y_{k-1}\|}.$$

Jiang et al. [14] recommended the CG method expressed by:

$$\beta_k^{JJSL} = \frac{g_k^T y_{k-1}}{g_{k-1}^T y_{k-1}}.$$

To enhance the efficacy of prior methods, they established a restart criterion, which is specified below.

$$d_{k} = \begin{cases} -g_{k}, & k = 1, \\ -g_{k} + \beta_{k}^{NSL} d_{k-1} + \frac{g_{k}^{T} d_{k-1}}{d_{k-1}^{T} (g_{k} - g_{k-1})} g_{k-1}, & \text{if } 0 \le g_{k}^{T} g_{k-1} \le \|g_{k}\|^{2}, \, k \ge 2, \\ -g_{k} + \frac{g_{k}^{T} g_{k-1}}{\|g_{k-1}\|^{2}} g_{k-1}, & k \ge 2, \, \text{otherwise.} \end{cases}$$

Based on Jiang et al. [14] modification, Alhawarat et al. [2] present a 3-term CG method expressed below:

$$d_{k} = \begin{cases} -g_{k}, & k = 1, \\ -g_{k} + \beta_{k}^{HS} d_{k-1} + \frac{g_{k}^{T} d_{k-1}}{d_{k-1}^{T}(g_{k} - g_{k-1})} g_{k-1}, & \text{if } \|g_{k}\|^{2} > g_{k}^{T} g_{k-1}, \ k \ge 2, \\ -\mu_{k} \frac{g_{k}^{T} s_{k-1}}{d_{k-1}^{T}(g_{k} - g_{k-1})} d_{k-1}, & \text{otherwise.} \end{cases}$$

Ma et al.[18] presented the 3-term CG method expressed by:

$$d_{k} = \begin{cases} -\nabla f_{k}, & k = 1, \\ -\nabla f_{k} + \beta_{k}^{LS} d_{k-1} + \xi \frac{\nabla f_{k}^{T} q_{k}}{\|q_{k-1}\|} q_{k-1}, & k \ge 2, \ \beta_{k}^{LS} \|\nabla f_{k}^{T} d_{k-1}\| < \|\nabla f_{k}\|^{2}, \\ -\nabla f_{k} + \xi \frac{\nabla f_{k}^{T} q_{k}}{\|q_{k-1}\|^{2}} q_{k-1}, & \text{otherwise.} \end{cases}$$

where  $0 \le \xi \le 1$ ,  $0 \le \mu \le 1$ , while  $q_{k-1}$  is any non-zero vector. Jiang et al. [15] developed the CG method expressed by:

$$d_{k} = \begin{cases} -\nabla f_{k}, & k = 1, \\ -\nabla f_{k} + \beta_{k}^{TDL} d_{k-1}, & k \ge 2, \ \beta_{k}^{TDL} \nabla f_{k}^{T} d_{k-1} < \xi \|\nabla f_{k}\|^{2}, \\ -\nabla f_{k} + \xi \frac{\nabla f_{k}^{T} q_{k}}{\|q_{k-1}\|^{2}} q_{k-1}, & \text{otherwise.} \end{cases}$$

in which  $\beta_k^{TIDL} = \min\{\beta_k^{IDL}, \kappa \frac{\|\nabla f_k\|}{\|d_{k-1}\|}\}, \ \beta_k^{IDL} = \frac{\nabla f_k^T y_{k-1} - t_k \nabla f_k^T d_{k-1}}{d_{k-1}(\nabla f_k - \nabla f_{k-1})}, \ \kappa$  is a positive constant, while  $0 < t_k < \rho$ , where  $\rho$  is a positive constant.

Moreover, Alhawarat et al. [2] established the 4-term CGM by employing the directions expressed below:

$$-\nabla f_k, d_{k-1}, y_{k-1}, \text{ and } s_{k-1}$$

 $4~{\rm of}~27$ 

$$d_k^{FTCGHS} = -\nabla f_k - t_k \frac{\nabla f_k^T s_{k-1}}{y_{k-1}^T s_{k-1}} d_{k-1} - \left(\frac{\nabla f_k^T d_{k-1}}{y_{k-1}^T d_{k-1}}\right) (y_{k-1} + s_{k-1}).$$

The descent condition (DC), called the downhill condition, is written as

$$\nabla f_k^T d_k < 0, \quad \forall k \ge 1.$$
(7)

is crucial in examining CG methods, which is also a crucial part in proving the global convergence analysis. For example, Al-Baali [1] altered Eqn.(7) as follows and employed it in proving the FR method:

$$\nabla f_k^T d_k \le -c \|\nabla f_k\|^2, \quad \forall k \ge 1, \quad c \in (0,1).$$
(8)

in which  $c \in (0, 1)$ . Here, Eqn. (10) given below resembles the sufficient DC. Furthermore, it has better performance than Eqn.(9) because the quantity of may be regulated by utilising  $\|\nabla f_k\|^2$ :

## 2. Proposed CG method related to $\beta_k^{FR}$

To maintain or improve the former useful behavior and rectify any formula related to  $\beta_k^{FR}$ , we construct a new 3-term CG method relying on [18] and based on Taylor's expansion as given below:

Let  $f(x_{k-1}) \approx f(x_k) - \nabla f_k^T s_{k-1} + \frac{1}{2} s_{k-1}^T G(x_k) s_{k-1}$ , where  $G(x_k)$  is a Hessian matrix.

$$-(-f(x_{k-1}) + f(x_k)) = -\nabla f_k^T s_{k-1} + \frac{1}{2} s_{k-1}^T G(x_k) s_{k-1}$$
$$\frac{2(f(x_k) - f(x_{k-1}))}{\|s_{k-1}\|^2} s_{k-1} = 2g_k - G(x_k) s_{k-1}$$
$$\frac{2(f(x_k) - f(x_{k-1}))}{\|s_{k-1}\|^2} s_{k-1} - 2g_k = -G(x_k) s_{k-1}.$$

Let

$$\frac{(f(x_k) - f(x_{k-1}))}{\|s_{k-1}\|^2} s_{k-1} = \varepsilon_k$$

Thus, it is acceptable to add  $\varepsilon_k$  to the search direction with regards to the CG method given below:

$$d_k = -\nabla f_k + \beta_k d_{k-1} + \varepsilon_k$$

Utilizing Eqn. (3),  $\beta_k^{FR}$ , and Eqn. (6), the new search direction become given by:

$$d_{k}^{PPR} = \begin{cases} -\nabla f_{k}, & k = 1, \\ -\nabla f_{k} + \beta_{k} \frac{\|\nabla f_{k}^{\top} s_{k-1}\|}{\|s_{k-1}\|^{2}} s_{k-1}, & k \ge 2, \ |\beta_{k}| \le \beta_{k}^{PPR}, \\ -\nabla f_{k} - \delta \frac{\|\nabla f_{k}^{\top} s_{k-1}\|}{\|s_{k-1}\|} s_{k-1}, & \text{otherwise.} \end{cases}$$
(9)

5 of 27

In this section, we employ  $\beta_k^{FR}$  as a CG formula. Eqn. (9) can be used for any CG formula related to the FR method, i.e.  $|\beta_k| \leq \beta_k^{FR}$ . Algorithm 1 illustrates the steps acquired in obtaining the stationary point of the optimization function.

#### Algorithm 1

**Step 1.** Establish an initial point  $x_1$ , initial direction  $d_1 = -g_1$  as well as set k := 1

Step 2.Provided that the stopping criterion is met, we may stop.

**Step 3**. Calculate the search direction  $d_k$  according to Eqn. (2) utilizing Eqn. (9).

**Step 4.** Calculate these step sizes  $\alpha_k$  utilizing Eqns. (3) and (4).

**Step 5.** Update  $x_k$  relying on Eqn. (2).

**Step 6**. Set k := k + 1 and move forward to Step 2.

## 3. Global Convergence Properties for Eqn. 11

The objective function is considered to be subject to the following presumption. Assumption 1

I. The level set  $\Psi = \{x \in \mathbb{R}^n : f(x) \leq f(x_1)\}$  is bounded, which implies the existence of a nonnegative constant,  $\rho$  provided that

$$||x|| \le \rho, \forall x \in \Psi.$$

II. In several neighborhoods W of  $\Psi$ , f refers to a differentiable as well as a continuous function. Moreover, it has a gradient that is Lipchitz continuous. This implies that, for any  $x, y \in W$ , a constant L > 0 exists given that

$$\left\|\nabla f(x) - \nabla f(y)\right\| \le L \left\|x - y\right\|.$$

This assumption suggests the existence of a positive constant  $\eta$  given that

$$\|\nabla f(u)\| \le \eta, \forall \eta \in W$$

To establish the CG method's convergence characteristics with multiple line searches, which include SWP as well as WWP line searches, the following Lemma, introduced by Zoutendijk [26], is typically utilized.

**Lemma 3.1** Let Assumption 1 to be true. We now take into consideration any form with regard to Eqn. (2),in which  $\alpha_k$  fulfills the WWP line search with the DC expressed in Eqn. (8). Therefore, the inequality given below holds.

$$\sum_{k=1}^{\infty} \frac{\left(\nabla f_k^T d_k\right)^2}{\left\|d_k\right\|^2} < \infty.$$
(10)

The theorem given below demonstrates that the new formula meets the DC (8).Note that the proof is analogous to the one provided in [2].

**Theorem 3.1** Assume the sequences  $\{x_k\}$  as well as  $\{d_k\}$  be generated by the methods (2) as well as (9). We take into consideration the line search method derived from Eqns. (3) as well as (4). Consequently, the sufficient DC specified in Eqn. (8) is met. **Proof.** 

**Case 1**  $|\beta_k| \leq \beta_k^{FR}$ Upon multiplying Eqn. (9) with  $g_k^T$  gives

$$\nabla f_k^T d_k = - \|\nabla f_k\|^2 + \frac{\|\nabla f_k\|^2}{\|\nabla f_{k-1}\|^2} \nabla f_k^T d_{k-1} + \delta \frac{\nabla f_k^T s_{k-1}}{\|s_{k-1}\|^2} \nabla f_k^T s_{k-1}.$$

Utilizing a SWP line search, we now have

$$\begin{split} (\delta - 1) + \sigma \frac{\nabla f_{k-1}^T d_{k-1}}{||\nabla f_{k-1}||^2} &\leq \frac{\nabla f_k^T d_k}{||\nabla f_k||^2} \leq (\delta - 1) - \sigma \frac{\nabla f_{k-1}^T d_{k-1}}{||\nabla f_{k-1}||^2} \\ \delta - \sum_{j=0}^{k-1} (\sigma)^j &\leq \frac{\nabla f_k^T d_k}{||\nabla f_k||^2} \leq \delta - 2 + \sum_{j=0}^{k-1} (\sigma)^j \\ &\sum_{j=0}^{k-1} (\sigma)^j \leq \frac{1 - (\sigma)^k}{1 - \sigma}, \end{split}$$

We can now write

$$\delta - \frac{1 - (\sigma)^k}{1 - \sigma} \le \frac{\nabla f_k^T d_k}{||\nabla f_k||^2} \le \delta - 2 + \frac{1 - (\sigma)^k}{1 - \sigma}.$$

When  $\sigma \leq \frac{1}{2} - \delta$ , we have  $\frac{1-(\sigma)^k}{1-\sigma} < 2 - \delta$ . Suppose  $c = (2-\delta) - \frac{1-(\sigma)^k}{1-\sigma}$ . Then,

$$c - (2 - \delta) \le \frac{\nabla f_k^T d_k}{||\nabla f_k||^2} \le -c$$
$$\nabla f_k^T d_k \le -c||\nabla f_k||^2.$$

Case 2  $\beta_k > \beta_k^{FR}$ 

$$\nabla f_k^T d_k = -||\nabla f_k||^2 - \delta \frac{\nabla f_k^T p_{k-1}}{\|p_{k-1}\|^2} \nabla f_k^T p_{k-1} = -||\nabla f_k||^2 - \delta \frac{\|\nabla f_k p_{k-1}\|^2}{\|p_{k-1}\|^2} \le -c||\nabla f_k||^2.$$

This completes the proof.

**Theorem 3.2** Suppose Assumption 1 is met. Additionally, presume that sequences  $\{g_k\}$  as well as  $\{d_k\}$  are produced through Algorithm 1, in which  $\alpha_k$  is gained from Eqns. (3) and (4) with  $\sigma \leq \frac{1}{2} - \delta$ . We now have that  $\lim_{k \to \infty} \inf \|\nabla f_k\| = 0$ .

### Proof.

**Case 1:**  $|\beta_k| \leq \beta_k^{FR}$ . The theorem is proved via contradiction. Let

$$\|\nabla f_k\| \ge \varepsilon \quad \text{for all } k \ge 0. \tag{11}$$

 $8~{\rm of}~27$ 

By taking square with respect to both sides of Eqn. (6), we obtain

$$||d_k||^2 = ||\nabla f_k||^2 - 2\beta_k \nabla f_k^T d_{k-1} + \beta_k^2 ||d_{k-1}||^2$$

Applying the formula in Eqn. (9) yields

$$\begin{aligned} \|d_k\|^2 &\leq \|\nabla f_k\|^2 - 2\frac{\|\nabla f_k\|^2}{\|\nabla f_{k-1}\|^2} \nabla f_k^T d_{k-1} - 2\delta \frac{\nabla f_k^T p_{k-1}}{\|p_{k-1}\|^2} \nabla f_k^T d_{k-1} + \frac{\|\nabla f_k\|^4}{\|\nabla f_{k-1}\|^4} \|d_{k-1}\|^2 + \delta^2 \frac{(\nabla f_k^T s_{k-1})^2}{\|s_{k-1}\|^4} \|d_{k-1}\|^2 \\ &+ 2\delta \frac{\|\nabla f_k\|^2}{\|\nabla f_{k-1}\|^2} \frac{|\nabla f_k^T s_{k-1}|}{\|s_{k-1}\|^2} \|d_{k-1}\|^2, \end{aligned}$$

We then have the equation given below.

$$\|d_k\|^2 \le (1+\delta)^2 \|\nabla f_k\|^2 + \frac{\|\nabla f_k\|^4}{\|\nabla f_{k-1}\|^4} \|d_{k-1}\|^2 + (2+2\delta) \frac{\|\nabla f_k\|^2}{\|\nabla f_{k-1}\|^2} \left|\nabla f_k^T d_{k-1}\right|.$$

Dividing both sides of the equation by  $\|\nabla f_k\|^4$  and employing Theorem 3.1 yields

$$\frac{\|d_k\|^2}{\|\nabla f_k\|^4} \le \frac{\|d_{k-1}\|^2}{\|\nabla f_{k-1}\|^4} + \frac{\sigma \ c(2+2\delta) + (1+\delta)}{\|\nabla f_k\|^2}^2$$

Repeating similar process and utilising the relation  $\frac{1}{\|\nabla f_0\|} = \frac{1}{\|d_0\|}$  gives

$$\frac{\|d_k\|^2}{\|\nabla f_k\|^4} \le (\sigma \ c(2+2\delta) + (1+\delta)^2) \sum_{i=0}^k \frac{1}{\|\nabla f_i\|^2}$$

Now, by using Eqn. (3), we obtain

$$\frac{\left\|\nabla f_k\right\|^4}{\left\|d_k\right\|^2} \ge \frac{\varepsilon^2}{\left(\sigma \ c(2+2t) + (1+t)^2\right)k}$$

Thus,

$$\sum_{k=0}^{\infty} \frac{\|\nabla f_k\|^4}{\|d_k\|^2} = \infty.$$

contradicting Eqn. (10). Therefore,  $\lim_{k \to \infty} \inf \|\nabla f_k\| = 0$ , completing the proof. **Case 2:**  $\beta_k > \beta_k^{FR}$ Similar to Case 1, let

$$\|\nabla f_k\| \ge \varepsilon$$
 for all  $k \ge 0$ .

From Eqn. (3), we have

$$\|d_k\| = \left\| -\nabla f_k - \delta \frac{\nabla f_k^T s_{k-1}}{\|s_{k-1}\|^2} s_{k-1} \right\| \le (1+\delta) \|\nabla f_k\| \le 1+\eta = \varepsilon_1,$$

where  $\varepsilon_1$  is some positive constant, yielding

$$\sum_{k=1}^{\infty} \frac{\|\nabla f_k\|^4}{\|d_k\|^2} \ge \sum_{k=1}^{\infty} \frac{\varepsilon^4}{\varepsilon_1^2} = \infty,$$

which contradicts Eqn. (10). Thus, in all cases, we have

$$\lim_{k \to \infty} \inf \|\nabla f_k\| = 0$$

which completes the proof.

## 4. Proposed CG method that is related to $\beta_k^{HS}$ or $\beta_k^{PRP}$

Even though  $\beta_k^{HS}$  and  $\beta_k^{PRP}$  are efficient CG methods while  $\beta_k^{HS}$  inherits the conjugacy condition, both of them can not satisfy the global convergence and the descent properties. Both of these issues are considered open problems. To address these difficulties, we construct the search direction given below relying on the approaches from [18] and [2].

$$d_{k}^{*} = \begin{cases} -\nabla f_{k}, & k = 1, \\ -\nabla f_{k} + (\beta_{k}^{HS} or \ \beta_{k}^{PRP}) d_{k-1} + \delta \frac{\nabla f_{k}^{T} s_{k-1}}{\|s_{k-1}\|^{2}} s_{k-1}, & k \ge 2, \ if \ \|\nabla f_{k}\|^{2} > \left|\nabla f_{k}^{T} \nabla f_{k-1}\right| \\ -\nabla f_{k} - \mu_{k} \frac{\nabla f_{k}^{T} s_{k-1}}{\|s_{k-1}\|^{2}} s_{k-1}. \ \text{elsewhere} \end{cases}$$
(12)

As a special case, we employ  $\beta_k^{HS}$  and the condition  $\|\nabla f_k\|^2 > |\nabla f_k^T \nabla f_{k-1}|$  in Eqn. (4) as follows:

$$d_{k}^{HS+\delta} = \begin{cases} -\nabla f_{k}, & k = 1, \\ -\nabla f_{k} + \left(\frac{\nabla f_{k}^{T} \nabla f_{k} - \nabla f_{k}^{T} \nabla f_{k-1}}{d_{k-1}^{T} y_{k-1}}\right) d_{k-1} + \delta \frac{\nabla f_{k}^{T} s_{k-1}}{\|s_{k-1}\|^{2}} s_{k-1}, & k \ge 2, \text{ if } \|\nabla f_{k}\|^{2} > \|\nabla f_{k}^{T} \nabla f_{k}\|, \\ -\nabla f_{k} - \mu_{k} \frac{\nabla f_{k}^{T} s_{k-1}}{\|s_{k-1}\|^{2}} s_{k-1}, & \text{elsewhere.} \end{cases}$$
(13)

Eqn. (4) possesses the descent property as well as convergence analysis. On the other hand, the numerical results show that Eqn. (4) outperforms DL+ and CG-Descent 6.8. **Theorem 3.3Let** the sequences  $\{x_k\}$  as well as  $\{d_k\}$  be generated by the Eqns. (2) and (4).We take into consideration the line search method derived utilizing Eqns. (3) as well as (4). Consequently, the sufficient DC (8) is met with  $\sigma < \frac{1}{3}$  and  $\delta \leq \frac{1-3\sigma}{1-\sigma}$ . **Proof.** 

Case 1:  $\|\nabla f_k\|^2 > |\nabla f_k^T \nabla f_{k-1}|$ Upon multiplying Eqn. (4) with  $\nabla f_k^T$  gives

$$\nabla f_k^T d_k = - \|\nabla f_k\|^2 + \frac{\nabla f_k^T \nabla f_k - \nabla f_k^T \nabla f_{k-1}}{d_{k-1}^T y_{k-1}} \nabla f_k^T d_{k-1} + \delta \frac{\nabla f_k^T s_{k-1}}{\|s_{k-1}\|^2} \nabla f_k^T s_{k-1}.$$

 $9 \ {\rm of} \ 27$ 

By using the condition in Eqn. (4), we obtain

$$\nabla f_k^T d_k \le (\delta - 1) \|\nabla f_k\|^2 + \frac{2 \|\nabla f_k\|^2}{d_{k-1}^T y_{k-1}} \nabla f_k^T d_{k-1}.$$

Utilizing the SWP line search, we now have

$$\frac{\nabla f_k^T d_k}{||\nabla f_k||^2} \le (\delta - 1) - 2\sigma \frac{\nabla f_{k-1}^T d_{k-1}}{(\sigma - 1)\nabla f_{k-1}^T d_{k-1}} = (\delta - 1) + \frac{2\sigma}{(1 - \sigma)}.$$

When  $\sigma < \frac{1}{3}$  and  $\delta \leq \frac{1-3\sigma}{1-\sigma}$ , we have

$$\nabla f_k^T d_k < 0.$$

This completes the proof. **Case 2**:  $\|\nabla f_k\|^2 < |\nabla f_k^T \nabla f_{k-1}|$ We have

$$d_{k} = -\nabla f_{k} - \mu_{k} \frac{\nabla f_{k}^{T} s_{k-1}}{\|s_{k-1}\|^{2}} s_{k-1}$$

Multiply the equation by

$$\nabla f_k^T$$

we obtain

$$\nabla f_k^T d_k = - \left\| \nabla f_k \right\|^2 - \mu_k \frac{\nabla f_k^T s_{k-1}}{\left\| s_{k-1} \right\|^2} \nabla f_k^T s_{k-1} = - \left\| \nabla f_k \right\|^2 - \mu_k \frac{- \left\| \nabla f_k^T s_{k-1} \right\|^2}{\left\| s_{k-1} \right\|^2} < 0.$$

Thus, in both cases, the DC is satisfied.

Gilbert and Nocedal [11] named a property called Property<sup>\*</sup> to perform a specialized function in research on CG formulas associated with the PRP method given below. **Property**<sup>\*</sup>

We take into consideration a method of the form (2) as well as (6) and let

$$0 < \gamma \le \|g_k\| \le \bar{\gamma}.$$

The method has Property<sup>\*</sup> provided that  $\exists$  a constant b > 1 as well as  $\lambda > 0$ . Note that  $\forall k \ge 1$ , we have  $|\beta_k| \le b$ . Moreover, if  $||x_k - x_{k-1}|| \le \lambda$ , this implies that

$$|\beta_k| \le \frac{1}{2b}.$$

**Lemma 3.2** Let Assumption 1 is met. We take into consideration any form of Eqns. (2) as well as (3). Then,  $\beta_k^{HS}$  meets Property\* and the proof is similar to the one given in [11].

**Proof.** Let  $b = \frac{2\bar{\gamma}^2}{c((1-\delta)-\sigma)\gamma^2}$  and  $\lambda = \frac{c((1-\delta)-\sigma)\gamma^2}{2(L\lambda\bar{\gamma})b}$ . Following from here, utilizing  $\beta_k^{HS}$  and SWP line search, we get

$$\left|\beta_{k}^{HS}\right| \leq \left|\frac{g_{k}^{T}(g_{k} - g_{k-1})}{d_{k-1}^{T}y_{k-1}}\right| \leq \frac{\left\|g_{k}\right\|^{2} + \left|g_{k}^{T}g_{k-1}\right|}{c((1-\delta) - \sigma)\left\|g_{k}\right\|^{2}} \leq \frac{2\bar{\gamma}^{2}}{c((1-\delta) - \sigma)\gamma^{2}} = b.$$

 $10~{\rm of}~27$ 

Provided that  $||x_{k+1} - x_k|| \leq \lambda$  satisfies Assumption 1, we then have

$$\left|\beta_{k}^{HS}\right| \leq \left|\frac{\left\|g_{k}^{T}\right\|\left(\|g_{k} - g_{k-1}\|\right)}{d_{k-1}^{T}y_{k-1}}\right| \leq \frac{(L\lambda\bar{\gamma})}{c((1-\delta) - \sigma)\gamma^{2}} \leq \frac{1}{2b}$$

Lemma 3.3 We now have an assumption that Assumption 1 is satisfied, while sequences  $\{g_k\}$  as well as  $\{d_k\}$  are formed by applying Algorithm 1. Following from here, the step size  $\alpha_k$  is created utilizing the SWP line search provided that the sufficient DC is satisfied. Given that  $\beta_k \ge 0$ , a constant  $\gamma > 0$  exists in which  $||g_k|| > \gamma \forall k \ge 1$ . Hence,  $d_k \ne 0$  and

$$\sum_{k=0}^{\infty} \|u_{k+1} - u_k\|^2 < \infty.$$
(14)

in which  $u_k = \frac{d_k}{\|d_k\|}$ . **Proof.** First, provided that  $d_k = 0$ . Thus, following the sufficient DC, we now obtain  $g_k = 0$ . Therefore, we assume that  $d_k \neq 0$  with

$$\bar{\gamma} \ge \|g_k\| \ge \gamma > 0, \quad \forall k \ge 1.$$
 (15)

We now define

$$u_k = w_k + \delta_k u_{k-1},$$

in which

$$w_{k} = \frac{-g_{k} + \theta_{k}}{\|d_{k}\|}, \theta_{k} = \delta \frac{g_{k}^{T} s_{k-1}}{\|s_{k-1}\|^{2}} s_{k-1}, \delta_{k} = \beta_{k}^{HS} \frac{\|d_{k-1}\|}{\|d_{k}\|}.$$

Provided that  $u_k$  expresses a unit vector, we now obtain

$$||w_k|| = ||u_k - \delta_k u_{k-1}|| = ||\delta_k u_k - u_{k-1}||.$$

Following the triangular inequality and  $\delta_k \geq 0$ , we now have

$$\|u_{k} - u_{k-1}\| \le (1 + \delta_{k}) \|u_{k} - u_{k-1}\| = \|u_{k} - \delta_{k}u_{k-1} - (u_{k-1} - \delta_{k}u_{k})\|.$$
(16)  
$$\le \|u_{k} - \delta_{k}u_{k-1}\| + \|u_{k-1} - \delta_{k}u_{k}\| = 2 \|w_{k}\|.$$

Next, we express

$$\nu = -g_k + \delta \frac{g_k^T s_{k-1}}{\|s_{k-1}\|^2} s_{k-1}.$$

By utilizing the triangular inequality, we gain:

$$\|\nu\| \le (1+\delta) \, \|g_k\| = (1+\delta)\bar{\gamma} = T.$$
(17)

Then,  $\|\nu\| \le T$ . From Eqn. (16), we have  $\|u_k - u_{k-1}\| \le 2w$ .

By Eqns. (16) and (17), we get

$$\sum_{k=0}^{\infty} \|u_{k+1} - u_k\|^2 \le 4 \sum_{k=0}^{\infty} \|w\|^2 \le 4T^2 \sum_{k=0}^{\infty} \frac{1}{\|d_k\|^2} < \infty,$$

completing the proof.

By Lemmas 4.1 and 4.2 in [11], we obtained the results given below.

**Theorem 3.4** Suppose sequences  $\{x_k\}$  as well as  $\{d_k\}$  be generated by Eqns. (2) as well as (3) by utilizing the CG method given in Eqn. (4). Moreover, suppose the step size satisfies (3) as well as (4). By employing Lemmas 3.2, 3.3, as well as Lemmas 4.1 4.2 in [11], we gain the findings such that  $\liminf_{k\to\infty} ||g_k|| = 0$ .

#### 5. Numerical Findings and Discussions

To assess the effectiveness of the new search direction as defined in Eqn. (??), we selected over 180 test functions from the CUTEr [5] library. We conducted a comprehensive comparison with robust CG coefficients, including the DL+ and FR CG methods. The comparison criteria included CPU time, the number of function evaluations, the number of iterations as well as the number of gradient evaluations. By analyzing these metrics, we aimed to determine how the new search direction performs relative to the benchmark methods. We used the SWP line search setting  $\delta = 0.01$  as well as  $\sigma = 0.1$  for all methods. The results for the DL+, PFR, and FR methods were obtained by executing a modified version of the CG-Descent code. This modified code is available on the Hager webpage(see here). By adapting the original CG-Descent code, we ensured compatibility with our specific requirements for testing these methods.

The norm of the gradient was used as the stopping criterion for all algorithms, particularly when  $||g_k|| \leq 10^{-6}$ . The computations were performed on a host computer running Ubuntu 20.04.2.0 LTS OS, equipped with an 11th Gen Intel(R) Core(TM) i5-1155G7 @ 2.50GHz processor and 8.00 GB RAM. The performance findings are depicted in Figures 1 to 4, utilizing a performance measure established by Dolan and More [8]. Figure 1 illustrates that the PFR method outperforms the DL+ and FR methods in terms of the number of iterations required. As seen in Figure 2, PFR significantly surpasses all other methods in terms of the number of function evaluations. Meanwhile, Figure 3 demonstrates that PFR outperforms DL+ and FR in the context of gradient evaluations. Additionally, Figure 4 indicates that the PFR method not only strongly outperforms the FR CG method with regards to the CPU time but is also competitive with the DL+ CG method.

The numerical findings presented below validate the efficacy of the proposed search direction HS+TA. Detailed results are provided in Table 1. In this study, we utilized over 180 test functions from the CUTEr library to rigorously assess the performance of our

 $12 \ {\rm of} \ 27$ 





Figure 1: Number of iterations graph



Figure 2: Number of function evaluations graph



Figure 3: Number of gradient evaluations graph



proposed methods. As an example of using  $|\beta_k| \leq \beta_k^{FR}$  in (9), we employ  $\beta_k^{AZPRP}$  as follows:

$$d_{k}^{TAPRP} = \begin{cases} -\nabla f_{k}, & k = 1\\ -\nabla f_{k} + \beta_{k}^{AZPRP} d_{k-1} + \delta \frac{\nabla f_{k}^{T} s_{k-1}}{\|s_{k-1}\|^{2}} s_{k-1}, & k \ge 2. \end{cases}$$

All computations were performed on a host machine running the Ubuntu 20.04 operating system, equipped with an AMD A4-7210 CPU and 4 GB of RAM. Here, we compared the modified search directions  $d_k^{HS+TA}$ ,  $d_k^{TAPRP}$ , DL+ and CG-Descent 6.8 methods utilizing a SWP line search in obtaining the step length having  $\sigma = 0.1$  for  $d_k^{HS+TA}$ ,  $d_k^{TAPRP}$ and DL+ with  $\delta = 0.01$ . We executed the code using the default parameters specified by the authors for CG-Descent 6.8. The results are illustrated in Figures 5-7, utilizing a performance measure developed by Dolan and More [5]. From Figures 5-7, it can be observed that the new search directions strongly outperformed DL+, CG-Descent 6.8, and  $d_k^{TAPRP}$  with regards to the function evaluation, number of iterations as well as CPU time.



Figure 5: Number of iteration graph

P<sub>s</sub>(t)

Figure 6: Number of function evaluations graph



Figure 7: CPU time graph

In Figure 8, we present the function number that is listed in the Table 2 (see in Appendix below) with its gradient for  $d_k^{HS+TA}$ . We observe that the number of success functions is more than 99%.



Figure 8: Function number with the gradient for  $\mathsf{HS}\mathsf{+}\mathsf{TA}$  method.

## 6. Application on Pi-Electric circuit

Figure 9 depicts a Pi-Electric circuit, which is utilized as the output network of automatically tuned transmitters [19]. In this circuit, the tuning capacitor  $C_1$  as well as the loading capacitor  $C_2$  are adjusted using semi-independent control loops. Here, the objectivesfor this electric circuit are given below:

1. To achieve a 180° phase shift between  $I_1(jw)$  and the voltage across  $C_1$  at a given carrier frequency  $\omega$ .

2. To attain a specific level of power output to an antenna system.

3. To determine the values of  $C_1$  as well as  $C_2$  that maximize the power delivered to  $R_2$ . Suppose the power output across  $R_2$  be expressed by  $P_0$  given below:

$$P_0 = \frac{|V_0(jw)|^2}{R_2}$$

Let values of  $\tau_1 = R_1 C_1$  and  $\tau_2 = R_2 C_2$ . Then, from the circuit analysis, we have  $-R_1 R_2 I_1(s)$ 

$$V_0(s) = \frac{-R_1 R_2 I_1(s)}{s^3 (L\tau_1 \tau_1) + s^2 L(\tau_1 + \tau_2) + s(L + R_1 \tau_2 + R_2 \tau_1) + R_1 + R_2}$$



Figure 9: Pi-Electric circuit [8].

$$V_0(jw) = \frac{I_1 R_1}{\sqrt{RE^2 + IM^2}}$$

where  $I_1 \equiv |I_1(jw)|$ 

$$RE = 1 + \frac{R_1}{R_2} - \frac{w^2 L \tau_1}{R_2} - \frac{w^2 L \tau_2}{R_2}$$
$$IM = \frac{wL}{R_2} + \frac{R_1 w \tau_2}{R_2} + w \tau_1 - \frac{w^3 L \tau_1 \tau_2}{R_2}$$

To find  $P_0$ , minimize f such that

$$f = [Re(V_0(jw))]^2 + [IM(V_0(jw))]^2$$

having dimensionless parameters stated below:

$$a = \frac{R_1}{R_2}$$
$$b = \frac{wL}{R_2}$$
$$x_1 = w\tau_1$$

$$x_2 = w\tau_2$$

For the case when a = 10 and b = 1, the objective function that we want to minimize is given by:

$$f(x_1, x_2) = (11 - x_1 - x_2)^2 + (1 + 10x_2 + x_1 - x_1x_2)^2$$

Its graph is shown in Figure 10.



Figure 10: Graph of  $f(x_1, x_2)$  by using MATLAB.

By using Algorithm 1, we found that:

$$\begin{aligned} x_1 &= 7, \\ x_2 &= -2, \end{aligned}$$

with function value 40.

## 7. Application on Image Restoration

Among the important applications of the CG method is restoring damaged images. In this study, we applied Gaussian noise having an SD of 25% to the original images presented in Table 3 and then used Algorithm 1 to restore these images. To illustrate the efficacy of the suggested method (HS+TA), we compared Algorithm 1 with CG-Descent 6.8 and DL+ with regards to the number of iterations, CPU time, as well as RMSE. Moreover, the RMSE between the restored image as well as the original true image was used to evaluate the restoration quality.

$$RMSE = \frac{\left\|\tau - \tau_k\right\|_2}{\left\|\tau\right\|}.$$

The restored image is expressed by  $\tau_k$ , while the true image by $\tau$ . Moreover, the RMSE is used to assess the restored image's quality, with lower RMSE values indicating higher image quality. The data presented in Table 2 demonstrates that the new search direction surpasses the performance of CG-Descent 6.8 and DL+ in several aspects, including the number of iterations, CPU time, including the RMSE value. The stopping criteria for the process is

$$\frac{\|x_{k+1} - x_k\|_2}{\|x_k\|_2} < \varepsilon.$$

 $16~{\rm of}~27$ 

This context yields  $\varepsilon = 10^{-3}$ . Provided that  $\varepsilon = 10^{-4}$  or  $\varepsilon = 10^{-6}$ , the RMSE remains constant, which indicates that a fixed RMSE value can correspond to a varying number of iterations. This implies that while the RMSE does not change, the number of iterations obligatory to achieve this RMSE may fluctuate.



Figure 11: The number of iterations for image Figure 12: CPU time for image restorationreprerestoration represented in Table 2. sented in Table 2.



Figure 13: RMSE for image restoration represented in Table 2.

Figures 11, 12, and 13 demonstrate that the latest modification HS+TA outperforms DL+ and CG-Descent in the number of iterations, CPU as well as the RMSE value. On the other hand, we found that CG-Descent outperforms DL+ in all figures. Table 3 below presents the results of restoring corrupted images utilizing HS+TA, highlighting its effectiveness and efficiency. These outcomes suggest that HS+TA is a robust method for image restoration, successfully recovering images to a high standard.

| Image                  | Original image | Image with Gaussian noise | Restored image |
|------------------------|----------------|---------------------------|----------------|
| Moon (128 pixels)      |                |                           |                |
| Cameraman (128 pixels) |                |                           |                |
| Mandi (128 pixels)     |                | 0                         |                |
| Mandi (256 pixels)     | 1 Con          | 0.00                      |                |
| Kids (512 pixels)      |                |                           |                |
| M.83 (1024 pixels)     |                |                           |                |

Table 1: Restoration of corrupted images of Moon, Cameraman, Mandi, Coins, Kids, as well as M.83 using HS+TA.

## 8. Conclusion

This research develops a modified CG method based on Taylor expansion. The proposed method satisfies both descent and convergence properties. Moreover, numerical findings demonstrate that the suggested method is robust and effective, outperforming or matching the performance of CG-Descent 6.8 and DL+. In future work, we plan to apply these methods to machine learning applications to explore their potential in this domain.

# Acknowledgements

The editors and reviewers are gratefully acknowledged by the authors for any comments and recommendations that might make this work better. We appreciate Dr. William Hager's contribution to the CG method's source code.

## Availability of data and material

All data is available in the work itself.

### Competing interests

No competing interests are declared by the author.

#### References

- [1] M. Al-Baali. Descent property and global convergence of the fletcher—reeves method with inexact line search. *IMA Journal of Numerical Analysis*, 5(1):121–124, 1985.
- [2] A. Alhawarat, G. Alhamzi, I. Masmali, and Z. Salleh. A descent four-term conjugate gradient method with global convergence properties for large-scale unconstrained optimisation problems. *Mathematical Problems in Engineering*, (1):6219062, 2021.
- [3] A. Alhawarat, M. Mamat, M. Rivaie, and Z. Salleh. An efficient hybrid conjugate gradient method with the strong wolfe-powell line search. *Mathematical Problems in Engineering*, 2015.
- [4] A. Alhawarat, Z. Salleh, M. Mamat, and M. Rivaie. An efficient modified polak-ribière-polyak conjugate gradient method with global convergence properties. *Optimization Methods and Software*, 32(6):1299–1312, 2017.
- [5] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint. Cute: Constrained and unconstrained testing environment. ACM Transactions on Mathematical Software (TOMS), 21(1):123–160, 1995.
- [6] Y. H. Dai and L. Z. Liao. New conjugacy conditions and related nonlinear conjugate gradient methods. Applied Mathematics and Optimization, 43(1):87–101, 2001.
- [7] Y. H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. *SIAM Journal on Optimization*, 10(1):177–182, 1999.
- [8] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. *Mathematical Programming*, 91(2):201–213, 2002.
- [9] R. Fletcher. Practical Methods of Optimization, 2nd Edition. Chichester, Wiley, 1987.
- [10] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The Computer Journal, 7(2):149–154, 1964.
- [11] J. C. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient methods for optimization. SIAM Journal on Optimization, 2(1):21–42, 1992.
- [12] W. W. Hager and H. Zhang. The limited memory conjugate gradient method. SIAM Journal on Optimization, 23(4):2150–2168, 2013.

- [13] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6):409–436, 1952.
- [14] X. Jiang, J. Jian, D. Song, and P. Liu. An improved polak-ribière-polyak conjugate gradient method with an efficient restart direction. *Computers & Applied Mathematics*, 40:1–24, 2021.
- [15] X. Jiang, G. Sun, and J. Jian. A family of dai-liao conjugate gradient methods with strong convergence for image restoration and machine learning. 2024.
- [16] G. Li, C. Tang, and Z. Wei. New conjugacy condition and related new conjugate gradient methods for unconstrained optimization. *Journal of Computational and Applied Mathematics*, 202(2):523–539, 2007.
- [17] Y. Liu and C. Storey. Efficient generalized conjugate gradient algorithms, part 1: theory. Journal of Optimization Theory and Applications, 69(1):129–137, 1991.
- [18] G. Ma, L. Liu, J. Jian, and X. Yan. A new hybrid cgpm-based algorithm for constrained nonlinear monotone equations with applications. *Journal of Applied Mathematics and Computing*, 70(1):103–147, 2024.
- [19] S. K. Mishra and B. Ram. Introduction to unconstrained optimization with R. Springer Nature, 2019.
- [20] E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 3(R1):35-43, 1969.
- [21] M. J. Powell. Nonconvex minimization calculations and the conjugate gradient method. In *Numerical Analysis*, pages 122–141. Springer, Berlin, Heidelberg, 1984.
- [22] P. Wolfe. Convergence conditions for ascent methods. SIAM Review, 11(2):226–235, 1969.
- [23] P. Wolfe. Convergence conditions for ascent methods. ii: Some corrections. SIAM Review, 13(2):185–188, 1971.
- [24] K. S. Yow, N. Liao, S. Luo, R. Cheng, C. Ma, and X. Han. A survey on machine learning solutions for graph pattern extraction. arXiv preprint arXiv:2204.01057, 2023.
- [25] Kai Siong Yow, Ningyi Liao, Siqiang Luo, and Reynold Cheng. Machine learning for subgraph extraction: Methods, applications and challenges. In *Proceedings of the VLDB Endowment*, volume 16, pages 3864–3867, 2023.
- [26] G. Zoutendijk. Nonlinear programming, computational methods. In Integer and Nonlinear Programming, pages 37–86. 1970.

Table 2: The test function with the number of iterations, function evaluations, gradient evaluations, function value, gradient value, and CPU time for HS+TA.

| Function | Function  | DIM     | Iteration | Fun.   | Grad.  | Final f  | Final g   | Time  |
|----------|-----------|---------|-----------|--------|--------|----------|-----------|-------|
| num-     |           |         | (HS+TA)   | Evalu- | Eval-  |          |           |       |
| ber      |           |         |           | ations | ua-    |          |           |       |
|          |           |         |           |        | tions  |          |           |       |
| 1        | AKIVA     | 2       | 8         | 20     | 15     | 6.166042 | 6.97E-07  | 0.02  |
| 2        | ALLINITU  | 4       | 9         | 25     | 18     | 5.744385 | 1.61E-09  | 0.02  |
| 3        | ARGLINA   | 200     | 1         | 3      | 2      | 200      | 1.24E-11  | 0.02  |
| 4        | ARGLINB   | 200     | 1         | 3      | 2      | 99.62547 | 6.69E-06  | 0.02  |
| 5        | ARWHEAD   | 5000    | 6         | 16     | 12     | 0        | 1.84E-07  | 0.03  |
| 6        | BARD      | 3       | 12        | 32     | 22     | 0.008215 | 3.28E-07  | 0.02  |
| 7        | BDQRTIC   | 5000    | 61        | 162    | 141    | 20006.26 | 5.64 E-07 | 0.02  |
| 8        | BEALE     | 2       | 11        | 33     | 26     | 1.66E-19 | 2.57E-09  | 0.02  |
| 9        | BENNETT5I | S       | 14        | 44     | 34     | 0.000539 | 6.73E-08  | 0.02  |
| 10       | BIGGS6    | 6       | 24        | 64     | 44     | 0.005656 | 2.03E-07  | 0.02  |
| 11       | BOX       | 10000   | 7         | 25     | 21     | -1864.54 | 7.17E-07  | 0.02  |
| 12       | BOX3      | 3       | 10        | 23     | 14     | 6.37E-15 | 9.22E-08  | 0.02  |
| 13       | BOXBODLS  | 2       | 12        | 75     | 69     | 1168.009 | 2.64E-08  | 0.02  |
| 14       | BOXPOWER  | 20000   | 29        | 72     | 47     | 3.3E-12  | 7.03E-08  | 0.03  |
| 15       | BRKMCC    | 2       | 5         | 11     | 6      | 0.169043 | 6.22E-08  | 0.02  |
| 16       | BROWNAL   | 200     | 5         | 64     | 61     | 1.47E-09 | 1.18E-06  | 0.02  |
| 17       | BROWNBS   | 2       | 10        | 24     | 18     | 0        | 0         | 0.02  |
| 18       | BROWNDEN  | V 4     | 16        | 38     | 31     | 85822.2  | 1.53E-10  | 0.02  |
| 19       | BROYDN7D  | 5000    | 57        | 104    | 79     | 3441.346 | 9.15E-07  | 0.02  |
| 20       | BRYBND    | 5000    | 45        | 105    | 64     | 0.538446 | 0.000967  | 0.02  |
| 21       | CHAINWOO  | 4000    | 12798     | 26461  | 14190  | 1651.345 | 5.92E-07  | 3.06  |
| 22       | CHWIRUT1I | 3       | 15        | 43     | 34     | 2384.477 | 3.18E-07  | 0.02  |
| 23       | CHWIRUT2I | 3       | 15        | 35     | 25     | 513.048  | 3.58E-07  | 0.02  |
| 24       | CLIFF     | 2       | 10        | 46     | 39     | 0.199787 | 1.95E-07  | 0.02  |
| 25       | COSINE    | 10000   | 10        | 48     | 42     | -9999    | 4.37E-07  | 0.03  |
| 26       | CRAGGLVY  | 5000    | 88        | 178    | 149    | 1688.215 | 9.4E-07   | 0.06  |
| 27       | CUBE      | 2       | 17        | 48     | 34     | 1.65E-20 | 5.82E-09  | 0.02  |
| 28       | CURLY10   | 10000   | 49278     | 69394  | 78474  | -1003163 | 9.98E-07  | 24.87 |
| 29       | CURLY20   | 10000   | 69850     | 92869  | 116727 | -1003163 | 9.99E-07  | 49.13 |
| 30       | CURLY30   | 10000   | 74607     | 98792  | 125185 | -1003163 | 9.87E-07  | 89.41 |
| 31       | DANWOODI  | LS<br>2 | 8         | 32     | 28     | 0.004317 | 9.93E-08  | 0.02  |
| 32       | DECONVU   | 63      | 415       | 834    | 420    | 2.24E-08 | 9.73E-07  | 0.02  |
| 33       | DENSCHNA  | 2       | 6         | 16     | 12     | 1.32E-14 | 3.21E-07  | 0.02  |
| 34       | DENSCHNB  | 2       | 6         | 18     | 15     | 3.2E-19  | 1.43E-09  | 0.02  |
| 35       | DENSCHNC  | 2       | 11        | 36     | 31     | 5.27E-15 | 2.76E-07  | 0.02  |
| 36       | DENSCHND  | 3       | 14        | 46     | 40     | 5.24E-12 | 2.34E-07  | 0.02  |
| 37       | DENSCHNE  | 3       | 12        | 43     | 38     | 1.46E-13 | 7.56E-07  | 0.02  |
| 38       | DENSCHNF  | 2       | 9         | 31     | 26     | 3.18E-22 | 2.52E-10  | 0.02  |
| 39       | DIXMAANA  | 3000    | 6         | 15     | 11     | 1        | 3.94E-13  | 0.02  |
| 40       | DIXMAANB  | 3000    | 6         | 16     | 12     | 1        | 2.61E-08  | 0.02  |
| 41       | DIXMAANC  | 3000    | 6         | 14     | 9      | 1        | 2.06E-08  | 0.02  |
| 42       | DIXMAAND  | 3000    | 7         | 18     | 13     | 1        | 1.12E-07  | 0.02  |
| 43       | DIXMAANE  | 3000    | 218       | 245    | 417    | 1        | 9E-07     | 0.05  |

```
22 \text{ of } 27
```

| Function | Function  | DIM   | Iteration | Fun.   | Grad. | Final f   | Final g   | Time  |
|----------|-----------|-------|-----------|--------|-------|-----------|-----------|-------|
| num-     |           |       | (HS+TA)   | Evalu- | Eval- |           | 0         |       |
| ber      |           |       |           | ations | ua-   |           |           |       |
|          |           |       |           |        | tions |           |           |       |
| 44       | DIXMAANF  | 3000  | 111       | 227    | 119   | 1         | 9.46E-07  | 0.02  |
| 45       | DIXMAANG  | 3000  | 171       | 347    | 179   | 1         | 9.88E-07  | 0.02  |
| 46       | DIXMAANH  | 3000  | 175       | 356    | 185   | 1         | 9.89E-07  | 0.02  |
| 47       | DIXMAANI  | 3000  | 3308      | 3403   | 6529  | 1         | 9.08E-07  | 0.56  |
| 48       | DIXON3DQ  | 10000 | 10000     | 10007  | 19995 | 3.16E-13  | 7.17E-08  | 2.81  |
| 49       | DJTL      | 2     | 75        | 1163   | 1148  | -8951.55  | 3.11E-07  | 0.02  |
| 50       | DQDRTIC   | 5000  | 5         | 11     | 6     | 3.36E-17  | 1.14E-08  | 0.02  |
| 51       | DQRTIC    | 5000  | 16        | 44     | 36    | 1.18E-06  | 4.47E-07  | 0.05  |
| 52       | ECKERLE4I | -53   | 2         | 6      | 4     | 0.699696  | 3.81E-07  | 0.02  |
| 53       | EDENSCH   | 2000  | 24        | 56     | 48    | 12003.28  | 3.24E-07  | 0.02  |
| 54       | EG2       | 1000  | 3         | 8      | 5     | -998.947  | 4.88E-07  | 0.02  |
| 55       | EIGENALS  | 2550  | 8775      | 15326  | 11017 | 2.11E-10  | 7.02E-07  | 23.2  |
| 56       | EIGENBLS  | 2550  | 14010     | 28030  | 14023 | 1.92E-06  | 9.28E-07  | 31.64 |
| 57       | EIGENCLS  | 2652  | 10008     | 19716  | 10333 | 2.18E-11  | 8.83E-07  | 21.02 |
| 58       | ENGVAL1   | 5000  | 20        | 41     | 35    | 5548.668  | 5.18E-07  | 0.02  |
| 59       | ENGVAL2   | 3     | 26        | 73     | 55    | 3.27E-23  | 6.59E-10  | 0.02  |
| 60       | ENSOLS    | 9     | 22        | 47     | 27    | 788.5398  | 3.55 E-07 | 0.02  |
| 61       | EXPFIT    | 2     | 9         | 29     | 22    | 0.240511  | 3.34 E-07 | 0.02  |
| 62       | EXTROSNB  | 1000  | 2063      | 4728   | 2849  | 3.81E-07  | 7.66 E-07 | 0.7   |
| 63       | FBRAIN2LS | 4     | 79        | 259    | 204   | 0.318972  | 2.1E-07   | 0.48  |
| 64       | FBRAIN3LS | 6     | 1308      | 3934   | 3080  | 0.242722  | 9.73E-07  | 1.77  |
| 65       | FBRAINLS  | 2     | 9         | 27     | 21    | 0.416603  | 3.37E-07  | 0.03  |
| 66       | FLETCHCR  | 1000  | 209       | 410    | 238   | 7.01E-15  | 8.69E-07  | 0.02  |
| 67       | FMINSRF2  | 5625  | 284       | 578    | 299   | 1.000024  | 9.19E-07  | 0.13  |
| 68       | FMINSURF  | 5625  | 332       | 673    | 345   | 1         | 9.45 E-07 | 0.16  |
| 69       | FREUROTH  | 5000  | 29        | 64     | 58    | 608159.2  | 8.17E-07  | 0.02  |
| 70       | GAUSS1LS  | 8     | 49        | 113    | 74    | 1315.822  | 8.44E-09  | 0.02  |
| 71       | GAUSS2LS  | 8     | 49        | 124    | 87    | 1247.528  | 4.65E-09  | 0.02  |
| 72       | GBRAINLS  | 2     | 8         | 20     | 13    | 28.51586  | 4.33E-08  | 0.02  |
| 73       | GENROSE   | 500   | 1100      | 2230   | 1170  | 1         | 6.15E-07  | 0.03  |
| 74       | GROWTHLS  | 3     | 109       | 431    | 369   | 1.004041  | 6.87E-07  | 0.02  |
| 75       | GULF      | 3     | 33        | 95     | 72    | 1.15E-17  | 1.15E-17  | 0.02  |
| 76       | HAHN1LS   | 7     | 5         | 56     | 53    | 8522.662  | 4.03E-08  | 0.02  |
| 77       | HAIRY     | 2     | 17        | 82     | 68    | 20        | 7.89E-09  | 0.02  |
| 78       | HATFLDD   | 3     | 17        | 49     | 37    | 2.55 E-07 | 1.39E-07  | 0.02  |
| 79       | HATFLDE   | 3     | 13        | 37     | 30    | 2.73E-06  | 3.38E-07  | 0.02  |
| 80       | HATFLDFL  | 3     | 21        | 68     | 54    | 6.39E-05  | 9.84 E-07 | 0.02  |
| 81       | HEART6LS  | 6     | 375       | 1137   | 876   | 8.8E-17   | 2.23E-07  | 0.02  |
| 82       | HEART8LS  | 8     | 253       | 657    | 440   | 2.97E-16  | 2.3E-07   | 0.02  |
| 83       | HELIX     | 3     | 23        | 60     | 42    | 2.88E-19  | 1.3E-08   | 0.02  |
| 84       | HIELOW    | 3     | 13        | 30     | 21    | 874.1654  | 5.19E-08  | 0.02  |
| 85       | HILBERTA  | 2     | 2         | 5      | 3     | 5.75E-32  | 5.75E-32  | 0.02  |
| 86       | HILBERTB  | 10    | 4         | 9      | 5     | 9.95E-19  | 2.27E-09  | 0.02  |

23 of 27

| Function | Function  | DIM     | Iteration | Fun.   | Grad. | Final f    | Final g    | Time   |
|----------|-----------|---------|-----------|--------|-------|------------|------------|--------|
| num-     |           |         | (HS+TA)   | Evalu- | Eval- |            | _          |        |
| ber      |           |         |           | ations | ua-   |            |            |        |
|          |           |         |           |        | tions |            |            |        |
| 87       | HIMMELBB  | 2       | 4         | 18     | 18    | 2.17E-16   | 4.97E-09   | 0.02   |
| 88       | HIMMELBF  | 4       | 23        | 59     | 46    | 318.5717   | 4.39E-07   | 0.02   |
| 89       | HIMMELBG  | 2       | 7         | 22     | 17    | 3.04E-22   | 4.92E-11   | 0.02   |
| 90       | HIMMELBH  | 2       | 5         | 13     | 9     | -1         | 2.77E-07   | 0.02   |
| 91       | HUMPS     | 2       | 45        | 223    | 202   | 9.15E-16   | 1.35E-08   | 0.02   |
| 92       | INDEF     | 5000    | 1         | 46     | 147   | 3.184123e- | 3.184008e- | 0.02   |
|          |           |         |           |        |       | 314        | 314        |        |
| 93       | INTEQNELS | 502     | 6         | 13     | 7     | 1.08E-11   | 5.53E-07   | 0.02   |
| 94       | JENSMP    | 2       | 12        | 47     | 41    | 124.3622   | 1.46E-08   | 0.02   |
| 95       | JIMACK    | 3549    | 8327      | 16656  | 8329  | 0.866793   | 9.85E-07   | 193.23 |
| 96       | KIRBY2LS  | 2       | 54        | 222    | 201   | 3.905074   | 3.69E-06   | 0.02   |
| 97       | KOWOSB    | 4       | 16        | 46     | 32    | 0.000308   | 9.46E-07   | 0.02   |
| 98       | LANCZOS1L | S6      | 61        | 177    | 135   | 2.83E-07   | 9.05E-07   | 0.02   |
| 99       | LANCZOS2L | S6      | 60        | 169    | 125   | 2.75E-07   | 7.32E-07   | 0.02   |
| 100      | LANCZOS3L | S6      | 61        | 164    | 118   | 3.41E-07   | 5.02E-07   | 0.02   |
| 101      | LOGHAIRY  | 2       | 26        | 196    | 179   | 0.182322   | 7.9E-07    | 0.02   |
| 102      | LSC1LS    | 3       | 31        | 108    | 89    | 7.711852   | 1.73E-07   | 0.02   |
| 103      | LSC2LS    | 3       | 37        | 106    | 86    | 13.33387   | 2.98E-08   | 0.02   |
| 104      | MANCINO   | 100     | 12        | 30     | 19    | 1.95E-21   | 5.14E-08   | 0.02   |
| 105      | MARATOSB  | 2       | 589       | 2885   | 2585  | -1         | 4.08E-07   | 0.02   |
| 106      | MEXHAT    | 2       | 14        | 59     | 55    | -0.04001   | 1.01E-08   | 0.02   |
| 107      | MEYER3    | 3       | 19        | 76     | 63    | 9.387247e- | 6.952756e- | 0.02   |
|          |           |         |           |        |       | 323        | 310        |        |
| 108      | MGH09LS   | 4       | 25        | 82     | 72    | 0.001019   | 4.57E-07   | 0.02   |
| 109      | MGH10SLS  | 19      | 1082      | 4052   | 4968  | 1.29E + 09 | 6.04E-20   | 0.02   |
| 110      | MGH17LS   | 5       | 84        | 323    | 265   | 0.024518   | 1.55E-07   | 0.02   |
| 111      | MISRA1ALS | 2       | 33        | 147    | 145   | 0.124551   | 2.38E-09   | 0.02   |
| 112      | MISRA1BLS | 2       | 26        | 113    | 101   | 0.075465   | 5.97E-09   | 0.02   |
| 113      | MOREBV    | 5000    | 161       | 168    | 317   | 1.09E-10   | 9.94E-07   | 0.3    |
| 114      | MSQRTALS  | 1024    | 2795      | 5599   | 2806  | 6.72E-10   | 9.2E-07    | 1.09   |
| 115      | MSQRTBLS  | 1024    | 2235      | 4476   | 2247  | 1.7E-10    | 9.71E-07   | 0.95   |
| 116      | NCB20     | 5010    | 906       | 2105   | 1348  | -82.2049   | 9.39E-07   | 0.02   |
| 117      | NELSONLS  | 3       | 1101      | 5415   | 7690  | 25.60412   | 4.25E-29   | 0.2    |
| 118      | NONCVXU2  | 5000    | 6476      | 12572  | 6855  | 11584.55   | 9.83E-07   | 3.02   |
| 119      | NONDQUAF  | \$ 5000 | 2575      | 5220   | 2691  | 3.09E-06   | 7.14E-07   | 0.55   |
| 120      | OSBORNEA  | 5       | 82        | 230    | 174   | 5.46E-05   | 1.94E-07   | 0.02   |
| 121      | OSBORNEB  | 11      | 57        | 134    | 84    | 0.040138   | 7.26E-07   | 0.02   |
| 122      | OSCIGRAD  | 100000  | 117       | 191    | 201   | 77276.13   | 9.71E-07   | 6.48   |
| 123      | OSCIPATH  | 500     | 10        | 20     | 14    | 0.999967   | 9.3E-07    | 0.02   |
| 124      | PALMER1C  | 8       | 12        | 27     | 28    | 0.097605   | 1.28E-07   | 0.02   |
| 125      | PALMER1D  | 7       | 10        | 24     | 23    | 0.652674   | 8.27E-11   | 0.02   |
| 126      | PALMER2C  | 8       | 11        | 21     | 22    | 0.024369   | 2.2E-09    | 0.02   |
| 127      | PALMER3C  | 8       | 11        | 21     | 21    | 0.029538   | 7.92E-10   | 0.02   |
| 128      | PALMER4C  | 8       | 11        | 21     | 21    | 0.050311   | 3.55E-09   | 0.02   |

 $24 \ {\rm of} \ 27$ 

| Function | Function  | DIM        | Iteration | Fun.   | Grad. | Final f    | Final g   | Time  |
|----------|-----------|------------|-----------|--------|-------|------------|-----------|-------|
| num-     |           |            | (HS+TA)   | Evalu- | Eval- |            | 0         |       |
| ber      |           |            |           | ations | ua-   |            |           |       |
|          |           |            |           |        | tions |            |           |       |
| 129      | PALMER5C  | 6          | 6         | 13     | 7     | 2.128087   | 3.75E-12  | 0.02  |
| 130      | PALMER6C  | 8          | 11        | 24     | 24    | 0.026387   | 1.88E-08  | 0.02  |
| 131      | PALMER7C  | 8          | 11        | 20     | 20    | 0.601987   | 1.52 E-07 | 0.02  |
| 132      | PALMER8C  | 8          | 11        | 19     | 19    | 0.159768   | 2.75E-09  | 0.02  |
| 133      | PARKCH    | 15         | 699       | 1501   | 1190  | 1623.743   | 9.84E-07  | 1.38  |
| 134      | PENALTY2  | 200        | 191       | 225    | 363   | 4.71E + 13 | 8.84E-07  | 0.02  |
| 135      | PENALTY3  | 200        | 104       | 323    | 256   | 0.000999   | 3.82E-07  | 1.94  |
| 136      | POWELLBS  | L <b>S</b> | 50        | 211    | 234   | 1.14E-07   | 3.02 E-07 | 0.02  |
| 137      | POWER     | 10000      | 358       | 730    | 379   | 1.74E-09   | 9.4E-07   | 0.11  |
| 138      | POWERSUM  | [4         | 4         | 10     | 6     | 37.43145   | 8.13E-09  | 0.02  |
| 139      | PRICE3    | 2          | 10        | 25     | 17    | 3.41E-18   | 3.19E-08  | 0.02  |
| 140      | PRICE4    | 2          | 9         | 30     | 23    | 3.42E-24   | 3.13E-10  | 0.02  |
| 141      | QING      | 100        | 67        | 134    | 85    | 2.62E-14   | 7.84E-07  | 0.02  |
| 142      | QUARTC    | 5000       | 16        | 44     | 36    | 1.18E-06   | 4.47E-07  | 0.03  |
| 143      | RAT42LS   | 3          | 18        | 53     | 44    | 8.056523   | 1.36E-07  | 0.02  |
| 144      | RAT43LS   | 4          | 44        | 156    | 122   | 8786.405   | 1.17E-07  | 0.02  |
| 145      | RECIPELS  | 3          | 16        | 49     | 38    | 5.12E-13   | 7.12E-07  | 0.02  |
| 146      | ROSENBR   | 2          | 28        | 84     | 65    | 5.87E-16   | 7.61E-07  | 0.02  |
| 147      | ROSENBRT  | J2         | 37        | 175    | 153   | 3.24E-14   | 1.44E-07  | 0.02  |
| 148      | ROSZMAN11 | LSI        | 27        | 85     | 66    | 0.039541   | 1E-08     | 0.02  |
| 149      | S308      | 2          | 7         | 21     | 17    | 0.773199   | 3.3E-09   | 0.02  |
| 150      | SCHMVETT  | 5000       | 41        | 71     | 58    | -14994     | 9.53E-07  | 0.02  |
| 151      | SENSORS   | 100        | 26        | 67     | 47    | -2079      | 1.64E-07  | 0.06  |
| 152      | SINEVAL   | 2          | 46        | 181    | 153   | 1.49E-23   | 1.55E-10  | 0.02  |
| 153      | SINQUAD   | 5000       | 15        | 44     | 36    | -6757014   | 1.12E-08  | 0.02  |
| 154      | SISSER    | 2          | 5         | 19     | 19    | 4.6E-10    | 4.93E-07  | 0.02  |
| 155      | SNAIL     | 2          | 61        | 251    | 211   | 7E-17      | 1.59E-08  | 0.02  |
| 156      | SPARSINE  | 5000       | 25740     | 26045  | 51185 | 1.15E-10   | 8.98E-07  | 14.19 |
| 157      | SPARSQUR  | 10000      | 17        | 70     | 70    | 2.75E-10   | 1.33E-07  | 0.02  |
| 158      | SPMSRTLS  | 49999      | 204       | 413    | 227   | 3.49E-11   | 9.41E-07  | 0.06  |
| 159      | SROSENBR  | 5000       | 9         | 23     | 15    | 1.3E-12    | 7.94E-07  | 0.02  |
| 160      | SSBRYBND  | 5000       | 9465      | 16566  | 14479 | 6.13E-15   | 9.31E-07  | 4.56  |
| 161      | SSI       | 3          | 307       | 1162   | 990   | 3.94E-06   | 5.82E-07  | 0.02  |
| 162      | STRATEC   | 10         | 170       | 419    | 283   | 2212.262   | 4.3E-08   | 1     |
| 163      | TESTQUAD  | 5000       | 1573      | 1580   | 3141  | 1.33E-13   | 9.19E-07  | 0.27  |
| 164      | TOINTGOR  | 50         | 122       | 219    | 159   | 1373.905   | 7.64E-07  | 0.02  |
| 165      | TOINTGSS  | 5000       | 4         | 9      | 5     | 10.002     | 1.87E-07  | 0.02  |
| 166      | TOINTPSP  | 50         | 147       | 323    | 241   | 225.5604   | 8.83E-07  | 0.02  |
| 167      | TOINTQOR  | 50         | 29        | 36     | 53    | 1175.472   | 4.46E-07  | 0.02  |
| 168      | TQUARTIC  | 5000       | 8         | 23     | 18    | 3.61E-12   | 2.91E-09  | 0.02  |
| 169      | TRIDIA    | 5000       | 781       | 788    | 1557  | 4.64E-15   | 9.37E-07  | 0.16  |
| 170      | TRIGON1   | 10         | 19        | 41     | 22    | 4.09E-15   | 3.93E-07  | 0.02  |
| 171      | TRIGON2   | 10         | 22        | 57     | 43    | 2.966531   | 2.88E-08  | 0.02  |

182

183

184

YATP1LS

ZANGWIL2

YFITU

123200

3

 $\mathbf{2}$ 

13

68

1

| Function | Function  | DIM           | Iteration | Fun.   | Grad. | Final f   | Final g  | Time |
|----------|-----------|---------------|-----------|--------|-------|-----------|----------|------|
| num-     |           |               | (HS+TA)   | Evalu- | Eval- |           |          |      |
| ber      |           |               |           | ations | ua-   |           |          |      |
|          |           |               |           |        | tions |           |          |      |
| 172      | VANDANMS  | L <b>2</b> 32 | 2         | 5      | 3     | 9.623043  | 2.85E-09 | 0.02 |
| 173      | VAREIGVL  | 5000          | 34        | 76     | 45    | 1.66E-12  | 7.68E-07 | 0.16 |
| 174      | VESUVIALS | 8             | 1262      | 1954   | 3155  | 991.4145  | 1.6E-18  | 1.23 |
| 175      | VESUVIOLS | 8             | 79        | 198    | 173   | 991.41    | 1.6E-18  | 0.17 |
| 176      | VESUVIOUI | .S8           | 79        | 211    | 173   | 0.4771138 | 1.3E-07  | 0.02 |
| 177      | VIBRBEAM  | 8             | 98        | 255    | 174   | 0.156446  | 2.83E-08 | 0.02 |
| 178      | WAYSEA1   | 2             | 11        | 55     | 50    | 6.75E-22  | 2.99E-09 | 0.02 |
| 179      | WAYSEA2   | 2             | 9         | 28     | 23    | 1.07E-17  | 1.37E-09 | 0.02 |
| 180      | WATSON    | 12            | 60        | 137    | 82    | 1.62E-07  | 8.55E-07 | 0.02 |
| 181      | WOODS     | 4000          | 64        | 184    | 136   | 8.34E-15  | 9.5E-07  | 0.01 |

34

3

208

25

 $\mathbf{2}$ 

167

2.32E-07

1.72E-08

3.79E-15

3.88E-16

6.67E-13

-18.2

0.64

0.02

0.02

Table 3: Numerical results for images with Gaussian noise, incorporating a standard deviation of 25%, via the Dai-Liao CG, AHS, and CG-Descent 6.8 methods.

| Image            | Algorithm  | Number of  | CPU time     | RMSE   |
|------------------|------------|------------|--------------|--------|
|                  |            | iterations | (seconds)    |        |
| Mandi 128 pixels | DL+        | 127        | 1.724e + 000 | 0.1003 |
|                  | HS+TA      | 125        | 1.563e + 000 | 0.1001 |
|                  | CG-Descent | 134        | 1.825e-001   | 0.1004 |
|                  | 6.8        |            |              |        |
| Cameraman 128    | DL+        | 165        | 1.631e + 000 | 0.1257 |
| pixels           |            |            |              |        |
|                  | HS+TA      | 160        | 1.359e + 000 | 0.1146 |
|                  | CG-Descent | 163        | 1.854e + 000 | 0.1148 |
|                  | 6.8        |            |              |        |
| Coins 128 pixels | DL+        | 135        | 1.542e + 000 | 0.0832 |
|                  | HS+TA      | 133        | 1.391e + 000 | 0.0828 |
|                  | CG-Descent | 133        | 1.491e + 000 | 0.0831 |
|                  | 6.8        |            |              |        |
| Mandi 256 pixels | DL+        | 120        | 1.856e + 001 | 0.0519 |
|                  | HS+TA      | 118        | 1.745e + 001 | 0.0517 |
|                  | CG-Descent | 119        | 1.656e + 001 | 0.0991 |
|                  | 6.8        |            |              |        |
| Moon 256 pixels  | DL+        | 170        | 1.678e + 001 | 0.0355 |
|                  | HS+TA      | 166        | 1.234e + 001 | 0.0350 |
|                  | CG-Descent | 166        | 1.45e + 001  | 0.0368 |
|                  | 6.8        |            |              |        |
| Cameraman 256    | DL+        | 166        | 1.856e + 001 | 0.0894 |
| pixels           |            |            |              |        |
|                  | HS+TA      | 164        | 1.797e + 001 | 0.0890 |
|                  | CG-Descent | 162        | 1.925e + 001 | 0.0892 |
|                  | 6.8        |            |              |        |
| Coins 256 pixels | DL+        | 134        | 1.447e + 001 | 0.0506 |
|                  | HS+TA      | 129        | 1.264e + 001 | 0.0505 |
|                  | CG-Descent | 130        | 1.564e + 001 | 0.0508 |
|                  | 6.8        |            |              |        |
| Mandi 512 pixels | DL+        | 114        | 7.981e+001   | 0.0371 |
|                  | HS+TA      | 110        | 6.955e + 001 | 0.0370 |
|                  | CG-Descent | 116        | 7.314e + 001 | 0.0472 |
|                  | 6.8        |            |              |        |
| kids 512 pixels  | DL+        | 57         | 6.955e + 001 | 0.0377 |
|                  | HS+TA      | 55         | 5.425e + 001 | 0.0383 |
|                  | CG-Descent | 55         | 5.634e + 001 | 0.0395 |
|                  | 6.8        |            |              |        |
| Coins 512 pixels | DL+        | 129        | 7.323e+001   | 0.0326 |
|                  | HS+TA      | 128        | 5.948e + 001 | 0.0326 |
|                  | CG-Descent | 127        | 6.323e + 001 | 0.0503 |
|                  | 6.8        |            |              |        |

| Cameraman 512   | DL+        | 148 | 9.650e + 001 | 0.0533 |
|-----------------|------------|-----|--------------|--------|
| pixels          |            |     |              |        |
|                 | HS+TA      | 146 | 9.438e+001   | 0.0533 |
|                 | CG-Descent | 143 | 9.727e+001   | 0.0532 |
|                 | 6.8        |     |              |        |
| Moon 1024 pix-  | DL+        | 155 | 1.238e + 002 | 0.0183 |
| els             |            |     |              |        |
|                 | HS+TA      | 150 | 1.115e + 002 | 0.0081 |
|                 | CG-Descent | 150 | 1.203e + 002 | 0.0082 |
|                 | 6.8        |     |              |        |
| Cameraman       | DL+        | 146 | 3.950e + 002 | 0.0534 |
| 1024 pixels     |            |     |              |        |
|                 | HS+TA      | 125 | 2.643e + 002 | 0.0289 |
|                 | CG-Descent | 130 | 2.853e + 002 | 0.0298 |
|                 | 6.8        |     |              |        |
| Coins 1024 pix- | DL+        | 128 | 3.441e + 002 | 0.0326 |
| els             |            |     |              |        |
|                 | HS+TA      | 113 | 2.049e + 002 | 0.0173 |
|                 | CG-Descent | 124 | 2.897e + 002 | 0.0289 |
|                 | 6.8        |     |              |        |