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Abstract. This paper presents new classes of multifunctions called upper almost nearly (τ1, τ2)-
continuous multifunctions and lower almost nearly (τ1, τ2)-continuous multifunctions. Moreover,
several characterizations and some properties concerning upper almost nearly (τ1, τ2)-continuous
multifunctions and lower almost nearly (τ1, τ2)-continuous multifunctions are established.
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1. Introduction

In 1968, Singal and Singal [56] introduced the concept of almost continuous functions
as a generalization of continuity. Popa [46] defined almost quasi-continuous functions as
a generalization of almost continuity and quasi-continuity [42]. Munshi and Bassan [43]
studied the notion of almost semi-continuous functions. Maheshwari et al. [40] introduced
the concept of almost feebly continuous functions as a generalization of almost continu-
ity. In 1984, Malghan and Hanchinamani [41] introduced the concept of N-continuous
functions. Noiri and Ergun [44] investigated some characterizations of N-continuous func-
tions. Ekici [34] introduced and studied the concept of nearly continuous multifunc-
tions as a generalization of semi-continuous multifunctions and N-continuous functions.
Viriyapong and Boonpok [65] investigated some characterizations of (Λ, sp)-continuous
functions by utilizing the notions of (Λ, sp)-open sets and (Λ, sp)-closed sets due to Boon-
pok and Khampakdee [12]. Dungthaisong et al. [33] introduced and studied the concept
of g(m,n)-continuous functions. Duangphui et al. [32] introduced and investigated the no-

tion of (µ, µ′)(m,n)-continuous functions. Furthermore, several characterizations of almost
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(Λ, p)-continuous functions, strongly θ(Λ, p)-continuous functions, almost strongly θ(Λ, p)-
continuous functions, θ(Λ, p)-continuous functions, weakly (Λ, b)-continuous functions,
θ(⋆)-precontinuous functions, (Λ, p(⋆))-continuous functions, ⋆-continuous functions, θ-I -
continuous functions, almost (g,m)-continuous functions, pairwise almost M -continuous
functions, (τ1, τ2)-continuous functions, almost (τ1, τ2)-continuous functions and weakly
(τ1, τ2)-continuous functions were presented in [57], [60], [16], [49], [25], [11], [8], [10], [4],
[1], [2], [26], [23] and [18], respectively. Srisarakham et al. [58] introduced and stud-
ied the concept of faintly (τ1, τ2)-continuous functions. Kong-ied et al. [39] introduced
and investigated the notion of almost quasi (τ1, τ2)-continuous functions. Chiangpradit et
al. [31] introduced and studied the concept of weakly quasi (τ1, τ2)-continuous functions.
Thongmoon et al. [63] introduced and investigated the notion of rarely (τ1, τ2)-continuous
functions.

In 2004, Ekici [35] introduced and investigated the notion of almost nearly contin-
uous multifunctions as a generalization of nearly continuous multifunctions and almost
continuous multifunctions [47]. In 2009, Noiri and Popa [45] introduced and studied the
notion of almost nearlym-continuous multifunctions as multifunctions from a set satisfying
some minimal conditions into a topological spaces. Carpintero et al. [30] introduced and
studied the notion of nearly ω-continuous multifunctions as a weaker form of nearly con-
tinuous multifunctions. Moreover, several characterizations and some properties concern-
ing (τ1, τ2)δ-semicontinuous multifunctions, almost weakly (τ1, τ2)-continuous multifunc-
tions, weakly quasi (Λ, sp)-continuous multifunctions, ⋆-continuous multifunctions, β(⋆)-
continuous multifunctions, α-⋆-continuous multifunctions, almost α-⋆-continuous multi-
functions, almost quasi ⋆-continuous multifunctions, weakly α-⋆-continuous multifunc-
tions, sβ(⋆)-continuous multifunctions, weakly sβ(⋆)-continuous multifunctions, θ(⋆)-quasi
continuous multifunctions, almost ı⋆-continuous multifunctions, weakly (Λ, sp)-continuous
multifunctions, α(Λ, sp)-continuous multifunctions, almost α(Λ, sp)-continuous multifunc-
tions, weakly α(Λ, sp)-continuous multifunctions, almost β(Λ, sp)-continuous multifunc-
tions, slightly (Λ, sp)-continuous multifunctions, (τ1, τ2)-continuous multifunctions, al-
most (τ1, τ2)-continuous multifunctions, weakly (τ1, τ2)-continuous multifunctions, weakly
quasi (τ1, τ2)-continuous multifunctions, almost quasi (τ1, τ2)-continuous multifunctions, c-
(τ1, τ2)-continuous multifunctions, c-quasi (τ1, τ2)-continuous multifunctions and s-(τ1, τ2)p-
continuous multifunctions were established in [5], [28], [66], [3], [7], [17], [24], [6], [21], [20],
[15], [9], [19], [22], [36], [13], [27], [59], [14], [52], [38], [62], [53], [51], [37], [50] and [70],
respectively. Rosas et al. [54] introduced and studied upper almost nearly continuous mul-
tifunctions and lower almost nearly continuous multifunctions using notions of topological
ideals. Rychlewicz [55] introduced and studied the notion of nearly quasi-continuous mul-
tifunctions as a generalization of almost nearly continuous multifunctions and almost quasi
continuous multifunctions [48]. In this paper, we introduce the concepts of upper almost
nearly (τ1, τ2)-continuous multifunctions and lower almost nearly (τ1, τ2)-continuous mul-
tifunctions. We also investigate several characterizations of upper almost nearly (τ1, τ2)-
continuous multifunctions and lower almost nearly (τ1, τ2)-continuous multifunctions.
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2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [29] if
A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. Let A
be a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets
of X containing A is called the τ1τ2-closure [29] of A and is denoted by τ1τ2-Cl(A).
The union of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [29] of
A and is denoted by τ1τ2-Int(A). A subset A of a bitopological space (X, τ1, τ2) is said
to be (τ1, τ2)r-open [64] (resp. (τ1, τ2)s-open [5], (τ1, τ2)p-open [5], (τ1, τ2)β-open [5])
if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)),
A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-
open, (τ1, τ2)p-open, (τ1, τ2)β-open) set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-closed,
(τ1, τ2)p-closed, (τ1, τ2)β-closed). A subset A of a bitopological space (X, τ1, τ2) is said
to be α(τ1, τ2)-open [69] if A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement of an
α(τ1, τ2)-open set is said to be α(τ1, τ2)-closed. Let A be a subset of a bitopological
space (X, τ1, τ2). The intersection of all (τ1, τ2)p-closed (resp. (τ1, τ2)s-closed, α(τ1, τ2)-
closed) sets of X containing A is called the (τ1, τ2)p-closure [68] (resp. (τ1, τ2)s-closure
[5], α(τ1, τ2)-closure [67]) of A and is denoted by (τ1, τ2)-pCl(A) (resp. (τ1, τ2)-sCl(A),
α(τ1, τ2)-Cl(A)). The union of all (τ1, τ2)p-open (resp. (τ1, τ2)s-open, α(τ1, τ2)-open)
sets of X contained in A is called the (τ1, τ2)p-interior [68] (resp. (τ1, τ2)s-interior [5],
α(τ1, τ2)-interior [67]) of A and is denoted by (τ1, τ2)-pInt(A) (resp. (τ1, τ2)-sInt(A),
α(τ1, τ2)-Int(A)). A subset A of a bitopological space (X, τ1, τ2) is said to be N (τ1, τ2)-
closed [61] if every cover of A by (τ1, τ2)r-open sets of X has a finite subcover.

Lemma 1. For a subset A of a bitopological space (X, τ1, τ2), the following properties
hold:

(1) (τ1, τ2)-sCl(A) = τ1τ2-Int(τ1τ2-Cl(A)) ∪A [5];

(2) (τ1, τ2)-sInt(A) = τ1τ2-Cl(τ1τ2-Int(A)) ∩A [52].

Lemma 2. Let (X, τ1, τ2) be a bitopological space. If V is a τ1τ2-open set of X hav-
ing N (τ1, τ2)-closed complement, then τ1τ2-Int(τ1τ2-Cl(V )) is a (τ1, τ2)r-open set having
N (τ1, τ2)-closed complement.

Proof. It is obvious that τ1τ2-Int(τ1τ2-Cl(V )) is a (τ1, τ2)r-open set. Let us denote
K = X − τ1τ2-Int(τ1τ2-Cl(V )). Of course, K ⊆ X − V . Let {Uγ | γ ∈ Γ} be a τ1τ2-open
cover of the set K. Then, {Uγ | γ ∈ Γ} ∪ (X −K) is a τ1τ2-open cover of the set X − V .
Thus, there exist indexes γ1, γ2, ..., γk such that

X − V ⊆
k
∪
i=1

τ1τ2-Int(τ1τ2-Cl(Uγi)) ∪ τ1τ2-Int(τ1τ2-Cl(X −K)).
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Since τ1τ2-Int(τ1τ2-Cl(X−K)) = τ1τ2-Int(τ1τ2-Cl(V )), τ1τ2-Int(τ1τ2-Cl(X−K))∩K = ∅.
It was shown that K ⊆

k
∪
i=1

τ1τ2-Int(τ1τ2-Cl(Uγi)). The proof of N (τ1, τ2)-closedness of the

set K is finished.

Lemma 3. Let (X, τ1, τ2) be a bitopological space. If V is a (τ1, τ2)p-open set of X hav-
ing N (τ1, τ2)-closed complement, then τ1τ2-Int(τ1τ2-Cl(V )) is a (τ1, τ2)r-open set having
N (τ1, τ2)-closed complement.

Proof. It is evident that τ1τ2-Int(τ1τ2-Cl(V )) is a (τ1, τ2)r-open set. Since V is (τ1, τ2)p-
open, V ⊆ τ1τ2-Int(τ1τ2-Cl(V )) and hence X − τ1τ2-Int(τ1τ2-Cl(V )) ⊆ X − V . By the
hypothesis, X − V is N (τ1, τ2)-closed and X − τ1τ2-Int(τ1τ2-Cl(V )) is (τ1, τ2)r-closed.
Thus, it follows from Lemma 2 that X − τ1τ2-Int(τ1τ2-Cl(V )) is N (τ1, τ2)-closed.

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y , we
shall denote the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively,
that is, F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B ̸= ∅}. In
particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).

3. Upper and lower almost nearly (τ1, τ2)-continuous multifunctions

In this section, we introduce the notions of upper almost nearly (τ1, τ2)-continuous
multifunctions and lower almost nearly (τ1, τ2)-continuous multifunctions. Furthermore,
several characterizations of upper almost nearly (τ1, τ2)-continuous multifunctions and
lower almost nearly (τ1, τ2)-continuous multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called upper almost nearly
(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y containing F (x) and
having N (σ1, σ2)-closed complement, there exists a τ1τ2-open set U of X containing x such
that F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called
upper almost nearly (τ1, τ2)-continuous if F is upper almost nearly (τ1, τ2)-continuous at
each point x of X.

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper almost nearly (τ1, τ2)-continuous at x ∈ X;

(2) x ∈ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) for each σ1σ2-open set V of Y containing

F (x) and having N (σ1, σ2)-closed complement;

(3) x ∈ τ1τ2-Int(F
+((σ1, σ2)-sCl(V ))) for each σ1σ2-open set V of Y containing F (x)

and having N (σ1, σ2)-closed complement;
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(4) x ∈ τ1τ2-Int(F
+(V )) for each (σ1, σ2)r-open set V of Y containing F (x) and having

N (σ1, σ2)-closed complement;

(5) for each (σ1, σ2)r-open set V of Y containing F (x) and having N (σ1, σ2)-closed
complement, there exists a τ1τ2-open set U of X containing x such that F (U) ⊆ V .

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y containing F (x) and having
N (σ1, σ2)-closed complement. By (1), there exists a τ1τ2-open set U of X containing x
such that F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). Thus, we have x ∈ U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))
and hence x ∈ τ1τ2-Int(F

+(σ1σ2-Int(σ1σ2-Cl(V )))).
(2) ⇒ (3): This follows from Lemma 1.
(3) ⇒ (4): Let V be any (σ1, σ2)r-open set of Y containing F (x) and having N (σ1, σ2)-

closed complement. It follows from Lemma 1 that

V = σ1σ2-Int(σ1σ2-Cl(V )) = (σ1, σ2)-sCl(V ).

(4) ⇒ (5): Let V be any (σ1, σ2)r-open set of Y containing F (x) and having N (σ1, σ2)-
closed complement. By (4), x ∈ τ1τ2-Cl(F

+(V )) and therefore there exists a τ1τ2-open set
U of X such that x ∈ U ⊆ F+(V ); hence F (U) ⊆ V .

(5) ⇒ (1): Let V be any σ1σ2-open set of Y containing F (x) and having N (σ1, σ2)-
closed complement. By Lemma 2, σ1σ2-Int(σ1σ2-Cl(V )) is a (σ1, σ2)r-open set of Y con-
taining F (x) and having N (σ1, σ2)-closed complement. Thus by (5), there exists a τ1τ2-
open set U of X containing x such that F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). This shows that
F is upper almost nearly (τ1, τ2)-continuous.

Definition 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower almost
nearly (τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that
F (x)∩V ̸= ∅ and having N (σ1, σ2)-closed complement, there exists a τ1τ2-open set U of X
containing x such that σ1σ2-Int(σ1σ2-Cl(V )) ∩ F (z) ̸= ∅ for each z ∈ U . A multifunction
F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower almost nearly (τ1, τ2)-continuous if F is
lower almost nearly (τ1, τ2)-continuous at each point x of X.

Theorem 2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower almost nearly (τ1, τ2)-continuous at x ∈ X;

(2) x ∈ τ1τ2-Int(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) for each σ1σ2-open set V of Y such that

F (x) ∩ V ̸= ∅ and having N (σ1, σ2)-closed complement;

(3) x ∈ τ1τ2-Int(F
−((σ1, σ2)-sCl(V ))) for each σ1σ2-open set V of Y such that

F (x) ∩ V ̸= ∅

and having N (σ1, σ2)-closed complement;
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(4) x ∈ τ1τ2-Int(F
−(V )) for each (σ1, σ2)r-open set V of Y such that F (x)∩ V ̸= ∅ and

having N (σ1, σ2)-closed complement;

(5) for each (σ1, σ2)r-open set V of Y such that F (x) ∩ V ̸= ∅ and having N (σ1, σ2)-
closed complement, there exists a τ1τ2-open set U of X containing x such that

F (z) ∩ V ̸= ∅

for every z ∈ U .

Proof. The proof is similar to that of Theorem 1.

Theorem 3. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper almost nearly (τ1, τ2)-continuous;

(2) F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) for each σ1σ2-open set V of Y having

N (σ1, σ2)-closed complement;

(3) τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ F−(K) for every N (σ1, σ2)-closed and σ1σ2-

closed set K of Y ;

(4) τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F−(σ1σ2-Cl(B)) for every every sub-

set B of Y having the N (σ1, σ2)-closed σ1σ2-closure;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))) for every every

subset B of Y such that Y − σ1σ2-Int(B) is N (σ1, σ2)-closed;

(6) F+(V ) is τ1τ2-open in X for each (σ1, σ2)r-open set V of Y having N (σ1, σ2)-closed
complement;

(7) F−(K) is τ1τ2-closed in X for every N (σ1, σ2)-closed and (σ1, σ2)r-closed set K of
Y .

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y containing F (x) having N (σ1, σ2)-
closed complement and x ∈ F+(V ). Then, F (x) ⊆ V . By Theorem 1, we have

x ∈ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V ))))

and hence F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V )))).

(2) ⇒ (3): Let K be any N (σ1, σ2)-closed and σ1σ2-closed set K of Y . Then, Y −K
is a σ1σ2-open set of Y having N (σ1, σ2)-closed complement. By (2), we have

X − F−(K) = F+(Y −K)

⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(Y −K))))

= τ1τ2-Int(X − F−(σ1σ2-Cl(σ1σ2-Int(K))))
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= X − τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K)))).

Thus, τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ F−(K).

(3) ⇒ (4): Let B be any subset of Y having the N (σ1, σ2)-closed σ1σ2-closure. Then,
σ1σ2-Cl(B) is a σ1σ2-closed and N (σ1, σ2)-closed set of Y . Thus by (3),

τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F−(σ1σ2-Cl(B)).

(4) ⇒ (5): Let B be any subset of Y such that Y − σ1σ2-Int(B) is N (σ1, σ2)-closed.
Since Y − σ1σ2-Int(B) is σ1σ2-closed and N (σ1, σ2)-closed. Then by (4), we have

F+(σ1σ2-Int(B)) = X − F−(Y − σ1σ2-Int(B))

= X − F−(σ1σ2-Cl(Y −B))

⊆ X − τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(Y −B)))))

= X − τ1τ2-Cl(F
−(Y − σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B)))))

= τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))).

(5) ⇒ (6): Let V be any (σ1, σ2)r-open set V of Y having N (σ1, σ2)-closed comple-
ment. Then, Y − σ1σ2-Int(V ) is N (σ1, σ2)-closed. Thus by (5), we have

F+(V ) ⊆ τ1τ2-Int(F
+(V ))

and hence F+(V ) is τ1τ2-open in X.
(6) ⇒ (7): Let K be any N (σ1, σ2)-closed and (σ1, σ2)r-closed set of Y . Then,

Y −K is a (σ1, σ2)r-open set of Y having N (σ1, σ2)-closed complement. By (6), we have
F+(Y −K) = X − F−(K) is τ1τ2-open in X and hence F−(K) is τ1τ2-closed in X.

(7) ⇒ (1): Let x ∈ X and V be any (σ1, σ2)r-open set of Y containing F (x) and having
N (σ1, σ2)-closed complement. Then, Y − V is (σ1, σ2)r-closed and N (σ1, σ2)-closed. By
(7), F−(Y −V ) = X −F+(V ) is τ1τ2-closed in X. Thus, F+(V ) is τ1τ2-open in X. Then,
there exists a τ1τ2-open set U of X containing x such that F (U) ⊆ V . It follows from
Theorem 1 that F is upper almost nearly (τ1, τ2)-continuous at x. This shows that F is
upper almost nearly (τ1, τ2)-continuous.

Theorem 4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower nearly almost (τ1, τ2)-continuous;

(2) F−(V ) ⊆ τ1τ2-Int(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) for each σ1σ2-open set V of Y having

N (σ1, σ2)-closed complement;

(3) τ1τ2-Cl(F
+(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ F+(K) for every N (σ1, σ2)-closed and σ1σ2-

closed set K of Y ;

(4) τ1τ2-Cl(F
+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F+(σ1σ2-Cl(B)) for every every sub-

set B of Y having the N (σ1, σ2)-closed σ1σ2-closure;
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(5) F−(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))) for every every

subset B of Y such that Y − σ1σ2-Int(B) is N (σ1, σ2)-closed;

(6) F−(V ) is τ1τ2-open in X for each (σ1, σ2)r-open set V of Y having N (σ1, σ2)-closed
complement;

(7) F+(K) is τ1τ2-closed in X for every N (σ1, σ2)-closed and (σ1, σ2)r-closed set K of
Y .

Proof. The proof is similar to that of Theorem 3.

Corollary 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper almost nearly (τ1, τ2)-
continuous if F−(K) is τ1τ2-closed in X for every N (σ1, σ2)-closed set K of Y .

Proof. Let V be any (σ1, σ2)r-open set of Y having N (σ1, σ2)-closed complement.
Then, Y − V is N (σ1, σ2)-closed and (σ1, σ2)r-closed. By the hypothesis,

X − F+(V ) = F−(Y − V )

is τ1τ2-closed in X and hence F+(V ) is τ1τ2-open in X. It follows from Theorem 3 that
F is upper almost nearly (τ1, τ2)-continuous.

Corollary 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower almost nearly (τ1, τ2)-
continuous if F+(K) is τ1τ2-closed in X for every N (σ1, σ2)-closed set K of Y .

Proof. The proof is similar to that of Corollary 1.

Theorem 5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper almost nearly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every every (σ1, σ2)β-open set V of Y having

the N (σ1, σ2)-closed σ1σ2-closure;

(3) τ1τ2-Cl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every every (σ1, σ2)s-open set V of Y having

the N (σ1, σ2)-closed σ1σ2-closure;

(4) F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) for every every (σ1, σ2)p-open set V

of Y having N (σ1, σ2)-closed complement.

Proof. (1) ⇒ (2): Let V be any (σ1, σ2)β-open set of Y having the N (σ1, σ2)-closed
σ1σ2-closure. Then, σ1σ2-Cl(V ) is (σ1, σ2)r-closed in Y . Since F is upper almost nearly
(τ1, τ2)-continuous, by Theorem 3 we have F−(σ1σ2-Cl(V )) is τ1τ2-closed in X. Thus,
τ1τ2-Cl(F

−(V )) ⊆ τ1τ2-Cl(F
−(σ1σ2-Cl(V ))) = F−(σ1σ2-Cl(V )).

(2) ⇒ (3): The proof is obvious since every (σ1, σ2)s-open set is (σ1, σ2)β-open.
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(3) ⇒ (4): Let V be any (σ1, σ2)p-open set of Y having N (σ1, σ2)-closed complement.
Then by Lemma 3, σ1σ2-Int(σ1σ2-Cl(V )) is a (σ1, σ2)r-open set having N (σ1, σ2)-closed
complement. Then, Y − σ1σ2-Int(σ1σ2-Cl(V )) is a (σ1, σ2)r-closed and N (σ1, σ2)-closed
set. Therefore, Y − σ1σ2-Int(σ1σ2-Cl(V )) is a (σ1, σ2)s-open set having the N (σ1, σ2)-
closed σ1σ2-closure. By (3), we have

X − τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) = τ1τ2-Cl(F

−(Y − σ1σ2-Int(σ1σ2-Cl(V ))))

⊆ F−(σ1σ2-Cl(Y − σ1σ2-Int(σ1σ2-Cl(V ))))

= X − F+(σ1σ2-Int(σ1σ2-Cl(V )))

⊆ X − F+(V )

and hence F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V )))).

(4) ⇒ (1): Let V be any (σ1, σ2)r-open set of Y having N (σ1, σ2)-closed complement.
Then, V is a (σ1, σ2)p-open set having N (σ1, σ2)-closed complement. By (4), we have
F+(V ) ⊆ τ1τ2-Int(F

+(σ1σ2-Int(σ1σ2-Cl(V )))) = τ1τ2-Int(F
+(V )) and hence F+(V ) is

τ1τ2-open in X. Thus by Theorem 3, F is upper almost nearly (τ1, τ2)-continuous.

Theorem 6. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower almost nearly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every every (σ1, σ2)β-open set V of Y having

the N (σ1, σ2)-closed σ1σ2-closure;

(3) τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every every (σ1, σ2)s-open set V of Y having

the N (σ1, σ2)-closed σ1σ2-closure;

(4) F−(V ) ⊆ τ1τ2-Int(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) for every every (σ1, σ2)p-open set V

of Y having N (σ1, σ2)-closed complement.

Proof. The proof is similar to that of Theorem 5.

Lemma 4. For a bitopological space (X, τ1, τ2), the following properties hold:

(1) α(τ1, τ2)-Cl(U) = τ1τ2-Cl(U) for every (τ1, τ2)β-open set U of X;

(2) (τ1, τ2)-pCl(U) = τ1τ2-Cl(U) for every (τ1, τ2)s-open set U of X.

Corollary 3. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties
are equivalent:

(1) F is upper almost nearly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
−(V )) ⊆ F−(α(σ1, σ2)-Cl(V )) for every every (σ1, σ2)β-open set V of Y

having the N (σ1, σ2)-closed σ1σ2-closure;



N. Chutiman, A. Sama-Ae, C. Boonpok / Eur. J. Pure Appl. Math, 18 (1) (2025), 5650 10 of 18

(3) τ1τ2-Cl(F
−(V )) ⊆ F−((σ1, σ2)-pCl(V )) for every every (σ1, σ2)s-open set V of Y

having the N (σ1, σ2)-closed σ1σ2-closure.

Corollary 4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties
are equivalent:

(1) F is lower almost nearly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
+(V )) ⊆ F+(α(σ1, σ2)-Cl(V )) for every every (σ1, σ2)β-open set V of Y

having the N (σ1, σ2)-closed σ1σ2-closure;

(3) τ1τ2-Cl(F
+(V )) ⊆ F+((σ1, σ2)-pCl(V )) for every every (σ1, σ2)s-open set V of Y

having the N (σ1, σ2)-closed σ1σ2-closure.

Theorem 7. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper almost nearly (τ1, τ2)-continuous;

(2) for each x ∈ X and for every σ1σ2-closed and N (σ1, σ2)-closed set K of Y such
that x ∈ F+(Y −K), there exists a τ1τ2-closed set H of X such that x ∈ X −H and
F−(σ1σ2-Cl(σ1σ2-Int(K))) ⊆ H;

(3) F+(σ1σ2-Int(σ1σ2-Cl(V ))) is τ1τ2-open in X for every σ1σ2-open set V of Y having
N (σ1, σ2)-closed complement;

(4) F−(σ1σ2-Cl(σ1σ2-Int(K))) is τ1τ2-closed in X for every σ1σ2-closed and N (σ1, σ2)-
closed set K of Y .

Proof. (1) ⇒ (2): Let x ∈ X and K be any σ1σ2-closed and N (σ1, σ2)-closed set of
Y such that x ∈ F+(Y −K). Then, Y −K is a σ1σ2-open set having N (σ1, σ2)-closed
complement. Since F is upper almost nearly (τ1, τ2)-continuous, there exists a τ1τ2-open
set U of X containing x such that

U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(Y −K))) = X − F−(σ1σ2-Cl(σ1σ2-Int(K))).

It is clear that H = X − U is τ1τ2-closed in X and F−(σ1σ2-Cl(σ1σ2-Int(K))) ⊆ H.
(2) ⇒ (1): The proof is similar to the proof (1) ⇒ (2).
(1) ⇒ (3): Let V be any σ1σ2-open set of Y having N (σ1, σ2)-closed complement and

x ∈ F+(σ1σ2-Int(σ1σ2-Cl(V ))). Then, we have σ1σ2-Int(σ1σ2-Cl(V )) is a σ1σ2-open set
of Y having N (σ1, σ2)-closed complement. Thus by (1), there exists a τ1τ2-open set U of
X containing x such that U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))). Since U is τ1τ2-open, we have
x ∈ τ1τ2-Int(F

+(σ1σ2-Int(σ1σ2-Cl(V )))) and hence

F+(σ1σ2-Int(σ1σ2-Cl(V ))) ⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V )))).

Thus, F+(σ1σ2-Int(σ1σ2-Cl(V ))) is τ1τ2-open in X.
(3) ⇒ (1): The proof is clear.
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(3) ⇒ (4): Let K be any σ1σ2-closed N (σ1, σ2)-closed set of Y . Then, Y −K is a σ1σ2-
open set having N (σ1, σ2)-closed complement. By (3), F+(σ1σ2-Int(σ1σ2-Cl(Y −K))) is
τ1τ2-open in X. Since σ1σ2-Int(σ1σ2-Cl(Y −K)) = Y − σ1σ2-Cl(σ1σ2-Int(K)), it follows
that

F+(σ1σ2-Int(σ1σ2-Cl(Y −K))) = F+(Y − σ1σ2-Cl(σ1σ2-Int(K)))

= X − F−(σ1σ2-Cl(σ1σ2-Int(K))).

Thus, F−(σ1σ2-Cl(σ1σ2-Int(K))) is τ1τ2-closed in X.
(4) ⇒ (3): It can be obtained similarly as (3) ⇒ (4).

Theorem 8. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower almost nearly (τ1, τ2)-continuous;

(2) for each x ∈ X and for every σ1σ2-closed and N (σ1, σ2)-closed set K of Y such
that x ∈ F−(Y −K), there exists a τ1τ2-closed set H of X such that x ∈ X −H and
F+(σ1σ2-Cl(σ1σ2-Int(K))) ⊆ H;

(3) F−(σ1σ2-Int(σ1σ2-Cl(V ))) is τ1τ2-open in X for every σ1σ2-open set V of Y having
N (σ1, σ2)-closed complement;

(4) F+(σ1σ2-Cl(σ1σ2-Int(K))) is τ1τ2-closed in X for every σ1σ2-closed and N (σ1, σ2)-
closed set K of Y .

Proof. The proof is similar to that of Theorem 7.

Recall that a net (xγ) in a topological space (X, τ) is said to be eventually in the set
U ⊆ X if there exists an index γ0 ∈ ∇ such that xγ ∈ U for all γ ≥ γ0. A net (xγ) is
called (τ1, τ2)-converge to a point x if for every τ1τ2-open set V containing x, there exists
an index γ0 ∈ ∇ such that xγ ∈ V for all γ ≥ γ0.

Theorem 9. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper almost nearly (τ1, τ2)-
continuous if and only if for each x ∈ X and for each net (xγ) which (τ1, τ2)-converges to
x in X and for each σ1σ2-open set V of Y having N (σ1, σ2)-closed complement such that
x ∈ F+(V ), the net (xγ) is eventually in F+(σ1σ2-Int(σ1σ2-Cl(V ))).

Proof. Let (xγ) be a net which (τ1, τ2)-converges to x in X and V be any σ1σ2-open
set of Y having N (σ1, σ2)-closed complement such that x ∈ F+(V ). Since F is upper
almost nearly (τ1, τ2)-continuous, there exists a τ1τ2-open set U of X containing x such
that U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))). Since (xγ) (τ1, τ2)-converges to x, it follows that
there exists an index γ0 ∈ ∇ such that xγ ∈ U for all γ ≥ γ0. Therefore,

xγ ∈ U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V )))

for all γ ≥ γ0. Thus, the net (xγ) is eventually in F+(σ1σ2-Int(σ1σ2-Cl(V ))).
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Conversely, suppose that F is not upper almost nearly (τ1, τ2)-continuous. Then, there
exists a point x of X and a σ1σ2-open set V of Y having N (σ1, σ2)-closed complement
with x ∈ F+(V ) such that U ̸⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))) for each τ1τ2-open set U of X
containing x. Let xU ∈ U and xU ̸∈ F+(σ1σ2-Int(σ1σ2-Cl(V ))) for each τ1τ2-open set U
of X containing x. Then, for each τ1τ2-neighbourhood net (xU ), (xU ) (τ1, τ2)-converges to
x, but (xU ) is not eventually in F+(σ1σ2-Int(σ1σ2-Cl(V ))). This is a contradiction. Thus,
F is upper almost nearly (τ1, τ2)-continuous.

Theorem 10. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower almost nearly (τ1, τ2)-
continuous if and only if for each x ∈ X and for each net (xγ) which (τ1, τ2)-converges to
x in X and for each σ1σ2-open set V of Y having N (σ1, σ2)-closed complement such that
x ∈ F−(V ), the net (xγ) is eventually in F−(σ1σ2-Int(σ1σ2-Cl(V ))).

Proof. The proof is similar to that of Theorem 9.

For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), a multifunction

ClF⊛ : (X, τ1, τ2) → (Y, σ1, σ2)

is defined in [29] as follows: ClF⊛(x) = σ1σ2-Cl(F (x)) for each x ∈ X.

Definition 3. [29] A subset A of a bitopological space (X, τ1, τ2) is said to be:

(1) τ1τ2-paracompact if every cover of A by τ1τ2-open sets of X is refined by a cover of
A which consists of τ1τ2-open sets of X and is τ1τ2-locally finite in X;

(2) τ1τ2-regular if for each x ∈ A and each τ1τ2-open set U of X containing x, there
exists a τ1τ2-open set V of X such that x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Lemma 5. [29] If A is a τ1τ2-regular τ1τ2-paracompact set of a bitopological space (X, τ1, τ2)
and U is a τ1τ2-open neighbourhood of A, then there exists a τ1τ2-open set V of X such
that A ⊆ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Lemma 6. [29] If F : (X, τ1, τ2) → (Y, σ1, σ2) is a multifunction such that F (x) is τ1τ2-
regular and τ1τ2-paracompact for each x ∈ X, then ClF+

⊛ (V ) = F+(V ) for each σ1σ2-open
set V of Y .

Theorem 11. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F (x) is
σ1σ2-paracompact and σ1σ2-regular for each x ∈ X. Then, F is upper almost nearly
(τ1, τ2)-continuous if and only if G : (X, τ1, τ2) → (Y, σ1, σ2) is upper almost nearly (τ1, τ2)-
continuous, where G denote ClF⊛.

Proof. Suppose that F is upper almost nearly (τ1, τ2)-continuous. Let V be any
(σ1, σ2)r-open set of Y having N (σ1, σ2)-connected complement. It follows from Lemma
6 and Theorem 3 that G+(V ) = F+(V ) is τ1τ2-open in X. By Theorem 3, G is upper
almost nearly (τ1, τ2)-continuous.
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Conversely, suppose that G is upper almost nearly (τ1, τ2)-continuous. Let V be any
(σ1, σ2)r-open set of Y having N (σ1, σ2)-connected complement. By Lemma 6 and Theo-
rem 3, F+(V ) = G+(V ) is τ1τ2-open in X. Thus by Theorem 3, F is upper almost nearly
(τ1, τ2)-continuous.

Lemma 7. [29] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), ClF
−
⊛ (V ) = F−(V ) for

each σ1σ2-open set V of Y .

Theorem 12. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower almost nearly (τ1, τ2)-
continuous if and only if G : (X, τ1, τ2) → (Y, σ1, σ2) is lower almost nearly (τ1, τ2)-
continuous, where G denote ClF⊛.

Proof. By using Lemma 7 this can be shown similarly as in Theorem 11.

4. Several characterizations

The τ1τ2-frontier [26] of a subset A of a bitopological space (X, τ1, τ2), denoted by
τ1τ2-fr(A), is defined by

τ1τ2-fr(A) = τ1τ2-Cl(A) ∩ τ1τ2-Cl(X −A) = τ1τ2-Cl(A)− τ1τ2-Int(A).

Theorem 13. The set of all points x of X at which a multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2)

is not upper almost nearly (τ1, τ2)-continuous is identical with the union of the τ1τ2-frontier
of the upper inverse images of (σ1, σ2)r-open sets containing F (x) and having N (σ1, σ2)-
closed complement.

Proof. Let x be a point of X at which F is not upper almost nearly (τ1, τ2)-continuous.
Then, by Theorem 1 there exists a (σ1, σ2)r-open set V of Y containing F (x) and having
N (σ1, σ2)-closed complement such that U ∩ (X − F+(V )) ̸= ∅ for every τ1τ2-open set U
of X containing x. Thus, x ∈ τ1τ2-Cl(X − F+(V )). On the other hand, we have

x ∈ F+(V ) ⊆ τ1τ2-Cl(F
+(V ))

and hence x ∈ τ1τ2-fr(F
+(V )).

Conversely, suppose that V is a (σ1, σ2)r-open set of Y containing F (x) and having
N (σ1, σ2)-closed complement such that x ∈ τ1τ2-fr(F

+(V )). If F is upper almost nearly
(τ1, τ2)-continuous at x ∈ X. Then by Theorem 1, we have x ∈ τ1τ2-Int(F

+(V )). This is
a contradiction and hence F is not upper almost nearly (τ1, τ2)-continuous at x.

Theorem 14. The set of all points x of X at which a multifunction

F : (X, τ1, τ2) → (Y, σ1, σ2)

is not lower almost nearly (τ1, τ2)-continuous is identical with the union of the τ1τ2-frontier
of the lower inverse images of (σ1, σ2)r-open sets meeting F (x) and having N (σ1, σ2)-
closed complement.
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Proof. The proof is similar to that of Theorem 13.

Recall that a subset A of a bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [29]
if A is both τ1τ2-open and τ1τ2-closed.

Definition 4. [29] A bitopological space (X, τ1, τ2) is said to be τ1τ2-connected if X cannot
be written as the union of two disjoint nonempty τ1τ2-open sets.

Definition 5. A bitopological space (X, τ1, τ2) is said to be N (τ1, τ2)-connected if X
cannot be written as the union of two disjoint nonempty τ1τ2-open sets having N (τ1, τ2)-
closed complements.

Theorem 15. If F : (X, τ1, τ2) → (Y, σ1, σ2) is an upper or lower almost nearly (τ1, τ2)-
continuous surjective multifunction such that F (x) is σ1σ2-connected for each x ∈ X and
(X, τ1, τ2) is τ1τ2-connected, then (Y, σ1, σ2) is N (σ1, σ2)-connected.

Proof. Suppose that (Y, σ1, σ2) is not N (σ1, σ2)-connected. There exist nonempty
σ1σ2-open sets U and V of Y having N (σ1, σ2)-closed complements such that U ∩ V = ∅
and U ∪ V = Y . Since F (x) is σ1σ2-connected for each x ∈ X, either F (x) ⊆ U or
F (x) ⊆ V . If x ∈ F+(U∪V ), then F (x) ⊆ U∪V and hence x ∈ F+(U)∪F+(V ). Moreover,
since F is surjective, there exist x and y in X such that F (x) ⊆ U and F (y) ⊆ V ; hence
x ∈ F+(U) and y ∈ F+(V ). Therefore, we obtain the following:

(1) F+(U) ∪ F+(V ) = X;

(2) F+(U) ∩ F+(V ) = ∅;

(3) F+(U) ̸= ∅ and F+(V ) ̸= ∅.

Next, we show that F+(U) and F+(V ) are τ1τ2-open in X. (i) Let F be upper almost
nearly (τ1, τ2)-continuous. Since U and V are σ1σ2-clopen in Y , σ1σ2-Int(σ1σ2-Cl(U)) = U
and σ1σ2-Int(σ1σ2-Cl(V )) = V . Thus, U and V are (σ1, σ2)r-open sets having N (σ1, σ2)-
closed complements. Since F is upper almost nearly (τ1, τ2)-continuous, by Theorem 3
F+(U) and F+(V ) are τ1τ2-open sets. (ii) Let F be lower almost nearly (τ1, τ2)-continuous.
By Theorem 4, F+(U) is τ1τ2-closed inX because U is σ1σ2-clopen in Y . Therefore, F+(V )
is τ1τ2-open in X. Similarly, we have F+(U) is τ1τ2-open in X. Thus, (X, τ1, τ2) is not
τ1τ2-connected.
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