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Abstract. This paper is concerned with the concepts of upper rarely s-(τ1, τ2)p-continuous mul-
tifunctions and lower rarely s-(τ1, τ2)p-continuous multifunctions. Furthermore, some character-
izations and several properties concerning upper rarely s-(τ1, τ2)p-continuous multifunctions and
lower rarely s-(τ1, τ2)p-continuous multifunctions are established.
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1. Introduction

Weaker and stronger forms of open sets such as semi-open sets [48], preopen sets [50],
α-open sets [51], β-open sets [38], δ-open sets [67] and θ-open sets [67] play an impor-
tant role in the research of generalizations of continuity in topological spaces. By using
these sets, many authors introduced and studied various types of continuity for functions
and multifunctions. Viriyapong and Boonpok [69] investigated some characterizations
of (Λ, sp)-continuous functions by utilizing the notions of (Λ, sp)-open sets and (Λ, sp)-
closed sets due to Boonpok and Khampakdee [12]. Dungthaisong et al. [35] introduced
and studied the concept of g(m,n)-continuous functions. Duangphui et al. [34] intro-

duced and investigated the notion of (µ, µ′)(m,n)-continuous functions. Moreover, some
characterizations of almost (Λ, p)-continuous functions, strongly θ(Λ, p)-continuous func-
tions, almost strongly θ(Λ, p)-continuous functions, θ(Λ, p)-continuous functions, weakly
(Λ, b)-continuous functions, θ(⋆)-precontinuous functions, (Λ, p(⋆))-continuous functions,
⋆-continuous functions, θ-I -continuous functions, almost (g,m)-continuous functions,
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pairwise almost M -continuous functions, (τ1, τ2)-continuous functions, almost (τ1, τ2)-
continuous functions, weakly (τ1, τ2)-continuous functions, faintly (τ1, τ2)-continuous func-
tions, almost quasi (τ1, τ2)-continuous functions and weakly quasi (τ1, τ2)-continuous func-
tions were presented in [61], [64], [16], [56], [25], [11], [8], [10], [4], [1], [2], [26], [23], [18],
[62], [46] and [33], respectively. Popa [54] introduced the concept of rare continuity as a
generalization of weak continuity [47] which has been further investigated by Long and
Herrington [49] and Jafari [39, 40]. Jafari [41] also generalized the concept of rare conti-
nuity to rare β-continuity by involving the notion of β-open sets. Caldas [30] introduced
a new class of functions called rarely βθ-continuous functions by utilizing the notion of
β-θ-open sets and investigated some characterizations of rarely βθ-continuous functions.
Jafari [42] introduced and studied the concept of rare α-continuity as a generalization of
rare continuity and weak α-continuity [52]. Caldas and Jafari [31] introduced and investi-
gated a new class of functions called rarely g-continuous functions which is a generalization
of both the class of rarely continuous functions and the class of weakly g-continuous func-
tions. Quite recently, Thongmoon et al. [66] introduced and studied the concept of rarely
(τ1, τ2)-continuous functions.

In 2005, Caldas et al. [32] introduced and studied the new notion of rarely g-continuous
multifunctions is a generalization of weakly continuous multifunctions [53]. Viriyapong and
Boonpok [70] introduced and studied the concept of weakly quasi (Λ, sp)-continuous mul-
tifunctions. Furthermore, several characterizations of (τ1, τ2)δ-semicontinuous multifunc-
tions, almost weakly (τ1, τ2)-continuous multifunctions, ⋆-continuous multifunctions, β(⋆)-
continuous multifunctions, α-⋆-continuous multifunctions, almost α-⋆-continuous multi-
functions, almost quasi ⋆-continuous multifunctions, weakly α-⋆-continuous multifunc-
tions, sβ(⋆)-continuous multifunctions, weakly sβ(⋆)-continuous multifunctions, θ(⋆)-quasi
continuous multifunctions, almost ı⋆-continuous multifunctions, weakly (Λ, sp)-continuous
multifunctions, α(Λ, sp)-continuous multifunctions, almost α(Λ, sp)-continuous multifunc-
tions, weakly α(Λ, sp)-continuous multifunctions, almost β(Λ, sp)-continuous multifunc-
tions, slightly (Λ, sp)-continuous multifunctions, (τ1, τ2)-continuous multifunctions, al-
most (τ1, τ2)-continuous multifunctions, weakly (τ1, τ2)-continuous multifunctions, weakly
quasi (τ1, τ2)-continuous multifunctions, almost quasi (τ1, τ2)-continuous multifunctions,
c-(τ1, τ2)-continuous multifunctions and c-quasi (τ1, τ2)-continuous multifunctions were es-
tablished in [5], [28], [3], [7], [17], [24], [6], [21], [20], [15], [9], [19], [22], [43], [13], [27], [63],
[14], [59], [45], [65], [60], [58], [44] and [57], respectively. Popa and Noiri [55] introduced
and studied the notion of s-precontinuous multifunctions is a generalization of s-continuous
multifunctions and precontinuous multifunctions. Ekici and Park [37] introduced and in-
vestigated the concept of weakly s-precontinuous multifunctions. The notion of weakly
s-precontinuous multifunctions is a generalization of s-precontinuous multifunctions due
to Popa and Noiri [55]. Ekici and Jafari [36] introduced and investigated the notion of
rarely s-precontinuous multifunctions which is a generalization of weakly s-precontinuous
multifunctions due to Ekici and Park [37]. In this paper, we introduce the notions of
upper rarely s-(τ1, τ2)p-continuous multifunctions and lower rarely s-(τ1, τ2)p-continuous
multifunctions. We also investigate several characterizations of upper rarely s-(τ1, τ2)p-
continuous multifunctions and lower rarely s-(τ1, τ2)p-continuous multifunctions.
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2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [29]
if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. The
intersection of all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [29] of A
and is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in A is called
the τ1τ2-interior [29] of A and is denoted by τ1τ2-Int(A).

Lemma 1. [29] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-
closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A bitopological space (X, τ1, τ2) is said to be τ1τ2-connected [29] if X cannot be writ-
ten as the union of two nonempty disjoint τ1τ2-open sets. A subset A of a bitopo-
logical space (X, τ1, τ2) is called (τ1, τ2)r-open [68] (resp. (τ1, τ2)s-open [5], (τ1, τ2)p-
open [5], (τ1, τ2)β-open [5], α(τ1, τ2)-open) [71]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆
τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A))), A ⊆
τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A)))). The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open,
(τ1, τ2)p-open, (τ1, τ2)β-open, α(τ1, τ2)-open) set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-
closed, (τ1, τ2)p-closed, (τ1, τ2)β-closed, α(τ1, τ2)-closed). A subset R of a bitopological
space (X, τ1, τ2) is said to be τ1τ2-rare set [66] if τ1τ2-Int(R) = ∅. Let A be a subset of a
bitopological space (X, τ1, τ2). The intersection of all (τ1, τ2)p-closed sets of X containing
A is called the (τ1, τ2)p-closure of A and is denoted by (τ1, τ2)-pCl(A). The union of all
(τ1, τ2)p-open sets of X contained in A is called the (τ1, τ2)p-interior of A and is denoted
by (τ1, τ2)-pInt(A).

Lemma 2. [72] For a subset A of a bitopological space (X, τ1, τ2), the following properties
hold:

(1) A is (τ1, τ2)p-closed if and only if (τ1, τ2)-pCl(A) = A;

(2) (τ1, τ2)-pCl(A) = τ1τ2Cl(τ1τ2Int(A)) ∪A;

(3) (τ1, τ2)-pCl((τ1, τ2)-pCl(A)) = (τ1, τ2)-pCl(A).
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By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y , we
shall denote the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively,
that is, F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B ̸= ∅}. In
particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).

3. Upper and lower rarely s-(τ1, τ2)p-continuous multifunctions

In this section, we introduce the notions of upper rarely s-(τ1, τ2)p-continuous multi-
functions and lower rarely s-(τ1, τ2)p-continuous multifunctions. Moreover, some char-
acterizations of upper rarely s-(τ1, τ2)p-continuous multifunctions and lower rarely s-
(τ1, τ2)p-continuous multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper rarely
s-(τ1, τ2)p-continuous at x ∈ X if for each σ1σ2-open set V of Y having σ1σ2-connected
complement such that F (x) ⊆ V , there exists a σ1σ2-rare set RV with τ1τ2-Cl(RV )∩V = ∅
and a (τ1, τ2)p-open set U of X containing x such that F (U) ⊆ V ∪RV . A multifunction
F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper rarely s-(τ1, τ2)p-continuous if F is upper
rarely s-(τ1, τ2)p-continuous at each point x of X.

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper rarely s-(τ1, τ2)p-continuous at x ∈ X;

(2) for every σ1σ2-open set V of Y having σ1σ2-connected complement with F (x) ⊆ V ,
there exists a σ1σ2-rare set RV with σ1σ2-Cl(RV ) ∩ V = ∅ such that

x ∈ (τ1, τ2)-pInt(F
+(V ∪RV ));

(3) for every σ1σ2-open set V of Y having σ1σ2-connected complement with F (x) ⊆ V ,
there exists a σ1σ2-rare set RV with σ1σ2-Cl(V ) ∩RV = ∅ such that

x ∈ (τ1, τ2)-pInt(F
+(σ1σ2-Cl(V ) ∪RV ));

(4) for every σ1σ2-open set V of Y having σ1σ2-connected complement with F (x) ⊆ V ,
there exists a (τ1, τ2)p-open set U of X containing x such that

σ1σ2-Int(F (U) ∩ (Y − V )) = ∅;

(5) for every σ1σ2-open set V of Y having σ1σ2-connected complement with F (x) ⊆ V ,
there exists a (τ1, τ2)p-open set U of X containing x such that

σ1σ2-Int(F (U)) ⊆ σ1σ2-Cl(V );
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(6) for every σ1σ2-open set V of Y having σ1σ2-connected complement with F (x) ⊆ V ,
there exists a σ1σ2-rare set RV with σ1σ2-Cl(RV ) ∩ V = ∅ such that

x ∈ F+(V ∪RV ) ∩ τ1τ2-Int(τ1τ2-Cl(F
+(V ∪RV ))).

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y having σ1σ2-connected complement
such that F (x) ⊆ V . Since F is upper rarely s-(τ1, τ2)p-continuous at x ∈ X, there exists
a σ1σ2-rare set RV with σ1σ2-Cl(RV ) ∩ V = ∅ and a (τ1, τ2)p-open set U of X containing
x such that F (U) ⊆ V ∪RV . Thus, x ∈ U ⊆ F+(V ∪RV ) and hence

x ∈ (τ1, τ2)-pInt(F
+(V ∪RV )).

(2) ⇒ (3): Let V be any σ1σ2-open set of Y having σ1σ2-connected complement such
that F (x) ⊆ V . By (2), there exists a σ1σ2-rare set RV with σ1σ2-Cl(RV ) ∩ V = ∅ such
that x ∈ (τ1, τ2)-pInt(F

+(V ∪ RV )). Since σ1σ2-Cl(RV ) ∩ V = ∅, we have RV ⊆ Y − V
and Y − V = [Y − σ1σ2-Cl(V )] ∪ [σ1σ2-Cl(V )− V ]. Thus,

RV ⊆ [RV ∩ (Y − σ1σ2-Cl(V ))] ∪ [σ1σ2-Cl(V )− V ].

Put WV = RV ∩(Y −σ1σ2-Cl(V )). Then, WV is a τ1τ2-rare set with σ1σ2-Cl(V )∩WV = ∅.
Therefore, x ∈ (τ1, τ2)-pInt(F

+(V ∪RV )) ⊆ (τ1, τ2)-pInt(F
+(σ1σ2-Cl(V ) ∪WV )).

(3) ⇒ (4): Let V be any σ1σ2-open set of Y having σ1σ2-connected complement such
that F (x) ⊆ V . By (3), there exists a σ1σ2-rare set RV with σ1σ2-Cl(V )∩RV = ∅ such that
x ∈ (τ1, τ2)-pInt(F

+(σ1σ2-Cl(V ) ∪ RV )). Let U = (τ1, τ2)-pInt(F
+(σ1σ2-Cl(V ) ∪ RV )).

Then, U is a (τ1, τ2)p-open set of X containing x and F (U) ⊆ σ1σ2-Cl(V ) ∪RV . Thus,

σ1σ2-Int(F (U) ∩ (Y − V ))

= σ1σ2-Int(F (U)) ∩ σ1σ2-Int(Y − V )

⊆ σ1σ2-Int(σ1σ2-Cl(V ) ∪RV ) ∩ (Y − σ1σ2-Cl(V ))

= σ1σ2-Int([σ1σ2-Cl(V ) ∪RV ] ∩ [Y − σ1σ2-Cl(V )])

= σ1σ2-Int([σ1σ2-Cl(V ) ∩ (Y − σ1σ2-Cl(V ))] ∪ [RV ∩ (Y − σ1σ2-Cl(V ))])

= σ1σ2-Int(RV ∩ (Y − σ1σ2-Cl(V )))

= σ1σ2-Int(RV ) ∩ σ1σ2-Int(Y − σ1σ2-Cl(V ))

= ∅.

(4) ⇒ (5): Let V be any σ1σ2-open set of Y having σ1σ2-connected complement
such that F (x) ⊆ V . By (4), there exists a (τ1, τ2)p-open set U of X containing x such
that σ1σ2-Int(F (U) ∩ (Y − V )) = ∅. Since σ1σ2-Int(F (U) ∩ (Y − V )) = ∅, we have
σ1σ2-Int(F (U)) ⊆ V ⊆ σ1σ2-Cl(V ).

(5) ⇒ (1): Let V be any σ1σ2-open set of Y having σ1σ2-connected complement
with F (x) ⊆ V . By (5), there exists a (τ1, τ2)p-open set U of X containing x such that
σ1σ2-Int(F (U)) ⊆ σ1σ2-Cl(V ). Thus,

F (U) = (F (U)− σ1σ2-Int(F (U))) ∪ σ1σ2-Int(F (U))
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⊆ (F (U)− σ1σ2-Int(F (U))) ∪ σ1σ2-Cl(V )

= (F (U)− σ1σ2-Int(F (U))) ∪ V ∪ (σ1σ2-Cl(V )− V )

= [(F (U)− σ1σ2-Int(F (U))) ∩ (Y − V )] ∪ V ∪ (σ1σ2-Cl(V )− V ).

Let WV = (F (U)−σ1σ2-Int(F (U)))∩ (Y −V ) and W ′
V = σ1σ2-Cl(V )−V . Then, WV and

W ′
V are σ1σ2-rare sets and RV = WV ∪W ′

V is a σ1σ2-rare set such that σ1σ2-Cl(RV )∩V = ∅
and F (U) ⊆ V ∪RV . Thus, F is upper rarely s-(τ1, τ2)p-continuous at x.

(2) ⇔ (6): It follows from the fact that

(τ1, τ2)-pInt(F
+(V ∪RV )) = τ1τ2-Int(τ1τ2-Cl(F

+(V ∪RV ))) ∩ F+(V ∪RV ).

Definition 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper weakly
s-(τ1, τ2)p-continuous at x ∈ X if for each σ1σ2-open set V of Y having σ1σ2-connected
complement such that x ∈ F+(V ), there exists a (τ1, τ2)p-open set U of X containing x
such that U ⊆ F+(σ1σ2-Cl(V )). A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to
be upper weakly s-(τ1, τ2)p-continuous if F is upper weakly s-(τ1, τ2)p-continuous at each
point x of X.

Definition 3. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower weakly
s-(τ1, τ2)p-continuous at x ∈ X if for each σ1σ2-open set V of Y having σ1σ2-connected
complement such that x ∈ F−(V ), there exists a (τ1, τ2)p-open set U of X containing x
such that U ⊆ F−(σ1σ2-Cl(V )). A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to
be lower weakly s-(τ1, τ2)p-continuous if F is lower weakly s-(τ1, τ2)p-continuous at each
point x of X.

Definition 4. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called strongly (τ1, τ2)p-open
if F (U) is σ1σ2-open in Y for every (τ1, τ2)p-open set U of X.

Theorem 2. If F : (X, τ1, τ2) → (Y, σ1, σ2) is upper rarely s-(τ1, τ2)p-continuous and
strongly (τ1, τ2)p-open, then F is upper weakly s-(τ1, τ2)p-continuous.

Proof. Let x ∈ X and V be any σ1σ2-open set of Y having σ1σ2-connected complement
with F (x) ⊆ V . Since F is upper rarely s-(τ1, τ2)p-continuous, there exists a (τ1, τ2)p-open
set U of X containing x such that σ1σ2-Int(F (U)) ⊆ σ1σ2-Cl(V ). It follows from that
F (U) ⊆ σ1σ2-Cl(σ1σ2-Int(F (U))) ⊆ σ1σ2-Cl(V ). Thus, F is upper weakly s-(τ1, τ2)p-
continuous.

Definition 5. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower rarely
s-(τ1, τ2)p-continuous at x ∈ X if for each σ1σ2-open set V of Y having σ1σ2-connected
complement such that F (x)∩V ̸= ∅, there exists a σ1σ2-rare set RV with σ1σ2-Cl(RV )∩V =
∅ and a (τ1, τ2)p-open set U of X containing x such that F (z) ∩ (V ∪ RV ) ̸= ∅ for each
z ∈ U . A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower rarely s-(τ1, τ2)p-
continuous if F is lower rarely s-(τ1, τ2)p-continuous at each point x of X.
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Theorem 3. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower rarely s-(τ1, τ2)p-continuous at x ∈ X;

(2) for every σ1σ2-open set V of Y having σ1σ2-connected complement with F (x)∩V ̸= ∅,
there exists a σ1σ2-rare set RV with σ1σ2-Cl(RV ) ∩ V = ∅ such that

x ∈ (τ1, τ2)-pInt(F
−(V ∪RV ));

(3) for every σ1σ2-open set V of Y having σ1σ2-connected complement with F (x)∩V ̸= ∅,
there exists a σ1σ2-rare set RV with σ1σ2-Cl(RV ) ∩ V = ∅ such that

x ∈ F−(V ∪RV ) ∩ τ1τ2-Int(τ1τ2-Cl(F
−(V ∪RV ))).

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y having σ1σ2-connected complement
such that F (x) ⊆ V . Since F is lower rarely s-(τ1, τ2)p-continuous at x ∈ X, there exists
a σ1σ2-rare set RV with σ1σ2-Cl(RV ) ∩ V = ∅ and a (τ1, τ2)p-open set U of X containing
x such that F (z) ∩ (V ∪RV ) ̸= ∅ for each z ∈ U . Thus, x ∈ U ⊆ F−(V ∪RV ) and hence
x ∈ (τ1, τ2)-pInt(F

−(V ∪RV )).
(2) ⇒ (1): Let V be any σ1σ2-open set of Y having σ1σ2-connected complement with

F (x) ∩ V ̸= ∅. By (2), there exists a σ1σ2-rare set RV with σ1σ2-Cl(RV ) ∩ V = ∅ such
that x ∈ (τ1, τ2)-pInt(F

−(V ∪ RV )). Let U = (τ1, τ2)-pInt(F
−(V ∪ RV )). Then, U is a

(τ1, τ2)p-open set U of X containing x. Furthermore, F (z)∩(V ∪RV ) ̸= ∅ for every z ∈ U .
Thus, F is lower rarely s-(τ1, τ2)p-continuous at x ∈ X.

(2) ⇔ (3): It follows from the fact that

(τ1, τ2)-pInt(F
−(V ∪RV )) = τ1τ2-Int(τ1τ2-Cl(F

−(V ∪RV ))) ∩ F−(V ∪RV ).

Definition 6. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called rarely s-(τ1, τ2)p-continuous
at x ∈ X if for each σ1σ2-open set V of Y containing f(x) and having σ1σ2-connected
complement, there exists a σ1σ2-rare set RV with σ1σ2-Cl(RV )∩V = ∅ and a (τ1, τ2)p-open
set U of X containing x such that f(U) ⊆ V ∪RV . A function f : (X, τ1, τ2) → (Y, σ1, σ2)
is called rarely s-(τ1, τ2)p-continuous if f is rarely s-(τ1, τ2)p-continuous at each point x
of X.

Corollary 1. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) f is rarely s-(τ1, τ2)p-continuous at x ∈ X;

(2) for every σ1σ2-open set V of Y containing f(x) and having σ1σ2-connected comple-
ment, there exists a σ1σ2-rare set RV with σ1σ2-Cl(RV ) ∩ V = ∅ such that

x ∈ (τ1, τ2)-pInt(f
−1(V ∪RV ));



B. Kong-ied, S. Sompong, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5649 8 of 13

(3) for every σ1σ2-open set V of Y containing f(x) and having σ1σ2-connected comple-
ment, there exists a σ1σ2-rare set RV with σ1σ2-Cl(V ) ∩RV = ∅ such that

x ∈ (τ1, τ2)-pInt(f
−1(σ1σ2-Cl(V ) ∪RV ));

(4) for every σ1σ2-open set V of Y containing f(x) and having σ1σ2-connected comple-
ment, there exists a (τ1, τ2)p-open set U of X containing x such that

σ1σ2-Int(f(U) ∩ (Y − V )) = ∅;

(5) for every σ1σ2-open set V of Y containing f(x) and having σ1σ2-connected comple-
ment, there exists a (τ1, τ2)p-open set U of X containing x such that

σ1σ2-Int(f(U)) ⊆ σ1σ2-Cl(V );

(6) for every σ1σ2-open set V of Y containing f(x) and having σ1σ2-connected comple-
ment, there exists a σ1σ2-rare set RV with σ1σ2-Cl(RV ) ∩ V = ∅ such that

x ∈ f−1(V ∪RV ) ∩ τ1τ2-Int(τ1τ2-Cl(f
−1(V ∪RV ))).

Theorem 4. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is rarely s-(τ1, τ2)p-continuous if and
only if for every σ1σ2-open set V of Y , there exists a σ1σ2-rare set RV with

σ1σ2-Cl(RV ) ∩ V = ∅

such that f−1(V ) ⊆ (τ1, τ2)-pInt(f
−1(V ∪RV )).

Proof. It is an immediate consequence of the above corollary.

Definition 7. A bitopologcal space (X, τ1, τ2) is said to be τ1τ2-rarely separate if for every
pair of distinct points x and y in X, there exist τ1τ2-open sets Vx and Vy containing x and
y, respectively, and τ1τ2-rare sets RVx, RVy with τ1τ2-Cl(RVx) ∩ Vx = ∅ and

τ1τ2-Cl(RVy) ∩ Vy = ∅

such that (Vx ∪RVx) ∩ (Vy ∪RVy) = ∅.

Definition 8. A bitopologcal space (X, τ1, τ2) is said to be (τ1, τ2)p-Hausdorff if for any
distinct pair of points x and y in X, there exist (τ1, τ2)p-open sets U and V of X containing
x and y, respectively, such that U ∩ V = ∅.

Theorem 5. If (Y, σ1, σ2) is σ1σ2-rarely separate and f : (X, τ1, τ2) → (Y, σ1, σ2) is a
rarely s-(τ1, τ2)p-continuous injection, then (X, τ1, τ2) is (τ1, τ2)p-Hausdorff.



B. Kong-ied, S. Sompong, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5649 9 of 13

Proof. Let x and y be any distinct points in X. Then, f(x) ̸= f(y). Since (Y, σ1, σ2) is
σ1σ2-rarely separate, there exist σ1σ2-open sets V and W of Y containing f(x) and f(y),
respectively, and σ1σ2-rare sets RV and RW with σ1σ2-Cl(RV ) ∩ V = ∅ and

σ1σ2-Cl(RW ) ∩W = ∅

such that (V ∪RV ) ∩ (W ∪RW ) = ∅. Thus,

(τ1, τ2)-pInt(f
−1(V ∪RV )) ∩ (τ1, τ2)-pInt(f

−1(W ∪RW )) = ∅.

By Theorem 4, we have x ∈ f−1(V ) ⊆ (τ1, τ2)-pInt(f
−1(V ∪RV )) and

y ∈ f−1(W ) ⊆ (τ1, τ2)-pInt(f
−1(W ∪RW )).

Since (τ1, τ2)-pInt(f
−1(V ∪ RV )) and (τ1, τ2)-pInt(f

−1(W ∪ RW )) are (τ1, τ2)p-open sets,
(X, τ1, τ2) is a (τ1, τ2)p-Hausdorff space.
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