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1. Introduction

A vast amount of literature has been written on the problem related to the control of
economics. The main concentration was given to study and analyze the static economic
models. The most of the economics models are dynamic in their nature. The study on the
current state of an economic system involving a vast amount of policies are being used to
shift system from current status to future state while dealing with such dynamic systems.

For the input-output economics, a vast amount of literature has been written in order
to describe the real economics [25, 31]. The general linear dynamic systems are much
easier to deal with compare to singular dynamic systems such as implicit dynamic sys-
tems, generalized dynamic systems, generalized state-space dynamic systems, semi-state
dynamic systems [9, 24]. A vast amount of literature has been written on regular dynamic
systems and descriptor systems, we refer interested reader to see [14, 15, 42] and references
therein. The linear matrix inequalities techniques were developed to study the singular
dynamic system in economics, see [10, 35, 36, 43, 45].

The new results on the interconnections between dynamic behavior of macroeco-
nomics, continuous-time dynamical models and relationships between dynamic stability
and dominant-diagonal structure was studied and analyzed in [30]. The most of macro-
economics continuous-time dynamic models appears to be non-stable. In [5, 6, 11, 37]
it was shown that macro-economic continuous-time models are unstable. For general
discrete-time dynamical models appearing in economics, the relationship between the dom-
inant diagonals and the stability was developed by [16, 21, 26, 27, 41].

The D-stability for a class of real valued matrices to study the equilibrium in dynamic
models of competitive market for the first time was studied by Arrow and McManus [2], and
Enthoven and Arrow in [13]. The study of dynamic stability of tatonnement process
for Walrsian model of general equilibrium attracted a major community of economists.
The classical approach developed by Sanuelson describes the dynamic behaviour of the
economic models.

The new results on D-stability, strong D-stability and structured singular values were
developed by using various tools from linear algebra, matrix analysis, and system the-
ory, see [34]. In [22], the most general general relationships between performance and
robustness of dynamical system, and special type of matrix stabilities, that is, D stability
and diagonal stability were studied and analyzed. The results on new stability condi-
tions for second-order dynamical systems were presented and analyzed. An extension to
D-stability for non-square matrices which are applicable to distributed and decentralized
controllability analysis was recently studied in [40]. The µ-values or structured singular
values first introduced and analyzed by J. C. Doyel [12] and Safonov [38] is a mathematical
technique in order to investigate and test the stability of linear dynamical systems. In
general problem aiming the determination of stability in the presence of structured or un-
structured uncertainties is most fundamental issue in control and has attracted researchers
from almost last three decades.

In this article, we present new results on stability and D-stability of linear dynamic
models that appears in economics. We also present new results on necessary and sufficient
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conditions on interconnections between D-stability and structured singular values of ma-
trices appearing across dynamic models. The numerical experimentation shows the com-
parison of structured singular values for matrices with various dimensions from dynamic
models. Finally, the pseudo-spectrum of matrices across dynamic models is presented
while making use of EigTool [28].

Overview of article: In Subsection 1.1, we give the preliminaries to recall important
concepts, and definition to be used in this article. In Section 2, we provide new results to
study dynamic stability and D-stability of economic models. We make use of various tools
from linear algebra, system theory to derive these new results. In Section 3, necessary and
sufficient conditions are derived for the D-stability of dynamical system. The numerical
experimentation to support new results are presented in Section 4. We have made use
of Eigtool to visualize the pseudo-spectrum of structured matrices across the dynamical
systems. Finally, in Section 5, we conclude our paper.

1.1. Preliminaries.

For M ∈ Cn,n, the largest singular value is denoted by σmax, and is a non-negative real
number. The smallest singular value is denoted by σmin. The notation MT denotes the
transpose of a matrix, λi(M) denotes all the eigenvalues of the matrixM . ForM > 0(M ≥
0) means that matrix M is positive definite, and positive semi-definite, respectively. For
M < 0 (M ≤ 0) means that matrix M is negative definite, and negative semi-definite,
respectively. The symbol C+.

Definition 1. A block diagonal matrix D is defined as D = diag(D11, D22, ···, Dnn), where
D11, · · ·, Dnn, are the matrices.

Definition 2. The block-diagonal structure ∆ represents the uncertainty set and is defined
as

∆ =: {D = diag(D11, D22, · · ·, Dnn)}, D ∈ Rn,n.

Definition 3. The set ∆+ is defined as

∆+ =: {D ∈ ∆ : Dii > 0, ∀i = 1 : n}.

Definition 4. The singular values σi ∀ i = 1 : n are the non-negative numbers appearing
in the diagonal matrix Σ in the singular value decomposition of a matrix M = UΣV T ,
with U, V being as real orthogonal matrices.

Definition 5. For a given matrix M ∈ Cn,n, and an underlying set ∆, the structured
singular value is defined [33] as

µ∆(M) :=
1

min{||∆̂|| : det(In −M∆̂) = 0, ∀∆̂ ∈ ∆}
,

otherwise µ∆(M) = 0 if det(In −M∆̂) ̸= 0, ∀∆̂ ∈ ∆.
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Note that min is taken over ∆̂ ∈ ∆, and min over an empty set is +∞.

Definition 6. [4, 17]. The n-dimensional real valued matrix A ∈ Rn,n is continuous-time
stable if ∃ D ∈ ∆+ such that (ATDA−D) < 0.

Theorem 1. [23] The continuous-time linear system dx(t)
dt = Ax(t), x(t) ∈ Rn,1 is asymp-

totically stable iff

Re(λi) < 0 ⇔ π

2
< ϕ <

3π

2
, ∀ i = 1 : n,

with λi = |λi|eιϕi , ∀ i = 1 : n, the eigenvalues of A.

Note that the matrix Â ∈ Rn,n is discrete-time diagonal stable if ∃ D ∈ ∆+ such that
(ÂTDÂ−D) < 0.

Definition 7. [8, 44]. The n-dimensional real valued matrix A ∈ Rn,n is continuous-time
D-stable if the product DA is such that Re(λi(DA)) < 0, ∀i, D ∈ ∆+, a positive diagonal
matrix.

Definition 8. [3]. The n-dimensional real valued matrix Â ∈ Rn,n is discrete-time D-
stable if the product DÂ is such that ρ(DÂ) < 1, for all real valued diagonal and norm
bounded matrices D.

Theorem 2. [23] The discrete-time linear system xi+1 = Āxi, xi ∈ Rn,1, i = Z+ is
asymptotically stable iff

|λi| < 1

with λi, ∀ i = 1 : n, are the eigenvalues of Ā.

2. Dynamic stability and D-stability of economic models

In the section, we present new results to study the dynamic stability and D-stability
of a class of linear economic model given in the mathematical form

yt = Ayt +Byt−1 + Cxt.

Here, yt is a vector of the endogenous variables, and xt is a vector of exogenous vari-
ables. A,B, and C are the matrices having an appropriate dimensions. The reduced
mathematical form of the above dynamic model is given as

yt = (In −A)−1Byt−1 + Ext.

If the spectral radius, that is, ρ((In − A)−1B) < 1, then dynamic model is said to be
dynamically stable. The following Theorem 3 show that the reduced dynamic model is
dynamically stable.
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Theorem 3. Let A,B ∈ Rn,n. Then dynamical model yt = (In − A)−1Byt−1 + Ext is
dynamically stable if ρ((In −A)−1B) < 1.

Proof. We aim to prove that ρ(In −A)−1B) < 1 by using inequality

ρ((In −A)−1B)) ≤ ||(In −A)−1B)||2.

In order to prove our result, we assume that inequality holds true for strict inequality,
that is,

ρ((In −A)−1B)) < ||(In −A)−1B||2.

For the matrix (In −A)−1B, there exists unitary matrices U ∈ Cm,n, V ∈ Cm,n such that

(In −A)−1B = U

(
σ1 0

0 T

)
V H .

Next, we consider σ1 and θ1 ∈ Cn,1 so that

σ1 = ∥(In −A)−1Bθ1∥2 = ∥(In −A)−1B∥2,

while ∥θ1∥2 = 1. Further, we let u1 =
(In−A)−1Bθ1

σ1
such that

∥u1∥2 =
∥(In −A)−1Bθ1∥2

σ1
=

∥(In −A)−1Bθ1∥2
∥(In −A)−1B∥2

= 1.

Consider that U2 ∈ Cm,m−1, V2 ∈ Cn,n−1. Thus, U and V takes the form U = (u1|U2), and
V = (v1|V2) with U, V being unitary matrices. The matrix product UH(In−A)−1BV can
be rewritten as

(u1|U2)(In −A)−1B(v1|V2) =(
uH1 (In −A)−1Bθ1 uH1 (In −A)−1BV2

U2(In −A)−1Bθ1 UH
2 (In −A)−1BV2

)
=

(
σ1u

H
1 u1 uH1 (In −A)−1BV2

σ1U
H
2 u1 UH

2 (In −A)−1BV2

)
=

(
σ1 wH

0 B

)
,

where uH1 u1 = 1, UH
2 u1 = 0, w = V H

2 ((In −A)−1B)Hu1, and C = UH
2 (In −A)−1BV2. Let

w = 0, we get

σ2
1 = ∥(In−A)−1B∥22 = ∥UH(In−A)−1BV ∥22 = max

x ̸=0

∥UH(In −A)−1BV x∥22
∥x∥22

= max
x ̸=0

∥
(

σ1 uH

0 C

)
x∥22

∥x∥22
.

Take x −→ w, we have that

σ2
1 >

(σ2
1 + wHw)2

(σ2
1 + wHw)

= σ2
1 + wHw.

Thus, this yield that w = 0, and

UH(In −A)−1BV =

(
σ1 0

0 C

)
or (In −A)−1B = U

(
σ1 0

0 C

)
V H .
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We see that µs((In −A)−1B) < σ1((In −A)−1B), we have that

(In −A)−1B := S−1(In −A)−1B =

(
((In −A)−1B)11 ((In −A)−1B)12
1
ν ((In −A)−1B)21

1
ν ((In −A)−1B)22

)
.

Furthermore,(
I (In −A)−1B

((In −A)−1B)H I

)
> 0 ⇐⇒ I − (In −A)−1BI−1((In −A)−1B)H > 0.

From this we follow that

λi(I − (In −A)−1B((In −A)−1B)H(ν)) > 0, ∀i

or
1− λi((In −A)−1B((In −A)−1B)H(ν) > 0,∀i

or
λi((In −A)−1B((In −A)−1B)H(ν)) < 1, ∀i.

Thus finally, we get

σ1((In −A)−1B) < 1 ⇒ ||(In −A)−1B||2 < 1 ⇒ ρ((In −A)−1B)) < 1.

Theorem 4 gives the dynamic D-stability of dynamical model yt = (In−A)−1B+Ext.
We make use of results on interconnection between structured singular value, and D-
stability.

Theorem 4. Let the dynamical system be yt = (In−A)−1B+Ext. Then, for dynamic D-
stability the matrix (In−A)−1B is D-stable iff (In−A)−1B is stable, and 0 ≤ µ∆(M) < 1,

where M :=
(
iIn + (In −A)−1B

)−1 (
iIn − (In −A)−1B

)
.

Proof. The matrix (In − A)−1B is D-stable iff 0 ≤ µ∆(M) < 1. Assume that matrix
M is D-stable, means that,

λi

(
In − (In −A)−1B + iP

)
̸= 0, ∀ i = 1 : n,

and for some P = Diag(Re(pii)) > 0, ∀ i = 1 : n. In order to prove that (In − A)−1B is
D-stable matrix iff 0 ≤ µ∆(M) < 1, we let (In −A)−1B is D-stable matrix, that is,

λi

(
(In −A)−1B + iP

)
̸= 0, ∀ i = 1 : n.

Consider a block-diagonal matrix ∆̂ = (iIn − P )(iIn + P )−1, ∆̂ ∈ ∆. This allow us P =
(iIn+∆̂)−1(iIn−∆̂) is a positive diagonal matrix if ∆̂ ∈ ∆. Since, λi

(
(In −A)−1B + iP

)
̸=

0, ∀ i = 1 : n. Thus, it shows that

λi

(
(In −A)−1B + i(iIn + ∆̂)−1(iIn − ∆̂)

)
̸= 0, ∀ i = 1 : n, ∀ ∆̂ ∈ ∆.
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As, the rank of matrix
(
(In −A)−1B + i(iIn + ∆̂)−1(iIn − ∆̂)

)
is exactly equal to the

rank of matrix
(
(iIn + (In −A)−1B)− (iIn − (In −A)−1B)∆̂

)
, ∀ ∆̂ ∈ ∆. Also,(

(In −A)−1B + i(iIn + ∆̂)−1(iIn − ∆̂)
)
∼

(
(iIn + (In −A)−1B)− (iIn − (In −A)−1B)∆̂

)
, ∀ ∆̂ ∈ ∆.

Furthermore,

λi

(
In − (iIn + (In −A)−1B)−1(iIn − (In −A)−1B)∆̂

)
̸= 0, ∀∆̂ ∈ ∆.

This is a necessary condition that 0 ≤ µ∆(M) < 1. Since, our aim is to show that
(In −A)−1B is D-stable matrix. This means that we need to show

λi

(
(In −A)−1B + iP

)
̸= 0, ∀ i = 1 : n.

Since, 0 ≤ µ∆(M) < 1, means that λi(iIn − M∆̂) ̸= 0, ∀ ∆̂ ∈ ∆. In turn this implies

that λi

(
In − (iIn + (In −A)−1B)−1(iIn − (In −A)−1B)∆̂

)
̸= 0, ∀∆̂ ∈ ∆ which further

reduces to the fact that λi

(
(In −A)−1B + iP

)
̸= 0, and this shows that (In −A)−1B is a

D-stable matrix.

Theorem 5. Let the dynamical system be yt = (In−A)−1B+Ext. Then, for dynamic D-
stability the matrix (In−A)−1B is D-stable iff Re

(
λi(P (In −A)−1B + ((In −A)−1B)TP )

)
>

0, ∀ i = 1 : n, and 0 ≤ µ∆(M) < 1, with

M :=
(
iIn + P (In −A)−1B + ((In −A)−1B)TP

)−1 (
iIn − P (In −A)−1B − ((In −A)−1B)TP

)
.

Proof. We follow the same procedure as given in Theorem 4 to prove Theorem 5. We
aim to show that (In−A)−1B isD-stable iffRe

(
λi(P (In −A)−1B + ((In −A)−1B)TP )

)
>

0, ∀ i = 1 : n. Let ∆̂ ∈ ∆ be a block-diagonal structure, and defined as ∆̂ := (iIn −
P )(iIn + P )−1, a diagonal matrix. As λi(P (In − A)−1B + ((In − A)−1B)TP ) ̸= 0, ∀i =
1 : n. This implies that λi(P (In − A)−1B + ((In − A)−1B)TP + iP ) ̸= 0, ∀i = 1 : n iff
λi(P (In−A)−1B+((In−A)−1B)TP + i(iIn+∆̂)−1(iIn−∆̂)) ̸= 0, ∀i = 1 : n. This further
reduces to

λi

(
iIn + P (In −A)−1B + ((In −A)−1B)TP )− (iIn − P (In −A)−1B − ((In −A)−1B)TP )∆̂

)
̸= 0.

This, finally we have that

λi

(
In − (iIn + P (In −A)−1B + ((In −A)−1B)TP )−1(iIn − P (In −A)−1B − ((In −A)−1B)TP )∆̂

)
̸= 0.

This last inequality is the necessary condition that structured singular values is strictly
less than 1, means that, 0 ≤ µ∆(M) < 1.
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3. Necessary and sufficient conditions for D-stability

In this section, we present some new results on necessary and sufficient conditions for
D-stability of a given matrix in term of its structured singular values.

Lemma 1. [20]. A ∈ Rn,n which is continuous-time diagonal stable matrix is a D-stable
matrix.

Lemma 2. [20]. A ∈ Rn,n which is discrete-time diagonal stable matrix is a D-stable
matrix.

The following Theorem 6 show that Hurwitz-stable matrix is also a continuous-time
D-stable matrix matrix.

Theorem 6. [20]. Let A ∈ Rn,n be a Hurwitz-stable matrix. Then A is continuous-time
D-stable only if

0 ≤ µ∆

(
(sIn +A)(sIn −A)−1

)
≤ 1, ∀ s ∈ C+.

From above Theorem 6, it is clear that the definition of structured singular value holds
true for all the values of parameter s ∈ C+, that is, in closed right-half of complex plane.
The following lemma show that structured singular value can be determined at a single
value of s ∈ C+ rather than evaluating at entire closed right-half of complex plane.

Lemma 3. [20]. Let A ∈ Rn,n be a Hurwitz-stable matrix. Then, A is continuous-time
D-stable matrix iff

0 ≤ µ∆

(
(iIn +A)(iIn −A)−1

)
≤ 1, i =

√
−1.

Theorem 7 present an interesting relation between a continuous-time D-stable matrix
A ∈ Rn,n and structured singular values of a perturbed matrix obtained from A ∈ Rn,n.

Theorem 7. Let A ∈ Rn,n such that Re(λi(A)) > 0, ∀ i and is continuous-time D-stable
matrix, then

0 ≤ µ∆

(
(αIn +A)−1(αIn −A)

)
≤ 1, α ∈ C+.

Proof. Let A = eH be a stable matrix. The matrix H ≥ 0, a positive semi-definite
matrix. Let P > 0, a positive definite such that λi(αIn + eHP ) ̸= 0, ∀i, and P =
(αIn + ∆̂)−1(αIn − ∆̂) for all ∆̂ ∈ ∆. This formulation allows as to have that

λi

(
αIn + eH(αIn + ∆̂)−1(αIn − ∆̂)

)
̸= 0 ∀i, ∀∆̂ ∈ ∆.

The above expression for λi reduces to

λi

(
(αIn + eH)−1(αIn − eH)∆̂

)
̸= 0 ∀i, ∀∆̂ ∈ ∆.

In turn this yields

λi

(
(αIn +A)−1(αIn −A)∆̂

)
̸= 0 ∀i, ∀∆̂ ∈ ∆.
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Finally, we conclude that

0 ≤ µ∆

(
(αIn +A)−1(αIn −A)

)
≤ 1.

The following Theorem 8 gives an interconnection between continuous-time D-stable
matrix and structured singular values of a perturbed matrix.

Theorem 8. Let A ∈ Rn,n such that Re(λi(A)) > 0, ∀ i and is continuous-time D-stable
matrix, then

0 ≤ µ∆

(
(iIn +A)−1(iIn −A)

)
< 1, i =

√
−1.

Proof. We aim to show that Re(λi(A)) > 0,∀i if Re(λi(AH)) = Re(λi(H)),∀i,∀H ≥ 0.
If Re(λi(A)) ≥ 0, ∀i and A ∈ Cn×n is n × n-singular matrix, then there exists a unitary
matrix U such that

U∗AU =

(
M11 + iN11 iN12

iN21 ·

)
,

with M11 > 0, and for U∗AU =

(
· ·
· In

)
≥ 0. In turn, this yields

Re(λi(AH)) = Re(λi(H)), ∀i.

Secondly, we prove that

0 ≤ µ∆

(
(iIn +A)−1(iIn −A)

)
< 1.

To prove the above result, we take the given matrix A = eH , a stable matrix where H ≥ 0,
a positive semi-definite matrix. Let P > 0, a positive definite such that λi(iIn+eHP ) ̸= 0,
∀i where P = (iIn + ∆̂)−1(iIn − ∆̂) for all ∆̂ ∈ ∆. This allows as to have that

λi

(
iIn + eH(iIn + ∆̂)−1(iIn − ∆̂)

)
̸= 0 ∀i,∀∆̂ ∈ ∆.

The above expression takes the form

λi

(
(iIn + eH)−1(iIn − eH)∆̂

)
̸= 0 ∀i,∀∆̂ ∈ ∆.

Finally, this implies that

λi

(
(iIn +A)−1(iIn −A)∆̂

)
̸= 0 ∀i,∀∆̂ ∈ ∆.

Thus,
0 ≤ µB

(
(iIn +A)−1(iIn −A)

)
< 1.

Theorem 9. Let A ∈ Cn×n satisfies Re(λi(A)) > 0, ∀ i is a continuous-time diagonal
stable matrix and its dual matrix Â := (A− I)−1(A+ I) is discrete-time diagonal stable,

then σmax(Â1) < 1, with Â1 := D
1
2 ÂD

−1
2 .
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Proof. The matrix A ∈ Cn×n is continuous-time diagonal matrix. This means that for
a positive diagonal matrix D, the matrix DA+ATD is negative definite, that is,

DA+ATD < 0 ⇐⇒ D(Â+ I)(Â− I)−1 + ((Â+ I)(Â− I)−1)TD < 0

⇐⇒ D
1
2 (Â+ I)(Â− I)−1D

−1
2 + ((Â+ I)(Â− I)−1)TD < 0

⇐⇒ (Â1 + I)(Â1 − I)−1 + ((Â+ I)(Â− I))−1D < 0

⇐⇒ Â1
T
Â1−I < 0 ⇐⇒ λmax((Â1

T
)Â1−I) < 0 ⇐⇒ ρ((Â1

T
)Â1) < 1 ⇐⇒ σmax(Â1) < 1.

3.1. Pseudo-spectrum

The computation of pseudo-spectrum for a given matrix (say) M is the set containing
the all eigenvalues of M . One may raise an important question about the singularity of
given matrix M as it does not appear as a small perturbation ϵ which may completely
change the answer from a yes to a no. This further implies that either matrix-norm
||M−1|| is large enough or not?

For an eigenvalue λ corresponding to given matrix M , a much important question
one may ask: Is the matrix ||(λIn − M)−1|| is large or not? this pattern allows to have
definitions and results of pseudo-spectrum given as below:

Definition 9. For matrix n-dimensional matrix M , and for ϵ > 0, a small perturbation
level. The ϵ-pseudospectrum σϵ(M) is the set of eigenvalues λ ∈ C so that

||(λIn −M)−1|| > 1

ϵ
.

Remark 1. For quantity λ ∈ σ(M), σ(M), denotes the set of eigenvalues of M , ||(λIn −
M)−1|| = ∞.

The second definition of pseudo-spectrum is given as follows.

Definition 10. For an n-dimensional matrix, and for a given ϵ > 0, a small perturbation
level. The ϵ-pseudospectrum σϵ(M) is the set of eigenvalues λ ∈ C so that

λ ∈ σ(M + E),

for some E having ||E|| < ϵ.

The third characterization of the computation of pseudo-spectrum for given matrix M
is given as bellow.

Definition 11. For a given n-dimensional matrix M , and ϵ > 0, a small perturbation
level. The ϵ-pseudo spectrum σϵ(M) is the set of eigenvalues λ ∈ C so that

||(λIn −M)v|| < ϵ

for some v ∈ Cn,1, ||v|| = 1.
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The following Theorem gives an equivalence of all above definitions of pseudo-spectrum.

Theorem 10. Consider that || · || denotes a matrix norm for a given matrix M . Following
statement are equivalent:

(i) Λϵ(M) = {z ∈ C : ||(zIn −M)−1|| ≥ 1

ϵ
}.

(ii) Λϵ(M) = {z ∈ C : z ∈ Λ(M + E), ||E|| ≤ ϵ}.
(iii) Λϵ(M) = {z ∈ C : ∃ v ∈ Cn,1 s.t ||(M − zIn)v|| ≤ ϵ}.

Remark 2. The second statement in the above theorem is true for some matrix E. Fur-
thermore, in last statement the column vector v has a unit 2-norm, that is, ||v||2 = 1.

4. Numerical Experimentation

In this section, we a present a comparison on the numerical computation of lower
bounds of structured singular values. The numerical algorithms under consideration for
approximation of lower bounds of structured singular values are: The Matlab function
mussv, the power algorithm (PA) [32], Gain Based Algorithm (GBA) [39], Poles mi-
gration Algorithm (PMA) [29], Non-linear optimization Algorithm (NLA) [19], and the
Low-rank ODE’s based Algorithm (LRA) given by first author [18]. The matrices are
taken from various models of economy and finance. Furthermore, we use EigTool [28] for
the computation of the pseudo-spectrum of each matrix.

Example 1. Consider macroeconomic model of the trade cycle [7]
DK = γ1(K̂ −K)with K̂ = β1Y

DC = γ2(Ĉ − C)with Ĉ = β2Y + β3

DY = γ3(Ŷ − Y )with Ŷ = C +DK

Here, K,C, Y denotes stock of capital, consumption, and output less replacement, respec-
tively.

Case-I: For γ1 < 0.0625, γ2 = 0.6, γ3 = 4.0, β1 = 2.0, β2 = 0.75, the matrix C has
the structure:

C =

−0.05 0 0.1
0 −0.6 0.45

−0.2 4.0 −3.6

 .

We present the comparison on numerical approximation of the lower bounds of structured
singular values in following Table 1.

The numerical approximation of lower bounds of structured singular values

mussv PA GBA PMA NLA LRA

5.4369 5.4369 5.4389 5.4391 5.4371 5.4370
Case-II: For γ1 = 0.4, the matrix C has the structure:
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Figure 1: The graphs of singular values and pseudo-inverse of M in Example-1 (Case-I)

Figure 2: The graphs of singular values and pseudo-inverse of M in Example-1 (Case-II)

C =

−0.4 0 0.8
0 −0.6 0.45

−1.6 4.0 −0.8

 .

We present the comparison on numerical approximation of the lower bounds of structured
singular values in following Table 2.

The numerical approximation of lower bounds of structured singular values

mussv PA GBA PMA NLA LRA

4.4272 4.4274 4.4285 4.4293 4.4290 4.4272
Example 2. Consider linear dynamical model

yt = (In −A)−1B + Ext.

For

A =

[
0 1
0 0

]
, B =

[
0 0.5
0 0

]
.

The matrix (In −A)−1B for n = 2, has the following structure:

(I2 −A)−1B =

[
0 0.5
0 0

]
.

We present the comparison on numerical approximation of the lower bounds of structured
singular values in following Table 3.
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Figure 3: Matlab interface for computing pseudo-spectrum of matrix (I2 −A)−1B.

The numerical approximation of lower bounds of structured singular values

mussv PA GBA PMA NLA LRA

0.5000 0.5123 0.5341 0.5001 0.5012 0.5000

Example 3. Consider the non-linear model of macro-econometrics presented in [6]. The
matrix C = (In −A)−1B and has the following structure for n = 13:

−0.08 0 0 0 0 0 0 −0.01 0.01 0
0 0 0

−1.27 0 0 0 0 0 0 −0.01 0.01 0
0 0 0
0 0 −0.24 0 0.24 0 0 0 0 0
0 0 0
0 0 0 −0.09 0.10 0 0 0 0 0
0 0 0

7.63 0 0.48 0 −0.65 0 0.11 0 0 0
0 0.05 0

8.14 0 0.51 0 0 −0.35 0.12 0 0 0
−0.33 0.05 0

0 0 0 0 0 0 −0.29 −0.29 0 0
0 0 0
0 0 0 0 0.02 0 0 −0.13 0.13 0
0 −0.02 0
0 0 0 0 0.11 0 0 0 0 0
0 −0.01 0
0 0 0 0 0.19 0 0 0.19 0 −0.16
0 0 −0.19

−8.60 0 −0.54 0 0.60 0.13 −0.13 0 0 0
0 −0.05 0

1.00 0 0 0 −0 0 0 0 0 0
0 0 0



.

We present the comparison on numerical approximation of the lower bounds of structured
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Figure 4: Matlab interface for computing pseudo-spectrum of matrix (I2 −A)−1B.

singular values in following Table 4.
The numerical approximation of lower bounds of structured singular values

mussv PA GBA PMA NLA LRA

14.2303 14.2309 14.2312 14.2332 14.2398 14.2306

5. Conclusion

In this article, we have developed new results on stability, and D-stability of linear
economic models. The new results are obtained by using tools from linear algebra, matrix
analysis, and system theory. Some novel results are also presented on necessary and suffi-
cient conditions on the interconnection between D-stable matrices and structured singular
values. The numerical experimentation show the comparison of structured singular values
by various numerical techniques, the EigTool is used to present the pseudo-spectrum of
matrices across linear dynamic models. The main advantages of the proposed methodol-
ogy in the present study:
1. The proposed methodology helps to study and analyze many spectral properties of
structured matrices. It contains the properties like eigenvalues, singular values, struc-
tured singular values.
2. The proposed methodology based on theoretical results link the bridge between sta-
bility, D-stability, and structured singular values for structured matrices corresponding to
dynamical systems. 3. The geometrical interpretation gives an advantage to exploit the
hidden structures of structured matrices.
4. The proposed methodology has strong theoretical foundations and also numerical ex-
perimentation to support the theoretical construction.
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