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Abstract. Non-performing loan (NPL) and deposit withdrawal are two factors that can affect
loan and deposit volumes in the bank. The distribution of deposits into loans at banks can be
modelled using the predator-prey model. In this research, we propose and analyse a mathematical
model dealing with two loans, i.e. a loan for individuals and a loan for companies at one bank,
which is developed from two predators and one prey model. We aim to study the dynamics and
long-term behaviour of the proposed model, as well as to discuss the effects of the NPL and deposit
withdrawal parameters associated with the model. The results of the analysis show that the model
has five equilibrium points. We find that the equilibrium point without deposit and loan activities
in the bank is always unstable, while the other equilibrium points are globally asymptotically
stable if their certain conditions are satisfied. The theoretical results are verified by our numerical
simulations.
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1. Introduction

A bank is a business entity that collects deposits from the public and then lends them
back to the public in the form of loans, otherwise known as credit. In Indonesia, OJK
or the Financial Services Authority classifies commercial banks into four KBMI or Bank
Groups based on Core Capital. Core capital is a component of capital sourced from the
bank itself that can affect the bank’s operations in a stable and safe manner, so the amount
of core capital of a bank affects the management of deposits from the public [5, 12, 26].
Thus, the KBMI classification causes banks to have their limit on receiving deposits from
the public. A bank will reward people who deposit their funds with interest on their
deposits. The volume of deposits will be distributed into loans by adding loan interest
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[12]. The distribution of deposit volumes into loan volumes is a way for banks to obtain
funds for operational costs and return deposit interest to their customers [27]. People who
deposit their funds in the bank can also withdraw their deposits in cash or transfer them
to another account according to the bank’s requirements [10, 12, 14]. Thus, the bank’s
ability to meet withdrawal requests and other cash outflows serves as a crucial indicator
to assess its financial health and overall viability [9]. If a bank cannot meet its financial
obligations, it could threaten its stability and negatively impact the financial system as a
whole.

Banks distribute deposit funds into loan funds to financial markets, such as individ-
uals or companies [27] to finance various projects, investments, and economic activities
[12]. The amount of loans given to individuals or companies also depends on the amount
of deposits in the bank. Banks often have loan limits as a form of credit risk control
[32]. Consequently, the more companies or individuals that request a loan, the higher
competition rate, which may slow down the process or reduce their chances of successfully
obtaining a loan. Before giving a loan, the bank will conduct a credit analysis to ensure
that the potential credit recipient is truly trustworthy so that it reduces the possibility
of bad credit or Non-Performing Loan (NPL). Credit analysis includes the background of
potential credit recipients, business prospects, and guarantees that include various indem-
nification agreements if the loan is not returned on time [1, 34]. Loans that are not repaid
on time or are not repaid at all are called to as NPL [10]. If NPL occurs, it will affect
the availability of funds in the bank [21] as well as its profitability and bank operations
[7, 13].

The distribution of deposits into loans is analogous to the predator-prey interaction
model. The predator-prey interaction model was first introduced by the American bio-
physicist Lotka in 1925 and by the Italian mathematician Volterra in 1926 [19]. In a
predator-prey interaction, the predator will eat the prey. This is similar to the behaviour
of the distribution of deposit and loan funds where loans as predators and deposits as prey.
In 2013, Haque et al. proposed a two predators-one prey model by adding the effects of
intra-specific competition that occurs in each predator [11]. Furthermore, Mukhopadhyay
and Bhattacharyya (2016) constructed a two predators-one prey model by adding the ef-
fect of inter-predator competition to the model [18]. Mukhopadhyay and Bhattacharyya
also added the effect of harvesting on one of the predators. Harvesting occurs due to
interactions with humans, when humans take or kill predator or prey for consumption
or sale that have been used primarily in fishing, forestry, and wildlife conservation. In
[8, 23, 24, 30], the effect of harvesting on predator-prey interactions was studied. Deposit
withdrawals in banks exhibit behaviour similar to prey harvesting. Furthermore, Long
et al. (2022) developed a two predators-one prey model using the effects of inter-specific
and intra-specific competition [16]. This is also in accordance with the previous problem,
where there is competition between loan volumes in the bank.

In 2014, Sumarti et al. proposed a dynamic model of deposit and loan volumes based
on the Lotka-Volterra predator-prey model [29]. One of the deposit and loan volumes
models of Sumarti et al. (2014) uses the Michaelis-Menten response function. Then, in
2018, Sumarti et al. proposed a bank balance sheet model [28]. After that, in 2021, Ansori
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et al. modified the parameters used in the deposit and loan fund variables of the Sumarti et
al. (2018) balance sheet model [4]. In deposit volume, Ansori et al. (2021) considered the
rate of deposit withdrawal, while for loan volume, the NPL rate and the loan repayment
rate were added. The increase in deposit volume is assumed to follow logistic growth
because of the bank’s limitations in receiving funds from customers [3, 4, 29].

The deposit and loan model of Sumarti et al. (2014) has been developed into a model
of two loans, individual and company at one bank that compete each other for getting
loan volumes, similar to the two predators-one prey model of Long et al. (2022). Then,
the deposit volume will be considered the effect of withdrawal by adding a withdrawal
rate based on the research of Ansori et al. (2021). In addition, for both loan volumes, the
effect of NPL on both loan volumes will also be considered by adding the NPL rate and
the loan repayment rate based on the research of Ansori et al. (2021). Thus, this research
proposes a model of two loans in one bank that considers the effects of NPL and deposit
withdrawal.

We set the rest of the paper as follows: In Section 2, we develope the model, followed
by the verification of the existence, uniqueness, non-negativity, and boundness solutions
of the model in Section 3. The existence of equilibrium point and its local stability are
discussed in Sections 4 and 5, while the global stability analysis of the equilibrium points
is given in Section 6. Moreover, in Section 7, we demonstrate some numerical simulations
with a set of hypothetical parameters to validate the theoretical results. Finally, the
conclusion is presented in Section 8.

2. The Mathematical Model

The model in this paper is constructed by developing deposit and loan volumes model
of Sumarti et al. (2014) into a model of two loans at one bank which consists of three
variables, namely D which represents the volume of deposit, L1 which represents the
volume of individual loan, and L2 which represents the volume of company loan. Then, in
the deposit volume, a parameter of withdrawal rate (w) is added, while in the both loan
volumes, parameters of NPL (ni) and repayment rate of overdue loans (ci(1 − µi)) are
added according to the research of Ansori et al. (2021). The increase of deposit volume
uses a logistic growth model because banks have limitations in managing deposit funds
effectively. The distribution of deposit volume into loan volumes uses the Michaelis-Menten
response function due to the limited deposit volumes that can be lent to customers. In this
model, the deposit interest rate is the only factor that affects the increase of deposit and
the depositor will not be able to withdraw more than their deposit volume and additional
interest, so that the deposit interest rate (γ) are always greater than the rate of withdrawal
(w).

The nonlinear system autonomous model of two loans at one bank is obtained as
follows.

dD

dt
= γD

(
1− D

k

)
− p1DL1

b1D + 1
− p2DL2

b2D + 1
− wD,
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dL1

dt
=

p1DL1

b1D + 1
− (σ1 + n1)L1 − c1(1− µ1)L1 − β1L1L2 − h1L

2
1, (1)

dL2

dt
=

p2DL2

b2D + 1
− (σ2 + n2)L2 − c2(1− µ2)L2 − β2L1L2 − h2L

2
2,

with non-negative initial condition D(0), L1(0), and L2(0). The description of the param-
eters in model (1) can be seen in Table 1 where i = 1 for individual loan and i = 2 for
company loan. The proposed model resembles the two predators-one prey model of Long
et al. (2022), and some analyses will follow their approach.

Table 1: Description of Parameters

Parameter Description

bi The barriers to obtaining loans
ci Loan repayments rate
h1 Competition rate between individual loans
h2 Competition rate between company loans
k The carrying capacity of deposits
ni Non-performing loan rate
pi Maximum rate of the mixture between deposit and loan volumes
w Withdrawal deposit rate
β1 Competition rate of two loans on individual loan
β2 Competition rate of two loans on company loan
γ Interest rate of deposit
µi The average portion of NPL
σ1 Interest rate of loan

3. Preliminaries Results

As model (1) represents the volume of funds in the bank, the solution of the model
must exist and unique, non-negative, and ultimately bounded. The following theorems
ensure that the solution of the model (1) satisfies them.

Theorem 1. All solutions of system (1) exist and are unique in Ω× [0,∞) for any non-
negative initial condition D(0), L1(0), and L2(0) where Ω = {(D,L1, L2) ∈ R3

+ ∪ {⃗0} :
max{|D|, |L1|, |L2|} ≤ M} for sufficiently large of M .

Proof: Let the existence of M be guaranteed by the boundedness of the solution
which will be proved in the next theorem. It is also assumed that D(t), L1(t), L2(t) ≥ 0
for every t ≥ 0 which will also be proved in the next theorem. Let X = (D,L1, L2),
X̄ = (D̄, L̄1, L̄2) and consider a mapping F (X) = (F1(X), F2(X), F3(X)) such that

F1(X) = γD

(
1− D

k

)
− p1DL1

b1D + 1
− p2DL2

b2D + 1
− wD,
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F2(X) =
p1DL1

b1D + 1
− (σ1 + n1)L1 − c1(1− µ1)L1 − β1L1L2 − h1L

2
1,

F3(X) =
p2DL2

b2D + 1
− (σ2 + n2)L2 − c2(1− µ2)L2 − β2L1L2 − h2L

2
2.

Then, for any X, X̄ ∈ Ω, we have

||F (X)− F (X̄)|| = |F1(X)− F1(X̄)|+ |F2(X)− F2(X̄)|+ |F3(X)− F3(X̄)|

≤
(
γ +

2γM

k
+ w + 2p1M + 2p2M

)
|D − D̄|

+(2p1M +H5 + β1M + 2h1M + β2M) |L1 − L̄1|
+(2p2M +H6 + β1M + 2h2M + β2M) |L2 − L̄2|,

= K1|D − D̄|+K2|L1 − L̄1|+K3|L2 − L̄2|
≤ K

(
|D − D̄|+ |L1 − L̄1|+ |L2 − L̄2|

)
= K||X − X̄||,

where

K1 = γ +
2γM

k
+ w + 2p1M + 2p2M,

K2 = H5 +M(2p1 + β1 + 2h1 + β2),

K3 = H6 +M(2p2 + β1 + 2h2 + β2),

K = max{K1,K2,K3},
H5 = σ1 + n1 + c1(1− µ1), and H6 = σ2 + n2 + c2(1− µ2).

Based on a Lemma in [22] (p.71), the function F (X) satisfies the Lipschitz condition so
that the system (1) has a unique solution in Ω× [0,∞).

Theorem 2. All solutions of system (1) are non-negative and ultimately bounded for any
non-negative initial condition D(0), L1(0), and L2(0).

Proof: If we assume that D(t) can be negative. This shows that there exists t1 > 0
such that D(t) > 0 for 0 < t < t1, D(t) = 0 for t = t1 and D(t) < 0 for t > t1. Based on
the system (1) obtained

dD

dt

∣∣∣∣∣
t=t1

= 0,

meaning that there is no rate of increase in the deposit fund when t = t1. This contradicts
the statement that D(t) < 0 for t > t1, so the supposition is incorrect, which implies that
D(t) ≥ 0 for every t > 0. In the same way, L1(t) ≥ 0 and L2(t) ≥ 0 for any t > 0.

Furthermore, suppose V (t) = D(t) + L1(t) + L2(t), then the first derivative of V (t) is
as follows.

dV

dt
= (γ − w)D − γD2

k
+ (c1µ1 − c1 − σ1 − n1)L1 + (c2µ2 − c2 − σ2 − n2)L2
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−(β1 + β2)L1L2 − h1L
2
1 − h2L

2
2

≤ (γ − w)D − γD2

k
+ (c1µ1 − c1 − σ1 − n1)L1 + (c2µ2 − c2 − σ2 − n2)L2.

Then, for every positive constant ξ is obtained

dV

dt
+ ξV ≤ (γ + ξ − w)D − γD2

k
+ (ξ + c1µ1 − c1 − σ1 − n1)L1

+(ξ + c2µ2 − c2 − σ2 − n2)L2.

by taking ξ < min{c1(1− µ1) + σ1 + n1, c2(1− µ2) + σ2 + n2}, then we get

dV

dt
+ ξV ≤ (γ + ξ − w)D − γD2

k
≤ k(γ + ξ − w)2

4γ
,

dV

dt
≤ k(γ + ξ − w)2

4γ
− ξV.

Clearly, the solution to a first order differential inequality satisfies

V (t) ≤ k(γ + ξ − w)2

4ξγ
+

(
V (0)− k(γ + ξ − w)2

4ξγ

)
e−ξt.

It is obvious that V (t) → k(γ + ξ − w)2

4ξγ
as t → ∞. Thus, all solutions of system (1) are

ultimately bounded to the region

Ω =

{
{D(t), L1(t), L2(t)} ∈ R3

+ ∪ {⃗0} : V (t) ≤
{
k(γ + ξ − w)2

4ξγ

}}
.

4. The Existence of The Equilibrium Points

The equilibrium points of the system (1) are obtained when

dD

dt
=

dL1

dt
=

dL2

dt
= 0. (2)

By solving the system (2), five equilibrium points are obtained, namely

(i) The equilibrium point without deposit and loan activities, E0 = (0, 0, 0), that always
exists.

(ii) The loan-free equilibrium point, E1 =

(
k

γ
(γ − w), 0, 0

)
, that always exists since

γ > w.

(iii) The individual loan-free equilibrium point, E2 = (D(2), 0, L2(2)). L2(2) exist ifH4(2) >
H6 where
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L2(2) =
1

h2

(
p2D(2)

1 + b2D(2)
− (σ2 + n2 + c2(1− µ2))

)
and H4(2) =

p2D(2)

1 + b2D(2)
.

L2(2) still contains D(2) while D(2) values are the roots of the following cubic equation

D3
(2) + 3B1D

2
(2) + 3B2D(2) +B3 = 0, (3)

where

B1 = −h2b2[(γ − w)kb2 − 2γ]

3γh2b22
,

B2 =
−h2[2(γ − w)kb2 − γ] + kp2(p2 −H6b2)

3γh2b22
,

B3 = −k[(γ − w)h2 + p2H6]

γh2b22
.

Let χ = D(2) +B1, then (3) can be written as

χ3 + 3ϖ1χ+ϖ2 = 0, (4)

where

ϖ1 = B2 −B2
1 ,

ϖ2 = B3 − 3B1B2 + 2B3
1 .

Based on Cardan criterion in [6], the possible positive roots of equation (4) are as
follows.

(a) If ϖ2 < 0, then eq. (4) has a single positive root.

(b) Suppose ϖ2 > 0, ϖ1 < 0 and

i. if ϖ2
2 + 4ϖ3

1 = 0, then eq. (4) has a positive root of multiplicity two,

ii. if ϖ2
2 + 4ϖ3

1 < 0, then eq. (4) has two positive roots.

(c) If ϖ2 = 0 and ϖ1 < 0, then Eq. (4) has a unique positive root.

Thus, the third equilibrium point E2 = (D(2), 0, L2(2)) exists if H4(2) > H6 and it
satisfies one of the Cardan criterion.

(iv) The company loan-free equilibrium point, E3 = (D(3), L1(3) , 0). The existence of this
equilibrium point also uses the Cardan criterion [6] in the same way as E2. So, E3

exists if H3(3) > H5 and it satisfies one of the Cardan criterion, where

L1(3) =
1

h1

(
p1D(3)

1 + b1D(3)
− (σ1 + n1 + c1(1− µ1))

)
and H3(3) =

p1D(3)

1 + b1D(3)
.

(v) The equilibrium point with deposit and loan activities, E∗ = (D∗, L∗
1, L

∗
2), where

L∗
1 =

p1h2(D
∗ + b2D

∗2)− β1p2(D
∗ + b1D

∗2) + (1 + b1D
∗)(1 + b2D

∗)[β1H6 −H5h2]

(1 + b1D∗)(1 + b2D∗)(h1h2 − β1β2)
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and

L∗
2 =

p2h1(D
∗ + b1D

∗2)− β2p1(D
∗ + b2D

∗2) + (1 + b1D
∗)(1 + b2D

∗)[β2H5 −H6h1]

(1 + b1D∗)(1 + b2D∗)(h1h2 − β1β2)
.

L∗
1 and L∗

2 exist if they satisfy one of these conditions.

(a) If h1h2 > β1β2, then it must satisfy

h2
β1

>
H∗

4 −H6

H∗
3 −H5

>
β2
h1

. (5)

(b) If h1h2 < β1β2, then it must satisfy

h2
β1

<
H∗

4 −H6

H∗
3 −H5

<
β2
h1

. (6)

Further, D∗ values are the roots of the following equation

G0D
∗5 +G1D

∗4 +G2D
∗3 +G3D

∗2 +G4D
∗ +G5 = 0 (7)

where

G0 = −γ(h1h2 − β1β2)b
2
1b

2
2,

G1 = (h1h2 − β1β2)b1b2[k(γ − w)b1b2 − 2γ(b1 + b2)],

G2 = (h1h2 − β1β2)[2kb1b2(γ − w)(b1 + b2)− γ(b21 + b22 + 4b1b2)]

+kp1b2[b1b2(h2H5 − β1H6) + b1p2(β1 + β2)− p1b2h2]

+kp2b1[b1b2(h1H6 − β2H5)− p2b1h1],

G3 = (h1h2 − β1β2)[k(γ − w)(b21 + b22 + 4b1b2)− 2γ(b1 + b2)]

+kp1[(2b1b2 + b22)(h2H5 − β1H6) + p2(β1 + β2)(b1 + b2)− 2p1b2h2]

+kp2[(2b1b2 + b21)(h1H6 − β2H5)− 2p2b1h1],

G4 = (h1h2 − β1β2)[2k(γ − w)(b1 + b2)− γ]

+kp1[(b1 + 2b2)(h2H5 − β1H6) + p2(β1 + β2)− p1h2]

+kp2[(2b1 + b2)(h1H6 − β2H5)− p2h1],

G5 = k(γ − w)(h1h2 − β1β2) + k[p1(h2H5 − β1H6) + p2(h1H6 − β2H5)].

By Descartes’ Rule of Signs in [33], equation (7) will have at least one positive real
root. Thus, E∗ exists if it satisfies (5) or (6).

5. Local Stability

The Jacobian matrix at the equilibrium point is obtained as follows.

J(D,L1, L2) =

 J1 −H3 −H4

H1 J2 −β1L1

H2 −β2L2 J3

 , (8)
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where

J1 = γ

(
1− 2D

k

)
−H1 −H2 − w,

J2 = H3 −H5 − β1L2 − 2h1L1,

J3 = H4 −H6 − β2L1 − 2h2L2,

H1 =
p1L1

(b1D + 1)2
, H2 =

p2L2

(b2D + 1)2
, H3 =

p1D

b1D + 1
, H4 =

p2D

b2D + 1
,

H5 = σ1 + n1 + c1(1− µ1), and H6 = σ2 + n2 + c2(1− µ2).

The next theorems give the local stability of the equilibrium points by evaluating the real
part of all eigenvalues of the Jacobian matrix (8).

Theorem 3. The equilibrium point without deposit and loan activities E0 of the system
(1) is always unstable.

Proof: The Jacobian matrix at E0 is given by

J(0, 0, 0) =

 γ − w 0 0
0 −σ1 − n1 − c1(1− µ1) 0
0 0 −σ2 − n2 − c2(1− µ2)

 .

It is clear that the eigenvalues are

λ1 = γ − w,

λ2 = −σ1 − n1 − c1(1− µ1) < 0,

λ3 = −σ2 − n2 − c2(1− µ2) < 0.

Since γ > w, then λ1 > 0. Hence, the equilibrium point without deposit and loan activities
E0 is always unstable.

Theorem 4. The loan-free equilibrium point E1 of the system (1) is locally asymptotically

stable if
p1D(1)

b1D(1) + 1
< H5 and

p2D(1)

b2D(1) + 1
< H6.

Proof: The Jacobian matrix at E1 is given by

J(D(1), 0, 0) =


−(γ − w) −

p1D(1)

b1D(1) + 1
−

p2D(1)

b2D(1) + 1

0
p1D(1)

b1D(1) + 1
−H5 0

0 0
p2D(1)

b2D(1) + 1
−H6

 .

It is clear that the eigenvalues are λ1 = −(γ − w) < 0, λ2 =
p1D(1)

b1D(1) + 1
− H5, and

λ3 =
p2D(1)

b2D(1) + 1
−H6. If

p1D(1)

b1D(1) + 1
< H5 and

p2D(1)

b2D(1) + 1
< H6, then λ2 < 0 and λ3 > 0
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consequently E1 is locally asymptotically stable. Otherwise, it is an unstable point. So, if
the maximum loanable funds are too low relative to the three main factors reducing loan
funds, lending activity will cease, potentially harming the bank and preventing further
loans.

Theorem 5. By letting the individual loan-free equilibrium point E2 of the system (1)

exists. If H3(2) −H5 < β1L2(2) and
γ

k
> H2(2)b2, then E2 is locally asymptotically stable,

where H2(2) and H3(2) are stated in the proof.

Proof: The Jacobian matrix at E2 is given by

J(D(2), 0, L2(2)) =

 D(2)

(
H2(2)b2 −

γ

k

)
−H3(2) −H4(2)

0 H3(2) −H5 − β1L2(2) 0

H2(2) −β2L2(2) −h2L2(2)

 ,

where

H2(2) =
p2L2(2)

(b2D(2) + 1)2
, H3(2) =

p1D(2)

b1D(2) + 1
, and H4(2) =

p2D(2)

b2D(2) + 1
.

The characteristic equation of the Jacobian matrix J(E2) is given by(
H3(2) −H5 − β1L2(2) − λ

) ∣∣J(2) − λI
∣∣ = 0

where

J(2) =

(
D(2)

(
H2(2)b2 −

γ

k

)
−H4(2)

H2(2) −h2L2(2)

)
.

It is clear that the first eigenvalue is λ1 = H3(2) − H5 − β1L2(2) which will negative if
H3(2) − H5 < β1L2(2) . Then, the other two eigenvalues λ2 and λ3 will be negative if

tr(J(2)) < 0 and |J(2)| > 0. If
γ

k
> H2(2)b2, then tr(J(2)) < 0 and |J(2)| > 0. Thus, if

H3(2) −H5 < β1L2(2) and
γ

k
> H2(2)b2, then E2 is locally asymptotically stable. So, if the

maximum loanable funds for individuals are too low compared to factors reducing them,
individual lending will cease, leaving the bank without profit from such loans.

Theorem 6. Assume that the company loan-free equilibrium point E3 of the system (1)

exists. If H4(3) −H6 < β2L1(3) and
γ

k
> H1(3)b1, then E3 is locally asymptotically stable,

where H4(3) and H1(3) are stated in the proof.

Proof: The Jacobian matrix at E3 is given by

J(D(3), L1(3) , 0) =

 D(3)

(
H1(3)b1 −

γ

k

)
−H3(3) −H4(3)

H1(3) −h1L1(3) −β1L1(3)

0 0 H4(3) −H6 − β2L1(3)

 ,

where
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H1(3) =
p1L1(3)

(b1D(3) + 1)2
, H3(3) =

p1D(3)

b1D(3) + 1
, and H4(3) =

p2D(3)

b2D(3) + 1
.

And we have the characteristic equation of the Jacobian matrix J(E3) as follows.(
H4(3) −H6 − β2L1(3) − λ

) ∣∣J(3) − λI
∣∣ = 0,

where

J(3) =

(
D(3)

(
H1(3)b1 −

γ

k

)
−H3(3)

H1(3) −h1L1(3)

)
.

It is obvious that the first eigenvalue is λ1 = H4(3) −H6−β2L1(3) . If H4(3) −H6 < β2L1(3) ,
then λ1 < 0. Next, the other two eigenvalues will be negative if tr(J(3)) < 0 and |J(3)| > 0.

If
γ

k
> H1(3)b1, then tr(J(3)) < 0 and |J(3)| > 0. Hence, if H4(3) − H6 < β2L1(3) and

γ

k
> H1(3)b1, then E3 is locally asymptotically stable. Thus, if the maximum amount of

funds available for the company loan is too low relative to the factors that reduce lending,
the company lending will stop, preventing the bank from making profit from this loan.

Theorem 7. If E∗ exists, a1 > 0, a3 > 0 and a1a2−a3 > 0 where a1, a2 and a3 are stated
in the proof, then E∗ is locally asymptotically stable.

Proof: The Jacobian matrix at E∗ is given by

J(D∗, L∗, L∗) =

 D∗
(
H∗

1b1 +H∗
2b2 −

γ

k

)
−H∗

3 −H∗
4

H∗
1 −h1L

∗
1 −β1L

∗
1

H∗
2 −β2L

∗
2 −h2L

∗
2

 ,

where

H∗
1 =

p1L
∗
1

(b1D∗ + 1)2
, H∗

2 =
p2L

∗
2

(b2D∗ + 1)2
, H∗

3 =
p1D

∗

b1D∗ + 1
, andH∗

4 =
p2D

∗

b2D∗ + 1

By evaluating |J(E∗)−λI| = 0, we obtain the characteristic equation of the matrix J(E∗)
as follows.

λ3 + a1λ
2 + a2λ+ a3 = 0, (9)

where

a1 = j2 + j5 − j1,

a2 = j2j5 +H∗
2H

∗
4 +H∗

1H
∗
3 − j1j2 − j1j5 − j3j4,

a3 = j1j3j4 + j2H
∗
2H

∗
4 + j5H

∗
1H

∗
3 − j1j2j5 − j3H

∗
2H

∗
3 − j4H

∗
1H

∗
4 .

j1 = D∗
(
H∗

1b1 +H∗
2b2 −

γ

k

)
,

j2 = h1L
∗
1, j3 = β1L

∗
1, j4 = β2L

∗
2, j5 = h2L

∗
2.

Based on the Routh-Hurwitz criterion in [19], the solution of equation (9) has a negative
real part if and only if a1 > 0, a3 > 0 and a1a2 − a3 > 0. Therefore, E∗ is locally
asymptotically stable if a1 > 0, a3 > 0 and a1a2 − a3 > 0.
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6. Global Stability

6.1. Global Stability of E1

Theorem 8. E1 is globally asymptotically stable (GAS) if p1D(2) ≤ H5 and p2D(1) ≤ H6.

Proof: We first consider a Lyapunov function.

U = D −D(1) −D(1) ln
D

D(1)
+ L1 + L2

The first derivative of U with respect to t is given by

dU
dt

= (D −D(1))

(
γD(1)

k
− γD

k
− p1L1

b1D + 1
− p2L2

b2D + 1

)
+

(
p1DL1

b1D + 1
−H5L1 − β1L1L2 − h1L

2
1

)
+

(
p2DL2

b2D + 1
−H6L2 − β2L1L2 − h2L

2
2

)
= −γ

k
(D −D(1))

2 +

(
p1D(1)

b1D + 1
−H5

)
L1 +

(
p2D(1)

b2D + 1
−H6

)
L2

−(β1 + β2)L1L2 − h1L
2
1 − h2L

2
2

≤ −γ

k
(D −D(1))

2 +
(
p1D(1) −H5

)
L1 +

(
p2D(1) −H6

)
L2

−(β1 + β2)L1L2 − h1L
2
1 − h2L

2
2.

If p1D(1) ≤ H5 and p2D(1) ≤ H6, then
dU
dt

≤ 0 for all (D,L1, L2) ∈ R3
+ ∪ {⃗0} and

dU
dt

= 0

for (D,L1, L2) = (D(1), 0, 0). According to the LaSalle invariance principle in [2], E1 is
GAS.

6.2. Global Stability of E2

Theorem 9. E2 is GAS if
γ

k
> p2b2L2(2) and p1D(2) + v1β2L2(2) ≤ H5.

Proof: By considering a Lyapunov function as follows.

V1 = D −D(2) −D(2) ln
D

D(2)
+ L1 + v1

(
L2 − L2(2) − L2(2) ln

L2

L2(2)

)
,

where v1 = b2D(2) + 1. Then, the first derivative of V1 is given by

dV1

dt
= (D −D(2))

(
γD(2)

k
+

p2L2(2)

b2D(2) + 1
+ w − γD

k
− p1L1

b1D + 1
− p2L2

b2D + 1
− w

)
+

(
p1DL1

b1D + 1
−H5L1 − β1L1L2 − h1L

2
1

)
+v1(L2 − L2(2))

(
p2D

b2D + 1
−

p2D(2)

b2D(2) + 1
+ h2L2(2) − β2L1 − h2L2

)
,
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dV1

dt
= −γ

k
(D −D(2))

2 − v1h2(L2 − L2(2))
2 +

p2b2L2(2)(D −D(2))
2

(b2D(2) + 1)(b2D + 1)

+
p2(D −D(2))(L2 − L2(2))[v1 − (b2D(2) + 1)]

(b2D(2) + 1)(b2D + 1)

− (v1β2 + β1)L1L2 +

(
p1D(2)

b1D + 1
−H5 + v1β2L2(2)

)
L1 − h1L

2
1

≤ −γ

k
(D −D(2))

2 − v1h2(L2 − L2(2))
2 + p2b2L2(2)(D −D(2))

2

+
p2(D −D(2))(L2 − L2(2))[v1 − (b2D(2) + 1)]

(b2D(2) + 1)(b2D + 1)

− (v1β2 + β1)L1L2 +
(
p1D(2) −H5 + v1β2L2(2)

)
L1 − h1L

2
1,

since v1 = b2D(2) + 1, it can be written as

dV1

dt
≤ −(

γ

k
− p2b2L2(2))(D −D(2))

2 − v1h2(L2 − L2(2))
2

− (v1β2 + β1)L1L2 +
(
p1D(2) −H5 + v1β2L2(2)

)
L1 − h1L

2
1.

If
γ

k
> p2b2L2(2) and p1D(2)+ v1β2L2(2) ≤ H5, then

dV1

dt
≤ 0 for all (D,L1, L2) ∈ R3

+ ∪ {⃗0}

and
dV1

dt
= 0 for (D,L1, L2) = (D(2), 0, L2(2)). Applying the LaSalle invariance principle

in [2], E2 is GAS.

6.3. Global Stability of E3

Theorem 10. E3 is GAS if
γ

k
> p1b1L1(3) and p2D(3) + v2β1L1(3) ≤ H6.

Proof: We consider a Lyapunov function as follows.

V2 = D −D(3) −D(3) ln
D

D(3)
+ v2

(
L1 − L1(3) − L1(3) ln

L1

L1(3)

)
+ L2,

where v2 = b1D(3) + 1 The first order derivative of the Lyapunov function V2 is given by

dV2

dt
= (D −D(3))

(
γ

(
1− D

k

)
− p1L1

b1D + 1
− p2L2

b2D + 1
− w

)
+v2(L1 − L1(3))

(
p1D

b1D + 1
− (σ1 + n1 + c1(1− µ1))− β1L2 − h1L1

)
+

(
p2DL2

b2D + 1
− (σ2 + n2 + c2(1− µ2))L2 − β2L1L2 − h2L

2
2

)
,
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dV2

dt
= −γ

k
(D −D(3))

2 − v2h1(L1 − L1(3))
2 +

p1b1L1(3)(D −D(3))
2

(b1D(3) + 1)(b1D + 1)

+
p1(D −D(3))(L1 − L1(3))[v2 − (b1D(3) + 1)]

(b1D(3) + 1)(b1D + 1)

− (v2β1 + β2)L1L2 +

(
p2D(3)

b2D + 1
−H6 + v2β1L1(3)

)
L2 − h2L

2
2

≤ −γ

k
(D −D(3))

2 − v2h1(L1 − L1(3))
2 + p1b1L1(3)(D −D(3))

2

+
p1(D −D(3))(L1 − L1(3))[v2 − (b1D(3) + 1)]

(b1D(3) + 1)(b1D + 1)

− (v2β1 + β2)L1L2 +
(
p2D(3) −H6 + v2β1L1(3)

)
L2 − h2L

2
2,

= −(
γ

k
− p1b1L1(3))(D −D(3))

2 − v2h1(L1 − L1(3))
2

− (v2β1 + β2)L1L2 +
(
p2D(3) −H6 + v2β1L1(3)

)
L2 − h2L

2
2,

If
γ

k
> p1b1L1(3) and p2D(3) + v2β1L1(3) ≤ H6, then

dV2

dt
≤ 0 for all (D,L1, L2) ∈ R3

+ ∪

{⃗0} and
dV2

dt
= 0 for (D,L1, L2) = (D(3), L1(3) , 0). According to the LaSalle invariance

principle in [2], E3 is GAS.

6.4. Global Stability of E∗

Theorem 11. E∗ is GAS if k > p1b1L
∗
1 + p2b2L

∗
2 and 0 < β1

2h2−β2
< v4

v3
< 2h1−β1

β2
where

v3 and v4 are stated in the proof.

Proof: Define a Lyapunov function as

L = D −D∗ −D∗ ln
D

D∗ + v3

(
L1 − L∗

1 − L∗
1 ln

L1

L∗
1

)
+ v4

(
L2 − L∗

2 − L∗
2 ln

L2

L∗
2

)
,

where v3 = b1D
∗ + 1 and v4 = b2D

∗ + 1. The first order derivative of L is

dL
dt

= (D −D∗)

(
− γ

k
(D −D∗)− p1(L1(b1D

∗ + 1)− L∗
1(b1D + 1))

(b1D + 1)(b1D∗ + 1)

−p2(L2(b2D
∗ + 1)− L∗

2(b2D + 1))

(b2D + 1)(b2D∗ + 1)

)

+v3(L1 − L∗
1)

(
p1(D −D∗)

(b1D + 1)(b1D∗ + 1)
− β1(L2 − L∗

2)− h1(L1 − L∗
1)

)
+v4(L2 − L∗

2)

(
p2(D −D∗)

(b2D + 1)(b2D∗ + 1)
− β2(L1 − L∗

1)− h2(L2 − L∗
2)

)
,
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dL
dt

= −γ

k
(D −D∗)2 + (D −D∗)

(
p1[b1L

∗
1(D −D∗)− (L1 − L∗

1)(b1D
∗ + 1)]

(b1D + 1)(b1D∗ + 1)

)
+(D −D∗)

(
p2[b2L

∗
2(D −D∗)− (L2 − L∗

2)(b2D
∗ + 1)]

(b2D + 1)(b2D∗ + 1)

)
+
v3p1(D −D∗)(L1 − L∗

1)

(b1D + 1)(b1D∗ + 1)
+

v4p2(D −D∗)(L2 − L∗
2)

(b2D + 1)(b2D∗ + 1)

−v3h1(L1 − L∗
1)

2 − v4h2(L2 − L∗
2)

2 − (v3β1 + v4β2)(L1 − L∗
1)(L2 − L∗

2)

= −γ

k
(D −D∗)2 +

p1b1L
∗
1(D −D∗)2

(b1D + 1)(b1D∗ + 1)
+

p2b2L
∗
2(D −D∗)2

(b2D + 1)(b2D∗ + 1)

+
p1(D −D∗)(L1 − L∗

1)[v3 − (b1D
∗ + 1)]

(b1D + 1)(b1D∗ + 1)
+

p2(D −D∗)(L2 − L∗
2)[v4 − (b2D

∗ + 1)]

(b2D + 1)(b2D∗ + 1)

−v3h1(L1 − L∗
1)

2 − v4h2(L2 − L∗
2)

2 − (v3β1 + v4β2)(L1 − L∗
1)(L2 − L∗

2)

≤ −γ

k
(D −D∗)2 + p1b1L

∗
1(D −D∗)2 + p2b2L

∗
2(D −D∗)2

+
p1(D −D∗)(L1 − L∗

1)[v3 − (b1D
∗ + 1)]

(b1D + 1)(b1D∗ + 1)
+

p2(D −D∗)(L2 − L∗
2)[v4 − (b2D

∗ + 1)]

(b2D + 1)(b2D∗ + 1)

−v3h1(L1 − L∗
1)

2 − v4h2(L2 − L∗
2)

2 − (v3β1 + v4β2)(L1 − L∗
1)(L2 − L∗

2),

= −
(γ
k
− p1b1L

∗
1 − p2b2L

∗
2

)
(D −D∗)2 − v3h1(L1 − L∗

1)
2 − v4h2(L2 − L∗

2)
2

−(v3β1 + v4β2)(L1 − L∗
1)(L2 − L∗

2).

Let

P =

√
v3β1 + v4β2

2
(L1 − L∗

1) and Q =

√
v3β1 + v4β2

2
(L2 − L∗

2),

then we have

P 2 +Q2 − (P +Q)2 = −2PQ

= −(v3β1 + v4β2)(L1 − L∗
1)(L2 − L∗

2),

so that

dL
dt

≤ −
(γ
k
− p1b1L

∗
1 − p2b2L

∗
2

)
(D −D∗)2 − v3h1(L1 − L∗

1)
2 − v4h2(L2 − L∗

2)
2

+
v3β1 + v4β2

2
(L1 − L∗

1)
2 +

v3β1 + v4β2
2

(L2 − L∗
2)

2

−

(√
v3β1 + v4β2

2
(L1 − L∗

1) +

√
v3β1 + v4β2

2
(L2 − L∗

2)

)2

≤ −
(γ
k
− p1b1L

∗
1 − p2b2L

∗
2)(D −D∗)2 − v3h1(L1 − L∗

1

)2
− v4h2(L2 − L∗

2)
2

+
v3β1 + v4β2

2
(L1 − L∗

1)
2 +

v3β1 + v4β2
2

(L2 − L∗
2)

2,
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dL
dt

= −
(γ
k
− p1b1L

∗
1 − p2b2L

∗
2

)
(D −D∗)2 −

(
v3h1 −

v3β1 + v4β2
2

)
(L1 − L∗

1)
2

−
(
v4h2 −

v3β1 + v4β2
2

)
(L2 − L∗

2)
2.

If
γ

k
> p1b1L

∗
1 + p2b2L

∗
2 and 0 < β1

2h2−β2
< v4

v3
< 2h1−β1

β2
, then

dL
dt

≤ 0 for all (D,L1, L2) ∈

R3
+ ∪ {⃗0} and

dL
dt

= 0 for (D,L1, L2) = (D∗, L∗
1, L

∗
2). By applying the Lasalle invariance

principle in [2], E∗ is GAS.

7. Numerical Simulation

Table 2: Parameters Values

Parameter Simulation 1 Simulation 2 Simulation 3 Simulation 4

γ 0.4 0.4 0.4 0.4
w 0.2 0.2 0.2 0.2
k 3 3 3 3
p1 0.25 0.35 0.8 0.85
p2 0.35 0.8 0.35 0.9
n1 0.17 0.17 0.17 0.17
n2 0.23 0.23 0.23 0.2
b1 0.8 0.8 0.8 0.9
b2 0.9 0.7 0.9 0.95
σ1 0.1 0.2 0.1 0.2
σ2 0.15 0.1 0.15 0.15
c1 0.2 0.2 0.2 0.15
c2 0.25 0.2 0.25 0.2
β1 0.5 0.5 0.5 0.1
β2 0.4 0.4 0.4 0.15
h1 0.1 0.1 0.1 0.3
h2 0.1 0.1 0.1 0.25
µ1 0.15 0.15 0.15 0.15
µ2 0.2 0.1 0.2 0.2

In this section, we perform some numerical simulation results of the model (1) using
the fourth-order Runge-Kutta scheme in [15], to confirm our theoretical results. In [17, 20],
the fourth-order Runge-Kutta method is used to solve the first-order ordinary differential
equation corresponding to the model in this paper. This method is also widely used for
the numerical simulation of dynamical system models such as in [25, 31]. All parameter
values are chosen hypothetically because of the unavailability of the real data work.
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The parameter values of model (1) are shown in Table 2 with the initial condition
D(0) = 10, L1(0) = 4, L2(0) = 5 are used for simulation 1,2,3, while L1(0) = 6, L2(0) =
3 are used for simulation 4. The first simulation is conducted using the values of the
parameters in the simulation 1 column of the Table 2. After the calculation, we find
that the solution of the system is asymptotically stable to the loan-free equilibrium point,
E1 = (1.5, 0, 0). The numerical simulation shown in Figure 1, which also shows that the
solution converges to E1.

Figure 1: Numerical Simulation 1

Figure 2: Numerical Simulation 2
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Figure 3: Numerical Simulation 3

Figure 4: Numerical Simulation 4

The second simulation is conducted using the parameters values in the simulation
2 column of the Table 2. We find that the system solution is asymptotically stable to
the individual loan-free equilibrium point E2 = (1.1904, 0, 0.0946), which also shown in
the numerical simulation in Figure 2. In simulation 3, we see that the solution of the
system will be asymptotically stable to the company loan-free equilibrium point, E3 =
(1.0396, 0.1405, 0) which also shown in the numerical simulation in Figure 3. Lastly, the
simulation uses the parameter values in the simulation 4 column of the Table 2. Using
these parameters, we find that the solution of the system is asymptotically stable to the
equilibrium point with deposit and loan activities, E∗ = (1.3021, 0.0273, 0.0391). The
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numerical simulation shown in Figure 4 also shows that the solution converges to E∗. The
simulation shows that if the maximum loanable funds for individual and company exceed
all factors reducing them, lending activity will continue.

In reality, the loan-free equilibrium point, E1, is an equilibrium point that is highly
avoided by a bank because in the absence of loans, a banks will not have the profit of
interest loan that used for operational costs and return interest on depositors. By observing
the parameter changes in the previous numerical simulations, it can be seen that if the
maximum rate of mixture between deposit and both loan volumes or loanable volume is
very high, there will eventually be individual loan and company loan. The amount of
loanable volume depends on the amount of deposit volume. If the deposit volume can be
properly distributed into the loan, then the banking operation will be stable so that the
equilibrium point with the deposit and loan activities, E∗, is the most desirable condition
for a bank.

Figure 5: The Effect of Changes in Withdrawal Rate on The Volume of (a) Deposit (b) Individual Loan (c)
Company Loan
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Figure 6: The Effect of Changes in Individual’s NPL Rate on The Volume of (a) Deposit (b) Individual Loan
(c) Company Loan

The effect of changes in withdrawal and NPL rates on deposit and both loan volumes
is presented in Figures 5, 6, and 7. Figure 5 shows the effect of withdrawal on the deposit
volume. If the rate of withdrawal is getting bigger, then the volume of deposit volume
will decrease. It can lead to a reduced volume of loan that can be lent to individuals
and companies. Moreover, Figure 6 shows the effect of individual’s NPL on deposit and
both loan volumes. The higher individual’s NPL rate, the greater volumes of deposit and
company loan, while the volume of individual loan decreases. This is in accordance with
what happens in the bank, if someone has a high rate of NPL, then that person will get
less loan volume which causes the volume of loan can be lent to the companies and there
is more deposit volume left. Furthermore, Figure 7 shows the effect of the company’s
NPL rate on the deposit volume and both loan volumes. The higher rate of company’s
NPL, the higher deposit and individual loan volumes, but the company loan volume is
less. This is also in accordance with what actually happens in the bank, if a company has
a high NPL rate, it will receive fewer loans, which allows more deposit volume to be lent
to individuals.
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Figure 7: The Effect of Changes in Company’s NPL Rate on The Volume of (a) Deposit (b) Individual Loan
(c) Company Loan

The results of this study cannot be directly implemented in banking policies. However,
they can serve as a consideration for banks in formulating policies or operational strate-
gies. For instance, banks may adjust their strategies to increase deposits through product
promotion or to reduce the volume of loans. These actions could indirectly influence the
stability of the banking system.

8. Conclusion

In this paper, we construct a model of two loans in one bank analogous to the two
predators-one prey model and consider withdrawal and NPL rates. The existence and
uniqueness solution of the model (1) have been proved. Moreover, the non-negativity and
boundedness of the solution have also been proved. The model (1) has five equilibrium
points, namely the equilibrium point without deposit and loan activities, the loan-free
equilibrium point, the individual loan-free equilibrium point, the company loan-free equi-
librium point, and the equilibrium point with deposit and loan activities. The equilibrium
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point without deposit and loan activities always exists and is unstable. The loan-free equi-
librium point always exists and is globally asymptotically stable if it satisfies two certain
conditions. The individual loan-free equilibrium point and the company loan-free equilib-
rium point are asymptotically stable, both locally and globally, if they satisfy their certain
conditions. The equilibrium point with deposit and loan activities is globally asymptot-
ically stable if some certain conditions are satisfied. Our theoretical results have been
confirmed by numerical solutions of the model. The results of the model presented in this
paper can be implemented if all assumptions are met. Therefore, for future research, we
recommend that the parameters used are derived from real-world data.
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