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Abstract. This study addresses the critical issue of understanding the numerical relevance of
cubic-quartic solitonic expressions in birefringent fibers, a topic of increasing significance in the
field of nonlinear optics due to its implications for optical communication and signal propagation.
The research employs the improved Adomian decomposition scheme, developed to derive a gener-
alized numerical method for solving complex-valued nonlinear evolution equations associated with
solitons. The results demonstrate a high level of accuracy and are shown to be in total confor-
mity with the established analytical solutions, found in the existing literature, thereby validating
the effectiveness of the proposed numerical approach. Notably, the study reveals that even mi-
nor numerical errors can significantly influence the transported signal’s power, emphasizing the
importance of precision in numerical methods for nonlinear systems.
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1. Introduction

The propagation of optical pulses, particularly in optical signal processing, has re-
cently become a highly relevant area of technological interest in the contemporary world.
In this context, one can highlight the systematic application of optical fibers across var-
ious fields, including modern telecommunications, optical metamaterials, ultrafast signal
systems, optoelectronics, and optical switching, to name a few [1, 4, 9, 28, 35]. Cer-
tainly, various nonlinear phenomena are associated with these areas of optical relevance,
necessitating thorough investigations to uncover significant breakthroughs. Some of these
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phenomena include optical solitons, supercontinuum generation, phase modulation, stim-
ulated scattering, and parametric scattering processes, among others. Additionally, when
considering the field of optical signal processing, it is essential to examine the dynamical
characterization of pulse transmission processes, such as wavelength conversion, optical
amplification, pulse generation, and multi-wavelength sources, to name a few.

However, in connection with the aforementioned nonlinear wave phenomena, it is im-
portant to mention the nonlinear Schrödinger equations (NLSEs) as the governing math-
ematical model for describing nonlinear wave propagation in optical media [11, 13, 14,
19, 21]. Indeed, recent years have witnessed significant progress in the study of optical
waves, primarily in polarization-preserving fibers, with limited contributions to birefrin-
gent fibers. In these fibers, the propagation of optical solitons is governed by a coupled
system [3, 5, 17, 18, 20, 22, 29–32], which is the focus of the current study. The trans-
mission of optical pulses in birefringent fiber media is characterized by polarization, often
caused by variations in fiber diameter, non-uniformities in the fiber, or technical issues
such as fiber bends and external stress. These factors lead to various challenges, including
polarization mode dispersion, which is primarily characterized by pulse differential group
delay [8]. This poses a significant setback for long-distance transmission of pulses through
fiber devices, especially over transoceanic and transcontinental distances. Moreover, bire-
fringence in birefringent fibers (BFs) is associated with the splitting of optical pulses into
independent orthogonally polarized components, constant group velocities, variable prop-
agation characteristics, and weak circular symmetries. This complexity necessitates that
the governing NLSE be expressed as a coupled system of equations [6]. Additionally,
the concept of cubic-quartic (CQ) solitons arises from a delicate balance between self-
phase modulation and chromatic dispersion (CD), particularly when the CD is relatively
low. The restoration of the required equilibrium due to insufficient CD further involves
the contributions of the third-order dispersion (3OD) and fourth-order dispersion (4OD)
terms. This phenomenon has been referred to as CQ dispersive effects [7, 10], marking
a breakthrough discovery in optical fiber communication in 2017, which continues to be
relevant today. For further insights, see [27] for a discussion of various analytical solitonic
structures featuring CQ nonlinearity.

Nevertheless, the current study intends to utilize the renowned numerical method
known as the improved Adomian decomposition method (IADM) to derive a generalized
numerical scheme for the approximate solution of the NLSE [33, 34] with CQ nonlinearity
in birefringent fibers. IADM [2, 12, 15, 25] is based on the classical Adomian decom-
position approach, significantly improved to tackle complex-valued nonlinear evolution
equations; see also other related efficient computational procedures in [16, 23, 24, 26].
Additionally, the study seeks to employ certain analytical solitonic expressions related to
the governing model to validate the efficacy of the devised numerical scheme. To this end,
the recent study by Uddin and Hafez [27] will serve as a benchmark, using their promising
new extended direct algebraic method (EDAM) for comparison. Furthermore, the study
aims to thoroughly examine the level of error compliance, assessing the conformity of the
proposed numerical solutions with the adopted analytical solutions [27]. Various tables
and plots will be provided for greater clarity. Besides, among the novelty of the current
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study includes enhanced analytical capability, generalization of approach, and the valida-
tion of methods among others. In the same vein, one may find various significance of the
study to include, among others, alignment with established theories, high accuracy of the
proposed numerical scheme, provision of more into nonlinear dynamics and setting solid
foundation for future undertaking. What is more, the deployed computational method is
only limited to the class of complex-valued evolution equations, being endowed with the
imaginary number(s), and applicable to various fields of nonlinear sciences.

Lastly, the manuscript is arranged in the following manner: governing model is de-
scribed in Section 2; while Section 3 gives the analysis of the model via the IADM. Section
4 gives the Adopted exact solitonic expressions and, Section 5 presents the numerical
simulation of the derived CQ NLSE scheme using the adopted improved Adomian de-
composition method (IADM). Finally, Section 6 presents some concluding comments and
highlights some possible future studies.

2. Governing model

The cubic-quartic nonlinear Schrödinger equation (CQ NLSE), which incorporates the
nonlinear Kerr law refractive index governing the propagation of nonlinear waves in optical
fiber media, is expressed by the following complex-valued nonlinear evolution equation
[33, 34]

iut + ipuxxx + quxxxx + r|u|2u = 0, (1)

where u = u(x, t) is the complex–valued wave function that governs the propagation of
optical wave in birefringent fibers in the spatial and temporal variables x and t, respec-
tively. In addition, the real constant p is the coefficient of 3OD, while the real constant q
denotes the coefficient of 4OD. Furthermore, the constant r in the last term is coefficient
of the Kerr law nonlinear refractive index.

Moreover, when Eq. (1) splits into two directions concerning the frame of birefringence
to typify the nonlocal conduct in BFs, one thus obtains the following coupled CQ NLSE

iut + ip1uxxx + q1uxxxx + (r1|u|2 + s1|v|2)u = 0, (2)

ivt + ip2vxxx + q2vxxxx + (r2|v|2 + s2|u|2)v = 0, (3)

where u = u(x, t), and v = v(x, t) are the respective complex–valued wave functions in
the spatial and temporal variables x and t, respectively. The real constants p1 and p2 are
the respective coefficients of 3OD, while the real constant q1 and q2 denote the respective
coefficients of 4OD. In addition, rj and sj , for j = 1, 2 represent the respective coefficients
of cross-phase (self-phase) modulation, while discarding the cause of four–wave mixing.

Furthermore, it is customary to convert the outlined coupled CQ NLSE in Eqs. (2)-
(3) to more suitable forms, through the utilization of related wave transformation to get
hold of the resulting ordinary differential equations (ODEs) [27]. To do so, the following
transformation is

u(x, t) = y1(Ξj)e
iΘj(x,t), (4)
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v(x, t) = y2(Ξj)e
iΘj(x,t), (5)

is sought, where j = {B,L}. Certainly, the functions y1(Ξj), and y2(Ξj) are real-valued,
while Θj(x, t) for j = {B,L} denotes the amplitude and phase parts of the propagating
pulse wave, respectively. More explicitly, the new variables ΞB and ΘB are expressed as
follows

ΞB =
1

µ

(
x+

1

Γµ

)µ

− v

µ

(
t+

1

Γµ

)µ

, (6)

ΘB = −k

µ

(
x+

1

Γµ

)µ

+
ω

µ

(
t+

1

Γµ

)µ

+ θ0, (7)

while the corresponding ΞL and ΘL variables are defined as follows

ΞL =
1

µ
xµ − v

µ
tµ, (8)

ΘL = −k

µ
xµ +

ω

µ
tµ + θ0. (9)

In addition, the involving wave parameters ν, κ, ω, and θ0 that appear in the above
expressions denote the speed, frequency, wavenumber, and phase constant, sequentially.
Moreover, upon judiciously substituting either Eqs. (6)-(7) or Eqs. (8)-(9) into the gov-
erning coupled CQ NLSE, earlier expressed in Eqs. (2)-(3), one obtains the resulting
ODEs; these ODEs are not reported here for brevity.

3. Description of the IADM

This section employs the IADM to derive the resultant generalized iterative scheme for
the coupled CQ NLSE (Eqs. (2)-(3)). The IADM is an enhanced variant of the classical
Adomian decomposition method, successfully applied to various mathematical physics
models. This method is characterized by high convergence and requires less computational
space and time, among other advantages. Furthermore, it is widely used to solve a range
of problems in technology and science, including contemporary fields such as fluid and
solid mechanics, elastodynamics, optics, material science, and astrophysics, to name a few
[2, 12, 15, 25].
In this regard, we begin the implementation of the adopted IADM on Eqs. (2)-(3) by
splitting the resulting complex-valued wave functions u(x, t) and v(x, t) as follows

u (x, t) = u1 + iu2, and v (x, t) = v1 + iv2,

where i =
√
−1, and u1 = u1 (x, t), u2 = u2 (x, t) and v1 = v1 (x, t), v2 = v2 (x, t) are

real-valued functions. Therefore, with the above split-functions assumption, one obtains
from Eqs. (2)-(3) the following real-valued evolution equations (obtained from the corre-
sponding real and imaginary parts) as in what follows.
For u (x, t) component, one obtains the following equations

−u2t − p1u2xxx + q1u1xxxx +
[
r1
(
u21 + u22

)
+ s1

(
v21 + v22

)]
u1 = 0, (10)
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u1t + p1u1xxx + q1u2xxxx +
[
r1
(
u21 + u22

)
+ s1

(
v21 + v22

)]
u2 = 0, (11)

while the following equations are obtained for v (x, t) component

−v2t − p2v2xxx + q2v1xxxx +
[
r2
(
v21 + v22

)
+ s2

(
u21 + u22

)]
v1 = 0, (12)

v1t + p2v1xxx + q2v2xxxx +
[
r2
(
v21 + v22

)
+ s2

(
u21 + u22

)]
v2 = 0. (13)

Further, the IADM proceeds to decompose the solution functions u1 (x, t), u2 (x, t) and
v1 (x, t), v2 (x, t) in Eqs. (10)-(13) using the sums of infinite series of the following form

ui(x, t) =
∞∑
n=0

ui,n, vi(x, t) =
∞∑
n=0

vi,n, i = 1, 2. (14)

where ui,n = ui,n (x, t), and vi,n = vi,n (x, t). Furthermore, when expressing Eqs. (10)-(11)
and (12)-(13) using an operator notation, which is, replacing d

dt with Lt, one thus obtains
the following equations for u (x, t) component

−Ltu2 − p1u2xxx + q1u1xxxx +N2 (u1, u2) = 0, (15)

Ltu1 + p1u1xxx + q1u2xxxx +N1 (u1, u2) = 0, (16)

and for v (x, t) component as follows

−Ltv2 − p2v2xxx + q2v1xxxx +A2 (v1, v2) = 0, (17)

Ltv1 + p2v1xxx + q2v2xxxx +A1 (v1, v2) = 0, (18)

where N1 (u1, u2) and N2 (u1, u2) in the u (x, t) component equations are nonlinear terms,
explicitly expressed as follows

N2 (u1, u2) =
[
r1
(
u21 + u22

)
+ s1

(
v21 + v22

)]
u1,

N1 (u1, u2) =
[
r1
(
u21 + u22

)
+ s1

(
v21 + v22

)]
u2,

while the nonlinear terms A1 (v1, v2) and A2 (v1, v2) in the v (x, t) component equations
are determined as follows

A2 (v1, v2) =
[
r2
(
v21 + v22

)
+ s2

(
u21 + u22

)]
v1,

A1 (v1, v2) =
[
r2
(
v21 + v22

)
+ s2

(
u21 + u22

)]
v2.

Moreover, upon applying the inversion operator L−1
t of the earlier applied direct linear

operator Lt, expressed as L−1
t =

∫ t
0 (.) dt to Eqs. (15)-(18), one obtains from the u (x, t)

component equations as follows

u1 (x, t) = u1 (x, 0)− p1L
−1
t u1xxx − q1L

−1
t u2xxxx − L−1

t N1 (u1, u2) , (19)

u2 (x, t) = u2 (x, 0)− p1L
−1
t u2xxx + q1L

−1
t u1xxxx + L−1

t N2 (u1, u2) , (20)
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while the v (x, t) component equations yield the following

v1 (x, t) = v1 (x, 0)− p2L
−1
t v1xxx − q2L

−1
t v2xxxx − L−1

t A1 (v1, v2) , (21)

v2 (x, t) = v2 (x, 0)− p2L
−1
t v2xxx + q2L

−1
t v1xxxx + L−1

t A2 (v1, v2) . (22)

Notably, the initial conditions, u1 (x, 0) , u2 (x, 0) and v1 (x, 0) , v2 (x, 0) appearing in
the above coupled system can easily be determined upon referring to the initial solution
assumption as follows

u1(x, 0) = Re(u(x, t)), u2(x, 0) = Im(u(x, t)),

v1(x, 0) = Re(v(x, t)), v2(x, 0) = Im(v(x, t)).

}

Nonetheless, and without much delay, the deployed IADM reveals the following generalized
recurrent solution for Eqs. (10)-(13), starting with the u (x, t) solution component as
follows

u1,0 (x, t) = u1 (x, 0) , (23)

u2,0 (x, t) = u2 (x, 0) , (24)

u1,k+1 (x, t) = −p1L
−1
t (u1,k)xxx − q1L

−1
t (u2,k)xxxx − L−1

t (A1,k) , (25)

u2,k+1 (x, t) = −p1L
−1
t (u2,k)xxx + q1L

−1
t (u1,k)xxxx + L−1

t (A2,k) , (26)

while that of the v (x, t) solution component as follows

v1,0 (x, t) = v1 (x, 0) , (27)

v2,0 (x, t) = v2 (x, 0) , (28)

v1,k+1 (x, t) = −p2L
−1
t (v1,k)xxx − q2L

−1
t (v2,k)xxxx − L−1

t (A1,k) , (29)

v2,k+1 (x, t) = −p2L
−1
t (v2,k)xxx + q2L

−1
t (v1,k)xxxx + L−1

t (A2,k) , (30)

where A1,k and A2,k are the discovered Adomian polynomials, which are to be computa-
tionally obtained for u (x, t) component as follows

Aj,n =
1

n!

dn

dλn
Nj

( ∞∑
n=0

λnu1,n (x, t) ,

∞∑
n=0

λnu2,n (x, t)

)
,

while that of v (x, t) component via the following compacted formula

Aj,n =
1

n!

dn

dλn
Nj

( ∞∑
n=0

λnv1,n (x, t) ,
∞∑
n=0

λnv2,n (x, t)

)
.

Lastly, the derived generalized recurrent scheme Eqs. (23)-(30) for the governing coupled
CQ NLSE Eqs. (2)-(3) in FBs via the use of the IADM will be numerically simulated in
the subsequent section, alongside deploying some known exact analytical structures for
justification.
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4. Adopted exact solitonic expressions

In light of the significant technological relevance of the NLSE [33, 34] with cubic-
quartic nonlinearity - not only in polarization-preserving fibers but also in birefringent
fibers, which present a more complex scenario - various researchers have proposed differ-
ent sets of optical solutions using analytical techniques to enhance the efficiency of optical
signal processes. Notably, the recent study by Uddin and Hafez [27] utilized the promis-
ing extended direct algebraic method (EDAM) to derive various exact optical solitons for
the governing model. This method effectively recasts the governing NLSE into a corre-
sponding ordinary differential equation (ODE), leading to a system of algebraic equations.
Consequently, some of the exact optical expressions presented by Uddin and Hafez [27]
are adopted in the present study as benchmark analytical solutions, as follows:

Bright soliton

Through the application of the beseeched EDAM, Uddin and Hafez [27] were able to
construct the bright soliton expressions for the governing CQ NLSE as follows

u(x, t) =
3Φ

2
(lnA)2

√
−10kp1
Y2H1

{
1−

[
tanhA

(√
ΦΞj

)
+ i

√
MN sechA

(√
ΦΞj

)]2}
eiΘj ,

v(x, t) =
3ΠΦ

2
(lnA)2

√
−10kp1
Y2H1

{
1−

[
tanhA

(√
ΦΞj

)
+ i

√
MN sechA

(√
ΦΞj

)]2}
eiΘj .


(31)

u(x, t) = −3Φ

2
(lnA)2

√
−10kp1
Y2H1

{
1−

[
tanhA

(√
ΦΞj

)
− i

√
MN sechA

(√
ΦΞj

)]2}
eiΘj ,

v(x, t) = −3ΠΦ

2
(lnA)2

√
−10kp1
Y2H1

{
1−

[
tanhA

(√
ΦΞj

)
− i

√
MN sechA

(√
ΦΞj

)]2}
eiΘj .


(32)

u(x, t) = −3Φ

2
(lnA)2

√
−10kp1
Y2H1

{
1−

[
cothA

(√
ΦΞj

)
−
√
MN cschA

(√
ΦΞj

)]2}
eiΘj ,

v(x, t) = −3ΠΦ

2
(lnA)2

√
−10kp1
Y2H1

{
1−

[
cothA

(√
ΦΞj

)
−
√
MN cschA

(√
ΦΞj

)]2}
eiΘj .


(33)

Moreover, from the latter exact solitonic expressions, Φ > 0 and σ ̸= 0; while the trans-
formation for Ξj and Θj for j = {B,L} were previously stated. In addition, for the
full implementation of the analytical, and the governing constraint conditions, interested
reader(s) is referred to the good work of Uddin and Hafez [27]. In the same vein, one
may equally get the explicit expressions for all the constraints conditions, ensuring the
existence for valid solitonic expression in the same reference [27].
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5. Results of numerical analysis

This section presents the numerical simulation of the derived CQ NLSE scheme us-
ing the adopted IADM. Furthermore, the benchmark analytical solutions referenced in
Eqs. (31)-(33) will be used to assess the accuracy of the proposed scheme. Certainly, one
automatically obtains the corresponding initial conditions from Eqs. (31)-(33) at t = 0;
together with the related boundary conditions, specifying the range for the spatial variable
x for the computational purpose. Additionally, the well-known absolute error difference
formula will be employed to estimate the error difference. In addition, some fixed real
values for the involving parameters are assumed for simulating the referred bright soliton
Eqs. (31)-(32) as follows: µ = 1, α = 0.1, λ = 0.5, σ = 0.2, A = e, M = −0.1, N = 0.5,
κ = 0.1, Π = 2, p1 = 0.2, r1 = −0.2, s1 = 0.3, and θ0 = 1; while the following fixed values
are considered for simulating the soliton referred bright soliton Eq. (33): µ = 1, α = 0.1,
λ = 0.9, σ = 0.5, A = e, M = N = 1, κ = 0.1, Π = 2, p1 = 0.2, r1 = −0.2, s1 = 0.3,
θ0 = 1.
In addition, the following two cases are considered in the numerical simulation:
Case I: when j = B.
Case II: when j = L.
Thus, without delay, the study reports in what follows some error tables (see Tables 1-6)
and the two-dimensional graphical depictions (see Figures 1-12) for the simulated numer-
ical results, assessing the exactness of the proposed IADM with the analytical structures
reported by Uddin and Hafez [27] earlier expressed in Eqs. (31)-(33). Certainly, the given
tables in Tables 1-6 are self-explanatory, ultimately saying the something that the error
increases as time increases. Additionally the resulting solution of the governing CQ model
{u(x, t), v(x, t)} is depicted in Figures 1-12 under the aforesaid Cases I-II over the interval
−20 ≤ x ≤ 20, and for t = 0, 0.5, 1. In addition, the results shown by these figures
revealed the adopted IADM is a good approximation tool for solving complex-valued evo-
lution equations; in particular, the CQ NLSE in FBs. A high level of exactness has been
noted in all the plots, in addition to the revelation of relatively negligible errors in Tables
1-6. Besides, one notices from the reported tables that the error keeps shrinking as the
time grows; while the figures portray perfect agreement between various exact solutions
and the contending computational IADM scheme; for more rigorous proofs of convergence
of the certain Adomian-based approaches, one is asked to read the good works reported
in [16, 23, 24, 26] and the references therewith.

Table 1: Absolute errors between the proposed IADM solution and the exact bright solution Eq. (31) under
Case I.

t Error for u(x, t) Error for v(x, t)

0.0 3.3154743250× 10−11 4.0522024880× 10−11

0.5 3.6273088130× 10−07 7.25359840× 10−07

1.0 7.244079170× 10−07 1.4488112510× 10−06
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Table 2: Absolute errors between the proposed IADM solution and the exact bright solution Eq. (31) under
Case II.

t Error for u(x, t) Error for v(x, t)

0.0 5.484944780× 10−11 9.0353010030× 10−11

0.5 2.4533317260× 10−07 4.9072878790× 10−07

1.0 4.9129153530× 10−07 9.8269962640× 10−07

Table 3: Absolute errors between the proposed IADM solution and the exact bright solution Eq. (32) under
Case I.

t Error for u(x, t) Error for v(x, t)

0.0 3.630370780× 10−11 3.7097958160× 10−11

0.5 3.7246380130× 10−07 7.4502952140× 10−07

1.0 7.4426980490× 10−07 1.4885442150× 10−06

Table 4: Absolute errors between the proposed IADM solution and the exact bright solution Eq. (32) under
Case II.

t Error for u(x, t) Error for v(x, t)

0.0 8.8257766890× 10−11 1.1585211690× 10−10

0.5 2.4486313850× 10−07 4.8982667650× 10−07

1.0 4.8922551670× 10−07 9.7855005360× 10−07

Table 5: Absolute errors between the proposed IADM solution and the exact bright solution Eq. (33) under
Case I.

t Error for u(x, t) Error for v(x, t)

0.0 4.240780× 10−11 3.959250× 10−11

0.5 1.686434930× 10−08 3.3728698590× 10−08

1.0 3.3672392760× 10−08 6.7344785610× 10−08

Table 6: Absolute errors between the proposed IADM solution and the exact bright solution Eq. (33) under
Case II.

t Error for u(x, t) Error for v(x, t)

0.0 2.2459764440× 10−11 4.4919532010× 10−11

0.5 7.7187785040× 10−09 1.5437556770× 10−08

1.0 1.5494033650× 10−08 3.0988067140× 10−08
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Figure 1: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (31) for the
solution pair u (x, t) under Case I.

Figure 2: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (31) for the
solution pair v (x, t) under Case I.

Figure 3: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (31) for the
solution pair u (x, t) under Case II.
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Figure 4: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (31) for the
solution pair v (x, t) under Case II.

Figure 5: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (32) for the
solution pair u (x, t) under Case I.

Figure 6: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (32) for the
solution pair v (x, t) under Case I.
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Figure 7: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (32) for the
solution pair u (x, t) under Case II.

Figure 8: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (32) for the
solution pair v (x, t) under Case II.

Figure 9: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (33) for the
solution pair u (x, t) under Case I.
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Figure 10: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (33) for the
solution pair v (x, t) under Case I.

Figure 11: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (33) for the
solution pair u (x, t) under Case II.

Figure 12: Pictorial depiction, comparing the proposed IADM solution and the exact solution Eq. (33) for the
solution pair v (x, t) under Case II.
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6. Conclusion

Birefringent optical fiber is a significant topic in the realm of optical communication.
In this study, we conducted numerical simulations using the promising IADM, which
demonstrated high accuracy in results. We focused on the coupled CQ NLSEs exhibiting
Kerr-law refractive index nonlinearity to analyze optical pulse transmission in birefrin-
gent fibers. Additionally, certain analytically derived soliton solutions proposed by the
EDAM were used as benchmark solutions for validation. The proposed IADM scheme
effectively approximated the sought-after analytical structures. Moreover, considering the
relative error associated with the devised numerical scheme, the study concludes that
the application of the proposed method should be extended to high-order complex-valued
evolutionary equations involving various nonlinearities. Furthermore, this study aims to
provide insights into the dynamics of pulse propagation in birefringent fibers, particularly
in relation to changes in fiber diameter, non-uniformities, and other technical defects.
Looking ahead, this work paves the way for future research to explore more complex non-
linear interactions and dynamics that arise in different types of fiber materials. It also
opens avenues for investigating the influence of external factors, such as varying tempera-
ture and fiber configuration, on solitonic behavior. Additionally, the methodology can be
adapted to study other nonlinear phenomena in different contexts, potentially leading to
innovations in optical technology, and enhanced signal processing applications.
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