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Abstract. Algebraic structure consisting of a set together with an associative internal binary
operation on it, so called semigroup has applications in different fields of science. For a better
understanding of these applications, semigroups are characterized through their subsets. Fuzzy
sets deal with uncertainties, and because many real-life problems have an associated algebraic
structure, fuzzification of these structures makes sense and is useful. This paper investigates the
generalization of bi-antiideals in semigroups and their fuzzification to enhance understanding of
algebraic structures with uncertainties. Building upon prior research, we define and explore (m,n)-
bi-antiideals as an extension of bi-antiideals, studying their properties through theoretical analysis
and illustrative examples. We introduce fuzzy (m,n)-bi-antiideals by leveraging fuzzy set theory
to model uncertainties, establishing a connection with (m,n)-bi-antiideals via level sets.
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1. Introduction

The initial paper on semigroups emerged in 1905 as a concise work by L.E. Dickson.
However, the true inception of the theory occurred in 1928 when A.K. Suschkewitsch [20]
published a paper of paramount significance. In contemporary language, he demonstrated
that within any finite semigroup, there exists a “kernel” (referred to as a simple ideal), and
he comprehensively characterized the structure of finite simple semigroups. Semigroups
provide a foundational framework for understanding how elements combine under certain
operations, and their applications span across multiple branches of mathematics and vari-
ous interdisciplinary fields such as Coding theory, Automata, etc. For more details about
semigroup terminology and history, we refer to [6].

The history of fuzzy sets can be traced back to the mid-20th century when Lotfi
Zadeh [21] introduced the concept of fuzzy logic in 1965. Zadeh’s groundbreaking idea
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challenged the traditional binary approach of classical set theory by allowing elements to
possess degrees of membership in sets, rather than being strictly classified as either inside
or outside a set. This innovative notion found its roots in the observation that many
real-world concepts are not easily definable in precise terms. Fuzzy sets quickly garnered
attention across various disciplines, including algebraic structures. The combination of the
two concepts led to the launch of fuzzy algebraic structures. The latter was established
by Rosenfeld [17] in 1971 when he introduced fuzzy groups.

There are many research items in the literature characterizing semigroups through its
(fuzzy) subsets. For example, (fuzzy) filters of a semigroup were studied in [3, 4, 10], and
(fuzzy) ideals of a semigroup were studied in [12–15]. For further details, we refer to the
work cited in [7, 9, 11, 16]. Inspired by the literature, our present work sets out on an
exploration of specific subsets within semigroups and fuzzifies them. The remaining part is
constructed as follows. After an Introduction, in Section 2 we present some results about
(fuzzy) antiideals and (fuzzy) bi-antiideals of semigroups that are used in the subsequent
sections. In Section 3 we generalizes bi-antiideals to (m,n)-bi-antiideals, discuss some of
their properties, and give some non-trivial examples. In Section 4 we fuzzify (m,n)-bi-
antiideals by introducing fuzzy (m,n)-bi-antiideals of a semigroup. Moreover, we link the
two new notions by means of level sets.

2. (Fuzzy) Left(right) antiideals and bi-antiideals of a semigroup

In this section, we present some definitions and results that are used throughout the
paper.

Antiideals were introduced by Schwarz [19] and were studied and generalized by Iseksi
[8, 9]. Other antiideals of semigroups were introduced. For example, Al-Tahan and Sarka
[5] introduced interior antiideals of a semigroup and investigated their properties and
Al-Kaseasbeh et al. [18] studied antiideals of a semiring.

A non-empty set X with an associative binary operation is called a semigroup and
a non-empty subset A of X is a subsemigroup of X if it is a semigroup. If X has an
identity, then it is called a monoid. As simple examples, the set of non-negative even
integers under standard addition is a semigroup and the set of positive real numbers
under standard multiplication is a semigroup.

Definition 1. [8] Let (X, ·) be a semigroup and A ̸= ∅ ⊆ X. Then

(i) A is a left antiideal of X if XA ∩A = ∅;

(ii) A is a right antiideal of X if AX ∩A = ∅;

(iii) A is an antiideal of X if it is both a left and right antiideal of X.

Example 1. Let (K, ·) be the semigroup of integers greater than 1 under standard multi-
plication of integers and A = {2, 3}. Then A is an antiideal of K. This is clear as

KA ∩A = AK ∩A = {4, 6, 8, 9, . . .} ∩ {2, 3} = ∅.
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We present an example of an infinite antiideal.

Example 2. Let M = {1, 2, 3, 4, . . .} and define the semigroup (M,⋆) as follows.

x ⋆ y =

{
1 if x is an odd number;

y otherwise.

Then A = {3, 5, 7, 9, . . .} is an antiideal of M . This is clear as AM ∩A = {1} ∩A = ∅.

Al-Tahan et al. [2] introduced bi-antiideals of a semigroup. We present some of their
results.

Definition 2. [2] Let (X, ·) be a semigroup and A ̸= ∅ ⊆ X. Then A is a bi-antiideal of
X if AXA ∩A = ∅.

Example 3. Let (K, ·) be the semigroup defined in Example 1 and B = {2, 3, 4}. Then
B is a bi-antiideal of K. Moreover, it is not a left(right) antiideal of K. This is clear as
BK ∩B = {4} ≠ ∅.

Proposition 1. [4] Evey left(right) antiideal of a semigroup X is a bi-antiideal of X.

Fuzzy sets were introduced by Zadeh [21] in 1965 to accommodate uncertainties that
classical sets fail to deal with. In a fuzzy set, the element’s membership is a real number
in the unit interval.

Definition 3. [21] Let X be a universal set, I = [0, 1], and µ : X → I. Then a fuzzy set
of X is given as: A = {(x, µ(x)) : x ∈ X}. Here µ(x) denotes the membership’s grade of
the element x in X.

Definition 4. [7] For the fuzzy sets µ1, µ2 of X, the fuzzy sets µ1 ∧ µ2, µ1 ∨ µ2 of X are
defined as follows.

(µ1 ∧ µ2)(x) = min{µ1(x), µ2(x)} for all x ∈ X.

(µ1 ∨ µ2)(x) = max{µ1(x), µ2(x)} for all x ∈ X.

Definition 5. [7] Let X1, X2 be non-empty sets and µ1, µ2 be fuzzy sets of X1, X2 respec-
tively. Then the fuzzy set µ = µ1 × µ2 of X1 ×X2 is defined as follows.

µ((x1, x2)) = min{µ1(x1), µ2(x2)} for all x1 ∈ X1, x2 ∈ X2.

Definition 6. [2] Let (X, ·) be a semigroup and µ : X → [0, 1] be a non-zero fuzzy set of
X. Then

(i) µ is a fuzzy left antiideal of X if µ(ra) ∧ µ(a) = 0 for all r, a ∈ X;

(ii) µ is a fuzzy right antiideal of X if µ(ar) ∧ µ(a) = 0 for all r, a ∈ X;
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(iii) µ is a fuzzy antiideal of X if µ is a fuzzy left antiideal of X and a fuzzy right antiideal
of X;

(iv) µ is a fuzzy bi-antiideal of X if µ(xry) ∧ µ(x) ∧ µ(y) = 0 for all r, x, y ∈ X.

Definition 7. [7] Let (X, ·) be a semigroup, µ be a non-zero fuzzy set of X, and t ∈ [0, 1].
Then the level set µt is defined as follows.

µt = {x ∈ X : µ(x) ≥ t}.

Example 4. Let (K, ·) be the semigroup defined in Example 1 and define the fuzzy sets
µ1, µ2 on K as follows.

µ1(k) =

{
0.54 if k = 2;

0 otherwise.
and µ2(k) =


0.65 if k = 4;

0.6 if k = 3;

0.55 if k = 2;

0 otherwise.

Then µ1 is a fuzzy antiideal of K and µ2 is a fuzzy bi-antiideal of K.

Theorem 1. [2] Let X be a semigroup, t ∈]0, 1], and µ a non-zero fuzzy set of X. Then
the following statements hold.

(i) µ is a fuzzy left(right) antiideal of X if and only of µt ̸= ∅ is a left(right) antiideal
of X.

(ii) µ is a fuzzy bi-antiideal of X if and only of µt ̸= ∅ is a bi-antiideal of X.

3. (m,n)-bi-antiideals of a semigroup

In this section and inspired by (m,n)-antiideals [1, 8] and by bi-antiideals [2], we
introduce (m,n)-bi-antiideals of a semigroup as a generalization of bi-antiideals and study
their properties. The results of this section are considered as a generalization of some
results in [2].

Definition 8. Let (X, ·) be a semigroup, m,n be positive integers, and A ̸= ∅ ⊆ X. Then
A is an (m,n)-bi-antiideal of X if AmXAn ∩A = ∅.

Remark 1. A monoid can have (m,n)-bi-antiideals. (See Example 5.)

Example 5. Let (P0,+) be the monoid of non-negative integers under standard addition
of integers. Then {1, 2} is a (2, 1)-bi-antiideal of P0. This is clear as

({1, 2}+ {1, 2}+ P0 + {1, 2}) ∩ {1, 2} = {x ∈ P0 : x ≥ 3} ∩ {1, 2} = ∅.

Proposition 2. Let (X, ·) be a semigroup and A ̸= ∅ ⊆ X be a bi-antiideal of X. Then
A is an (m,n)-bi-antiideal of X.
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Proof. The proof results form having

AmXAn ∩A = A(Am−1XAn−1)A ∩A ⊆ AXA ∩A = ∅.

Remark 2. The converse of Proposition 2 may not hold. (See Example 6.)

Example 6. Let M2(P0) be the semigroup of all two by two matrices with non-negative

integral entries under multiplication of matrices and A = {
(
2 0
0 0

)
,

(
4 0
0 0

)
}. Then A is

a (2, 1)-bi-antiideal of M2(P0). Furthermore, it is not a bi-antiideal of M2(P0).

Proposition 3. Let (X, ·) be a semigroup and A ̸= ∅ ⊆ X be an (m,n)-bi-antiideal of X.
If k ≥ m, andl ≥ n, then A is a (k, l)-bi-antiideal of X.

Proof. The proof results form having

AkXAl ∩A = Am(Ak−mXAl−n)An ∩A ⊆ AmXAn ∩A = ∅.

Example 7. Let N be the senigroup of natural numbers under standard multiplication and
A = {2, 3, 6, 12}. Then A is a (3, 1)-bi-antiideal of N that is not a (2, 1)-bi-antiideal of N.
This is clear as 2(3)(1)(2) ∈ A2NA ∩A.

Proposition 4. Let (X, ·) be a semigroup and A ̸= ∅ ⊆ X be an (m,n)-bi-antiideal of X.
Then A is not a subsemigroup of X.

Proof. Let A be an (m,n)-bi-antiideal ofX that is subsemigroup of A. Then Am+n+1 =
AmAAn ̸= ∅ ⊆ AmXAn ∩A = ∅.

Al-Tahan et al. [2] proved that every left(right) antiideal of a semigroup X is a bi-
antiideal of X. Example 8 shows that the converse may not hold.

Example 8. Let M2(P0) be the semigroup of all two by two matrices with non-negative

integer entries and A = {
(
2 0
0 0

)
}. Then A is a bi-antiideal of M2(P0). Furthermore, it

is not a left(right) antiideal of P0.

Proposition 5. Let (X, ·) be a semigroup and A ̸= ∅ ⊆ X be an (m,n)-bi-antiideal of X.
Then every non-empty subset of A is an (m,n)-bi-antiideal of X.

Proof. The proof is straightforward.

Corollary 1. Let (X, ·) be a semigroup and Ai ̸= ∅ ⊆ X for i ∈ N. If Ai is an (m,n)-
bi-antiideal of X for some i ∈ N, then every non-empty intersection of Ai is an (m,n)-bi-
antiideal of X.
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Theorem 2. Let X1, X2 be semigroups, f : X1 → X2 be an onto semigroup homomor-
phism, and A1 ̸= ∅ ⊆ X1 an (m,n)-bi-antiideal of X1. Then f(A1) is an (m,n)-bi-antiideal
of X2.

Proof. Let y ∈ f(A1)
mX2f(A1)

n ∩ f(A1). Then there exist x1, . . . , xm, z1, . . . , zm ∈
A1, x ∈ X1, r = f(x) ∈ X2 with y = f(x1) . . . f(xm)f(r)f(y1) . . . f(yn) ∈ f(A1). Having
f a semigroup homomorphism implies that y = f(x1 . . . xmry1 . . . yn) ∈ f(A1) and hence,
x1 . . . xmry1 . . . yn ∈ Am

1 X1A
n
1 ∩A1 = ∅.

Theorem 3. Let X1, X2 be semigroups, f : X1 → X2 be a semigroup homomorphism, and
A2 ̸= ∅ ⊆ X2 an (m,n)-bi-antiideal of X2. Then f−1(A2) ̸= ∅ is an (m,n)-bi-antiideal of
X1.

Proof. Let x ∈ f−1(A2)
mX1f

−1(A2)
n ∩ f−1(A2). Then there exist xi, zj ∈ f−1(A2)

with i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, r ∈ X1 satisfying x = x1 . . . xmry1 . . . yn ∈ f−1(A2)
and hence

f(x) = f(x1 . . . xmry1 . . . yn) ∈ A2.

Having f a semigroup homomorphism implies that

y = f(x1) . . . f(xm)f(r)f(y1) . . . f(yn) ∈ A2

and hence, y ∈ Am
2 X2A

n
2 ∩A2 = ∅.

Example 9. Let M2(P0), M2(2P0) be the semigroups of all two by two matrices with non-
negative integer entries and with non-negative even integral entries under multiplication
of matrices respectively defined in Example 6 and f : M2(P0) → M2(2P0) be defined
as follows. For every matrix M ∈ M2(P0), f(M) = 2M . From Example 8, we have

A = {
(
2 0
0 0

)
,

(
4 0
0 0

)
} is a (2, 1)-bi-antiideal of M2(P0). Having f an onto semigroup

homorphism implies that f(A) = {
(
4 0
0 0

)
,

(
8 0
0 0

)
} is a (2, 1)-bi-antiideal of M2(2P0).

4. Fuzzy (m,n)-bi-antiideals of a semigroup

In this section, we introduce new fuzzy algebraic structures and study their proper-
ties. More precisely and inspired by fuzzy interior antiideals introduced in [2] and fuzzy
antiideals of a semiring [18], we define fuzzy (m,n)-bi-antiideals of a semigroup.

Definition 9. Let (X, ·) be a semigroup, m,n be positive integers, and µ : X → [0, 1] be a
non-zero fuzzy set of X. Then µ is a fuzzy (m,n)-bi-antiideal of X if for all xi, yj , r ∈ X,

µ(x1 . . . xmry1 . . . yn) ∧ µ(x1) ∧ . . . ∧ µ(xm) ∧ µ(y1) ∧ . . . ∧ µ(yn) = 0.
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Example 10. Let P0 be the semigroup of non-negative integers under standard addition
and µ be the fuzzy set on P0 defined as follows.

µ(k) =


0.65 if k=1;

0.54 if k=2;

0 otherwise.

Then µ is a fuzzy (2, 1)-bi-antiideal of P0. Moreover, it is not a fuzzy bi-antiideal of P0.
This is clear as 0.54 = µ(2) ∧ µ(1) = µ(1 + 0 + 1) ∧ µ(1).

Next, we study fuzzy (m,n)-bi-antiideals of a semigroup under some operations of
fuzzy sets such as the intersection, union, and product of fuzzy sets.

Theorem 4. Let (X, ·) be a semigroup and µi be a non-zero fuzzy set of X for i =
1, . . . , k. If µi is a fuzzy (m,n)-bi-antiideal of X for some i ∈ {1, . . . , k}, then so is
µ = µ1 ∧ µ2 ∧ . . . ∧ µk.

Proof. Let x1, . . . , xm, r, y1, . . . , yn ∈ X. Without loss of generality, let µ1 be a fuzzy
(m,n)-bi-antiideal of X. Then µ(x1 . . . xmry1 . . . yn) ∧ µ(x1) ∧ . . . µ(xm) ∧ µ(y1) ∧ . . . ∧
µ(yn) ≤ µ1(x1 . . . xmry1 . . . yn) ∧ µ1(x1) ∧ . . . µ1(xm) ∧ µ1(y1) ∧ . . . ∧ µ1(yn) = 0.

Remark 3. The union of fuzzy (m,n)-bi-antiideals is not necessarily a fuzzy (m,n)-bi-
antiideal. (See Example 11.)

Example 11. Let M2(P0) be the semigroup defined in Example 6 and µ1, µ2 be defined as
follows.

µ1(B) =

0.6 if B =

(
2 0

0 0

)
;

0 otherwise.

and µ2(B) =



0.8 if B =

(
4 0

0 0

)
;

0.7 if B =

(
16 0

0 0

)
;

0 otherwise.

Then µ1, µ2 are fuzzy (2, 1)-bi-antiideals of M2(P0). The fuzzy set µ = µ1 ∨ µ2 of M2(P0)
is given by:

µ(B) =



0.6 if B = M1 =

(
2 0

0 0

)
;

0.8 if B = M2 =

(
4 0

0 0

)
;

0.7 if B = M3 =

(
16 0

0 0

)
;

0 otherwise.



M. Al Tahan, S. Hoskova-Mayerova, S. Al-Kaseasbeh / Eur. J. Pure Appl. Math, 18 (1) (2025), 5646 8 of 11

Having M3 = M1M1

(
1 0
0 0

)
M2 and 0.7 = µ(M3) implies that

µ(M1M1

(
1 0
0 0

)
M2) ∧ µ(M1) ∧ µ(M2) ̸= 0.

Theorem 5. Let X1, X2 be semigroups and µ1, µ2 be non-zero fuzzy sets of X1, X2 re-
spectively. If µ1 or µ2 is a fuzzy (m,n)-bi-antiideal of X1, X2, then µ = µ1 ×µ2 is a fuzzy
(m,n)-bi-antiideal of X1 ×X2.

Proof. Let x1, . . . , xm, r, y1, . . . , yn ∈ X1, z1, . . . , zm, r′, w1, . . . , wn ∈ X2. Without loss
of generality, let µ1 be a fuzzy (m,n)-bi-antiideal of X1. Then
µ((x1, z1) . . . (xm, zm)(r, r′)(y1, w1) . . . (yn, wn)∧µ((x1, z1))∧ . . . µ((xm, zm))∧µ((y1, w1))∧
. . .∧µ((yn, wn)) ≤ µ1(x1 . . . xmry1 . . . yn)∧µ1(x1)∧ . . . µ1(xm)∧µ1(y1)∧ . . .∧µ1(yn) = 0.

Theorem 6. Let (Xi, ·) be a semigroup for i = 1, 2, . . . , k and µi be a non-zero fuzzy set
of Xi for i = 1, . . . , k. If µi is a fuzzy (m,n)-bi-antiideal of Xi for some i ∈ {1, . . . , k},
then µ = µ1 × µ2 × . . .× µk is a fuzzy (m,n)-bi-antiideal of X1 × . . .×Xk.

Proof. The proof is similar to that of Theorem 5.

Next, we link fuzzy (m,n)-bi-antiideals of a semigroup X to (m,n)-bi-antiideals of X.

Theorem 7. Let (X, ·) be a semigroup, µ be a non-zero fuzzy set of X, and t ∈ [0, 1].
Then µ is a fuzzy (m,n)-bi-antiideal of X if and only if µt is either the empty set or an
(m,n)-bi-antiideal of X.

Proof. Let µ be a fuzzy (m,n)-bi-antiideal of X, and α ∈ µm
t Xµn

t ∩ µt ̸= ∅. Then
there exist x1, . . . , xm, y1, . . . , yn ∈ µt, r ∈ X with α = x1 . . . xmry1 . . . yn. Having
α, x1, . . . , xm, y1, . . . , yn ∈ µt implies that

0 = µ(x1 . . . xmry1 . . . yn) ∧ µ(x1) ∧ . . . ∧ µ(xm) ∧ µ(y1) ∧ . . . ∧ µ(yn) ≥ t.

Conversely, let µ(x1 . . . xmry1 . . . yn)∧µ(x1)∧ . . .∧µ(xm)∧µ(y1)∧ . . .∧µ(yn) = t > 0.
Then x1 . . . xmry1 . . . yn, x1, . . . , xm, y1, . . . , yn ∈ µt ̸= ∅ and hence,

x1 . . . xmry1 . . . yn ∈ µm
t Xµn

t ∩ µt = ∅.

Theorem 8. Let (X, ·) be a semigroup. Then every (m,n)-bi-antiideal of X can be rep-
resented as a level set of a fuzzy (m,n)-bi-antiideal of X.

Proof. Let A be an (m,n)-bi-antiideal of X and define the fuzzy set µ of X as follows.

µ(x) =

{
0.94 if x ∈ A;

0 otherwise.

One can easily see that µ0.94 = A and that µ is a fuzzy (m,n)-bi-antiideal of X.
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Corollary 2. Every fuzzy bi-antiideal of a semigroup X is a fuzzy (m,n)-bi-antiideal of
X.

Proof. The proof follows from Theorem 1, Proposition 2 and Theorem 8.

Corollary 3. Every fuzzy left(right) antiideal is a fuzzy (m,n)-bi-antiideal.

Proof. The proof follows from Proposition 1, Proposition 2, and Theorem 8.

Theorem 9. Let (X, ·) be a semigroup and A ̸= ∅ ⊆ X. Then A is an (m,n)-bi-antiideal
of X if and only if µA is a fuzzy (m,n)-bi-antiideal of X. Here, for all x ∈ X,

µA(x) =

{
1 if x ∈ A;

0 otherwise.

Proof. Let A be an (m,n)-bi-antiideal of X and x1, . . . , xm, r, y1, . . . , yn ∈ X. If there
exist i ∈ {1, . . . ,m} or j ∈ {1, . . . , n} with xi /∈ A or yj /∈ A, then µA(x1 . . . xmry1 . . . yn)∧
µA(x1)∧ . . .∧µA(xm)∧µA(y1)∧ . . .∧µA(yn) = 0. Otherwise and having AmXAn∩A = ∅
implies that x1 . . . xmry1 . . . yn /∈ A and hence, µA(x1 . . . xmry1 . . . yn)∧µA(x1)∧µA(xm)∧
µA(y1) ∧ µA(yn) = 0.

Conversely, let µA be a fuzzy (m,n)-bi-antiideal of X and α ∈ AmXAn ∩ A. Then
there exist x1, . . . , xm, y1, . . . , yn ∈ A, r ∈ X with α = x1 . . . xmry1 . . . yn ∈ A. The latter
implies that

µA(x1 . . . xmry1 . . . yn) ∧ µA(x1) ∧ µA(xm) ∧ µA(y1) ∧ µA(yn) = 1 ̸= 0.

5. Conclusion

In this paper, we have extended the theory of semigroups by introducing and charac-
terizing (m,n)-bi-antiideals and their fuzzy counterparts. Our exploration began with a
review of the foundational concepts of antiideals and bi-antiideals, followed by the gener-
alization to (m,n)-bi-antiideals. We demonstrated the properties of these new structures
through various propositions and examples. Furthermore, we incorporated fuzzy set theory
to handle uncertainties in semigroups, defining and analyzing fuzzy (m,n)-bi-antiideals.
We established connections between fuzzy (m,n)-bi-antiideals and their classical coun-
terparts using level sets, providing a comprehensive framework for understanding these
concepts.

Our findings contribute to the broader understanding of semigroups and their appli-
cations in different fields of mathematics and science. Future research could focus on
exploring additional properties of (m,n)-bi-antiideals, identifying all antiideals in specific
semigroups, extending the theory to other algebraic structures, and finding practical ap-
plications for these theoretical concepts. By advancing the study of semigroups and their
fuzzy generalizations, we hope to inspire further investigations and applications in both
theoretical and applied mathematics.
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